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Wave-particle interaction plays a crucial role in the dynamics of the
Earth’s radiation belts. Cyclotron resonance between coherent whistler
mode electromagnetic waves and energetic electrons of the radiation belts
is often called a coherent instability. Coherent instability leads to wave
amplification/generation and particle acceleration/scattering. The effect of
wave on particle’s distribution function is a key component of the instability.
In general, whistler wave amplitude can grow over threshold of quasi-linear
(linear) diffusion theory which analytically tracks the time-evolution of a particle
distribution. Thus, a numerical approach is required tomodel the nonlinear wave
induced perturbations on particle distribution function. A backward test particle
model is used to determine the energetic electrons phase space dynamics as
a result of coherent whistler wave instability. The results show the formation
of a phase space features with much higher resolution than is available with
forward scattering models. In the nonlinear regime the formation of electron
phase space holes upstream of a monochromatic wave is observed. The results
validate the nonlinear phase trapping mechanism that drives nonlinear whistler
mode growth. The key differences in phase-space perturbations between the
linear and nonlinear scenarios are also illustrated. For the linearized equations
or for low (below threshold) wave amplitudes in the nonlinear case, there is no
formation of a phase-space hole and both models show features that can be
characterized as linear striations or ripples in phase-space.
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1 Introduction

The Earth’s magnetosphere can support various electromagnetic wave modes that
play a vital role in near-Earth space dynamics. These electromagnetic waves of which
the whistler mode is of particular importance, concurrently interact with higher energy
radiation belt particles which are trapped in a magnetic mirror configuration of the
geomagnetic field (Bell and Buneman, 1964; Helliwell, 1965; Kennel and Petschek, 1966;
Lyons et al., 1972; Gendrin, 1981; Omura et al., 1991; Bortnik et al., 2008). Two primary
aspects of whistler mode wave-particle interactions are the amplification of the waves
by an unstable hot particle distribution, and the precipitation and/or acceleration of
these particles by the waves. In general, modeling wave amplification along with particle
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scattering and acceleration is a difficult problem that requires a
self-consistent solution to the Vlasov-Maxwell system of equations.
Several researchers have approached the self-consistent problem
using particle-in-cell (PIC) or hybrid simulations (Katoh and
Omura, 2007; Gibby et al., 2008; Hikishima et al., 2010; Omura
and Nunn, 2011; Wang et al., 2024); however, such computationally
intensive self-consistent simulations can be unnecessary in scenarios
where particle induced modifications to the wave are small and
particle scattering by the waves is of greater interest. In other words,
to investigate particle dynamics while minimizing computational
costs, the test particle method can be employed, where the feedback
of particles on the waves is neglected.

A common approach is to specify the wave-fields and neglect
feedback from the particles which results in a simpler but
only approximate system of equations. For small amplitude and
incoherent signals such as plasmaspheric hiss, quasi-linear diffusion
theory is a commonmethod to track the time-evolution of a particle
distribution (Kennel and Petschek, 1966; Inan et al., 1978; Abel
and Thorne, 1998; Albert, 1999; Summers, 2005). For arbitrary
wave-fields (which can go beyond the scope of linear theory),
however, the dynamics of the particle distribution may need to
be investigated using test particle simulations (Maldonado et al.,
2016; Fu et al., 2019) or other methods (Hu and Krommes, 1994).
Although test particle simulations have been successful in previous
work, simulations with large-amplitude and coherent waves can
still require many millions of particles to accurately describe
the nonlinear phase-space dynamics of the particle distribution
function (Dysthe, 1971; Matsumoto and Omura, 1981; Bell, 1984;
Gibby et al., 2008; Nunn, 1974; Albert et al., 2012).

In order to alleviate the computational cost of traditional test-
particle methods, a more efficient backward test particle solution
to the Vlasov equation is employed here to evaluate the nonlinear
effects of large-amplitude coherent waves on the energetic particle
distribution function. The backward test particle approach exploits
the conservation of phase space as articulated in Louisville’s theorem
and permits determination of the prior state of a particle distribution
if the wave-fields are known. Practically, this technique allows
regions of interest in phase-space to be defined a priori which thus
greatly reduces the number of particles that need to be tracked
in the simulations and avoids complications from potential under
sampling. The method has been previously utilized to efficiently
model particle precipitation by coherent whistler mode waves
since the loss-cone is well defined (Harid et al., 2014; Nunn and
Omura, 2015). In addition, the technique is well-suited for analyzing
acceleration to high energies and second-scale variations to the
particle distribution function. In this work, the detailed temporal
dynamics of the nonlinear wave-induced trap in phase-space are
shown at a higher resolution than has been shown in previous works
by full PIC (Figure 7 in Hikishima and Omura, 2012) or hybrid
(Figure 4.9 in Harid, 2015) simulations. This high resolution allows
for the accurate determination of “scattered” fields to investigate
salient features of amplified and triggered magnetospheric waves.

2 Theory

The mathematical basis of modeling wave-particle interactions
is via the Vlasov-Maxwell system of equations. The Vlasov equation

governs the evolution of electron (with mass of m, and charge of q)
phase space density f(r,v) in a collision-free plasma, as:

∂ f
∂t
+ v
∂ f
∂r
−

q
m
(E𝓌 + v ×B)

∂ f
∂v
= 0. (1)

where the quantities r and v correspond to the position and
velocity coordinates of phase-space. E𝓌 corresponds to the wave
electric field while B is the total magnetic field. The total magnetic
field can be decomposed into B = B𝓌 +B0 where B𝓌 is the wave
magnetic field and B0 represents the background geomagnetic field.
The Earth’s magnetic field retains a dipole shape in the inner
magnetosphere, and forces radiation belt electrons to experience
helical motion around the background field. The electrons can
constantly interactwith the circularly polarizedwhistlermodewaves
that are propagating along the field line. Here, the waves are assumed
to propagate parallel to the magnetic field lines and other (non-
whistler mode) wave modes are ignored.

For a circularly polarized whistler mode wave with frequency ω
and wavenumber k that is propagating parallel to the background
magnetic field lines (−z direction), the expression for the wave
magnetic field ,B𝓌, in Cartesian coordinates is:

B𝓌 =R[( ̂x −𝒿 ̂y)B𝓌e𝒿(ϕ𝓌+ωt+∫kdz)] (2)

Counter streaming electrons that travel at the appropriate
positive velocity will experience an approximately static wave fields
and significant energy exchange. This is referred to as Doppler
shifted cyclotron resonance or gyro-resonance where resonance
velocity (vr) is given by Equation 3:

vr =

ωc
γ
−ω

k
(3)

The terms ωc is the electron cyclotron frequency (ωc =
qB0
m
,

where B0 = |B0|) and γ is known as the Lorentz factor (γ =

√(1+ |p|
2

m2c2
), where c = 1

√μ0ε0
) which is included to take relativistic

corrections into account.
Maxwell’s equations govern the evolution of the wave electric

and magnetic fields, but the wave equations in a magneto-plasma
can be simplified under the assumption of a narrowbandmodulating
wavepacket, given the coherence of the signals observed in the data.
The termωt+∫kdz in Equation 2 corresponds to the phase variation
of a monochromatic plane wave and can be thought of as a feature of
an injected (incident) carrier wave. It is worthmentioning, although
the focus of the current study is on a monochromatic wave with
a singular frequency, waves with a finite but narrow bandwidth
are also called narrowband waves and can lead to nonlinear wave-
particle interactions. The quantity B𝓌e𝒿ϕ𝓌 corresponds to the
complex wavepacket that modulates the carrier whistler wave. Both
the amplitude (B𝓌) and phase (ϕ𝓌) of the modulating wavepacket
will be slowly varying functions of position and time, even if
the quantity B𝓌e𝒿ϕ𝓌 may be varying rapidly. Under the slowly-
varying or narrowband assumption the evolution equations for
the amplitude and phase of the modulating wavepacket can be
simplified as (Nunn, 1974; Matsumoto and Omura, 1981; Omura
and Nunn, 2011; Gibby et al., 2008):

( ∂
∂t
− |vg|
∂
∂z
)B𝓌 = −

μ0vg
2

JE (4)
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FIGURE 1
The geometry of resonant currents.

( ∂
∂t
− |vg|
∂
∂z
)ϕ𝓌 = −

μ0vg
2

JB
B𝓌

(5)

These narrowband wave equations have the advantage of
separately quantifying the effect of the wave growth and frequency
change and can provide useful physical intuition behind the
evolution of a wavepacket that is propagating at the group velocity
(vg) of thewhistler wave. Specifically, Equation 4 shows that thewave
amplitude is driven by the component of the resonant current that
is in the direction of the wave electric field (JE). For a coherent
wavepacket, it is assumed that the wave electric field, E𝓌, is given
by, E𝓌 = vpBw, where vp is the phase-velocity of the wave.

The geometry of the resonant currents (JR) with respect to the
wave fields due to the energetic electrons are delineated in Figure 1.
The variables v∥ (p∥) and v⊥ (p⊥) are parallel and perpendicular
components of electron velocity (momentum) relative to the
background geomagnetic field (B0). The angle between v⊥ and Bw
(−Bw) is referred to as the gyrophase ζ (φ). The quantities JE and JB
are orthogonal components of resonant currents (JR = JB +𝒿JB) and
requires computing the appropriate integral directly over the phase
space distribution function ( f) in cylindrical (v⊥, v∥, φ) coordinate
coordinate system, which is given by Equations 6, 7, respectively:

JE = q∫ fv2⊥ sin φdv∥dv⊥dφ (6)

JB = q∫ fv2⊥ cos φdv∥dv⊥dφ (7)

The dynamics of resonant electrons in a monochromatic
whistler mode wave field (B𝓌, E𝓌) immersed in a background
inhomogeneous magnetic field ( ∂ωc

∂z
), is in general governed by the

Lorentz force.

dz
dt
= v∥ (8)

dp∥
dt
=

q
mγ

B𝓌p⊥ sin ζ−
p⊥

2

2mγωc

∂ωc

∂z
(9)

dp⊥
dt
= −q sin ζ(E𝓌 + v∥B𝓌) +

p∥p⊥
2mγωc

∂ωc

∂z
(10)

dζ
dt
= k(vr−v∥) −

qcosζ
p⊥
(E𝓌 + v∥B𝓌) (11)

where p∥ (p⊥) are parallel (perpendicular) components of electron
momentum relative to the background geomagnetic field. If
only electrons that are close to resonance are examined and
the small contribution of centripetal acceleration due to the
wave is neglected, the equations of motion can be written as
Gołkowski et al. (2019):

dζ
dt
= θ (12)

dθ
dt
= ω2

tr(sin ζ+S) (13)

Here the variable θ = k(v∥ − vr) represents a normalized change
of the electron’s parallel velocity from resonance. The quantity

ωtr = √
qkv⊥B𝓌

m
is known as the trapping frequency. The quantity

S is called the “S-parameter” and is a collective inhomogeneity
factor based on Equation 14 which quantifies the effect of
background inhomogeneity ( ∂ωc

∂z
) as well as the frequency sweep rate

observed by the particle ( dω
dt
):

S = 1
ω2
tr
[(

kv2⊥
2ωc
+ 3
2
vr)
∂ωc

∂z
+
2ω+ωc

ω
dω
dt
] (14)

Differentiating Equation 12 with respect to time and
plugging into Equation 13, results in a nonlinear ordinary
differential equation which represents a forced pendulum equation
where the forcing term is proportional to S :

d2ζ
dt2
= ω2

tr(sin ζ+S) (15)

For S = 0, Equation 15 takes the form of a conventional
pendulum equation and the particle will oscillate around ζ = π
at the trapping frequency ωtr in a manner similar to which a
pendulum oscillates in a constant gravitational field. For values in
the range −1 < S < 1, the central phase angle around which the
particle oscillates is moved to ζ0 = − sin−1S .

Of particular importance is the formation of a wave-induced
trap in phase-space which changes structure depending on the
location along the geomagnetic field line. Figure 2 shows the shape
of the phase-space trap at several positions (for a monochromatic
whistler mode wave) (Gołkowski et al., 2019). The variable ξ on
the vertical axis is defined by θ

√2ωtr
and is essentially a normalized

deviation of v∥ from resonance.
The trapped trajectories correspond to closed curves in phase-

space while the untrapped particles follow open curves. The
trapped and untrapped electron populations are separated by
a boundary known as a separatrix and are shown by the red
contours. Formally, the separatrix can only exist when −1 < S <
1. If the background magnetic field were homogenous (S = 0),
then the initially trapped electrons stay trapped and untrapped
particles stay untrapped indefinitely. However, for a spatially
dependent S , this is not necessarily the case. Electrons can
either swing around the trap or be trapped for many trapping
periods before being detrapped. The exact dynamics are strongly
dependent on the initial phase angle, energy, and pitch angle of
the electrons. Therefore, by setting |S| = 1, the minimum amplitude
required for phase trapping, Btr =

m
qkv⊥
[ kv⊥

2

2ωc
+ 3

2
v
∥
]| ∂ωc
∂z
|, can be

obtained.
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FIGURE 2
Phase-space trap along the field line at a (A) S =-1, (B) S = -0.4, (C) S = 0, (D) S = -0.4, and (E) S =1 (Gołkowski et al., 2019).

3 Backward test particle model

The backward test particle numerical model essentially solves
the Vlasov Equation 1 for a given wave at a particular location along
the geomagnetic field line. Since the Vlasov equation is an advective-
type partial differential equation (PDE), information propagates
aroundphase space in a complicatedmanner. An accuratemethod of
computing the distribution is by using themethod of characteristics,
which in the context of Vlasov equation is equivalent to Liouville’s
theorem. By neglecting the transverse spatial motion of electrons
and only considering spatial variation along the field line, the Vlasov
Equation 1, can be written as Equation 16:

∂ f
∂t
+(dz

dt
)
∂ f
∂z
+(

dp∥
dt
)
∂ f
∂p∥
+(

dp⊥
dt
)
∂ f
∂p⊥
+(

dφ
dt
)
∂ f
∂φ
= 0 (16)

where the terms in parenthesis corresponds to equations of motion
in Equations 8–11.This is done by considering characteristic curves,
which are curves along which the distribution function is advected.
This turns the PDE into a set of ODEs. More specifically, consider a
general advection equation as:

∂ f
∂t
+ ⃗c(r)
∂ f
∂r
= 0 (17)

This type of equation describes advection of the quantity
f(t,r) at “speed” ⃗c at “position” r. To find the characteristics, we
find the trajectories, r(t) for which the total derivative vanishes
as shown in Equation 18:

d f(t,r)
dt
=
∂ f
∂t
+ dr
dt
∂ f
∂r
= 0 (18)

The original advection Equation 17 can only be satisfied if
dr
dt
= ⃗c is satisfied. Another interpretation is that in the frame of

reference moving at speed ⃗c, the quantity f does not change. Thus,
by solving for the trajectories, we find the curves along which f is
advected (Harid et al., 2014). In the case of the Vlasov equation,
the characteristic curves are found by solving Equations 8-11. This
means the value of the distribution function at any particular point
can be determined by tracing the characteristic curves back until
time zero. This method requires a grid generated over (φ,v∥,α) in
phase space at any position of interest, z, within the interaction
region. The characteristics are traced backward (formally dt→
−dt for the equations of motion and narrowband wave equations)
until time zero.

The simulations use an interaction region that is approximately
±2000km around the geomagnetic equator.The phase space grid has
Nv∥ ×Nα ×Nφ = 200× 50× 32 = 320000 grid points. All simulations
are performed using a centered dipole geomagnetic field model. We
use the cold density model from Carpenter and Anderson (1992)
to determine the cold plasma parameters under quiet geomagnetic
conditions. At L = 4.9, the equatorial gyrofrequency is fc = 6.8 kHz;
the simulations use an inputwave frequency of f0 =

fc
2
= 3.4 kHz and

a cold plasma density of Nc = 400
el
cm3 . A subtracted bi-Maxwellian

distribution of particles is considered for the energetic electrons,
which is given by Equation 19:

f(p∥,p⊥) = Cbe
−

p2∥
2p2th∥ [

[
e
− p2⊥

2p2th⊥ − e
− p2⊥

2βp2th⊥ ]

]
(19)

where the parameter β determines depletion level of the loss cone
distribution, such that β = 0 referrs to a pure bi-Maxwellian and
larger values of β give a more depleted loss cone. The quantities p∥
and p⊥ are the particle momenta parallel and perpendicular to the
geomagnetic field, respectively. Additionally, Cb =

Nh

(1−β)pth∥p
2
th⊥
(√2π)3

,

where Nh is the hot plasma density, and pth∥ (pth⊥) represents
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FIGURE 3
(A) Hot electron density as a function of position along the field line, and Subtracted bi-Maxwellian distribution function at a distance (B) −10,000 km
and (C) 101 km from the magnetic equator, with β = 0.5, c is the speed of light.

the average hot plasma momenta parallel (perpendicular) to the
geomagnetic field. All simulations use pth∥ = 0.17c and pth⊥ = 0.4c
where c is the speed of light in free space. Such a distribution
represents a Maxwellian distribution without the loss cone particles
that would be absent in the magnetosphere. Figure 3A shows the
hot electron density as a function of position along the field line.
Figures 3B, C shows a color-map of the phase-space subtracted bi-
Maxwellian distribution function at a distance −10,000 km and
101 km from the magnetic equator, respectively. As shown, the
distribution function is higher at high pitch angles which is
characteristic of the radiation belt population. The rapid decay
of particle density (away from z = 0) due to the magnetic
bottle configuration is clearly demonstrated in Figure 3A and is
consistent with the interaction region being dominated by the near-
equatorial region.

The wave fields are taken into account by illuminating the
entrance of the interaction region with an input signal and
using this as a boundary condition for the wave equations.
A fourth-order Runge-Kutta (RK4) time-stepping scheme is
used to evolve Equations 8–11. The wave equation is time
stepped using a semi-Lagrangian scheme with cubic spline
interpolation.

For a distribution function of this form, the pitch angle
anisotropy is given by A = β p2th⊥

p2th∥
+( p

2
th⊥
p2th∥
− 1). For the case of a

classic bi-Maxwellian (β = 0), the expression simplifies to A = p2th⊥
p2th∥
−

1 = T⊥
T∥
− 1, which readily conveys the concept of anisotropy or

directional dependence of the distribution. For a bi-Maxwellian,
without the loss cone, if the perpendicular and parallel temperatures
(thermal velocities) are equal, the anisotropy is identically zero.
Thus, waves are unstable to the plasma if the electron temperature
is higher in the direction perpendicular to the magnetic field than
parallel to it. For this reason, the term “temperature anisotropy”
is used since it provides simple physical intuition behind why the
waves are unstable. In the general case of a subtracted bi-Maxwellian,
the pitch angle anisotropy will always be higher than that of a
classic bi-Maxwellian and one can have anisotropy just from the
presence of the loss cone even if thermal temperatures are in
equilibrium.

4 Results

We first use BTP model to explore a small number of particle
trajectories as has been done in other works using forward time
stepping methods (Inan, 1977; Albert, 2002; Tao et al., 2012)
to illustrate some basic physical phenomena. The test particle
trajectories will be compared to the linearized equations of motion
to emphasize the need for a scattering model which includes both
linear and nonlinear effects. Afterwards, the backward test particle
model is used to investigate particle scattering and dynamics of the
distribution function.

4.1 Test particle trajectories

The BTP code used in the context of a test particle simulation
basically treats a few phase space points as test particles and traces
them backwards to create the trajectories. Tracing the test particles
backward is done by solving the exact same equations of motion
as in the BTP approach, but instead of a lot of particles sampled
to represent the distribution function, only a few test particles are
evaluated to examine their motion in phase (velocity) space.

Figure 4 shows test particle trajectories for a monochromatic
constant amplitude wave. The trajectories using the nonlinear
expressions (panel b) are compared to those obtained when the
equations of motion are linearized around the adiabatic motion
(panel a) [Harid et al., 2014, Appendix A, Equations A6-A7].
As is shown in the left panel (Figure 4A), for an assumed dipole
geomagnetic field, the phase trapped resonant particles do not
appear in the linearized trajectories. All particles are uniformly
distribution in gyrophase with the same value of v⊥ starting at
the same initial position.The initial gyrophase angle when a particle
goes into resonance with the wave determines whether the particle is
phase trapped or not. As is shown in Figure 4B, untrapped particles
are deflected as they come into resonance with the wave, while
phase trapped stay in resonance with the wave longer before they
are released from the trap. These phase trapped particles are seen
to follow the resonance curve even when it departs significantly
from the adiabatic motion followed by the untrapped particles.
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FIGURE 4
Linear L, panel (A) and nonlinear NL, panel (B) test particle trajectories for a monochromatic constant amplitude wave. In both cases, the majority of
particles follow adiabatic motion along the rainbow shaped curve, with only slight perturbations when they intersect the orange resonance curve. In
the nonlinear (NL) case (panel b), a few particle trajectories are visible along the orange cyclotron resonance curve. These particles are phase trapped
and forced to stay in resonance with the wave.

Trapped particles deviate drastically from their adiabatic trajectories
which in turn significantly modify the distribution function
(Dowden et al., 1978; Omura and Summers, 2006; Chen et al.,
2024a). For these reasons, phase trapping is believed to
be a key component of nonlinear effects in wave-particle
interaction.

The phase trapped particles are released when the geomagnetic
gradient increases to a level where the trapping condition
( |S| < 1) no longer holds. A higher wave amplitude can keep the
particles trapped longer. The concept of “Trap-Release” has been
demonstrated in recent self-consistent models as a particularly
important mechanism in feedback of wave growth and frequency
change (Tao et al., 2021; Harid et al., 2022).

For a wave amplitude lower than nonlinear threshold,
for instance Bw = 5pT, phase trapping will not happen, and
thus the linearized equations give the same results as the test
particle trajectories, which is summarized in Figure 5. Therefore,
particles scatter similarly in the linear regime (Figure 5A) and
nonlinear regime (Figure 5B) when the wave amplitude is small
(below the nonlinear threshold).

4.2 Short pulse - detrapping

In the previous section, we showed the test particle trajectories
for the constant wave amplitude and the wave filling the entire
simulation domain along the geomagnetic field. These simulation
results demonstrate important physical concepts behind wave-
particle interactions, such as phase trapping once the wave
amplitude is above the nonlinear trapping threshold. A more
typical scenario inspired by ground based observations is when a
wave of limited duration propagates through the interaction region
(Inan et al., 1982; Hosseini et al., 2017). More specifically, such
monochromatic pulses are not long enough in time (or space) to fill

out the entire simulation domain, which introduces unique effects
at the front and back end of the pulse.

Figure 6B shows the test particle trajectories for an injected
traveling 0.5-s pulse with wave amplitude of 60 pT and compares it
to a “long” pulse (Figure 6A) that fills the whole simulation space as
the results in Section 4.1. Large amplitude (up to 3–8 nT) of whistler
mode waves are reported from in situ observations (Wilson III et al.,
2011; Santolík et al., 2014). Such waves can be naturally occurring
chorus waves, waves from lightning or waves from transmitters. As
is shown in Figure 6B, once the wave front reaches the particles
location, some of the particles get phase trapped and stay in
resonance with the wave until the back end of the traveling wave
leaves the particle location. Once the particles that have been phase
trapped by the travelling wave are let go by the wave (detrapping),
they keep traveling on adiabatic trajectories. If the detrapped
particles hold their phase-bunched (coherence) characteristic for a
few trapping periods after they exit the wave field, they are capable
of radiating either a falling or rising emission (Roux and Pellat,
1978). To be more specific, the phase-bunched particles traveling
on adiabatic trajectories are capable of creating coherent resonant
currents that radiate Doppler shifted frequencies in a manner of
an end fire antenna (Helliwell and Crystal, 1973; Nunn, 1974). It is
worth noting that at this stage (after detrapping) the injected wave
has left the particles, and the radiated frequencies are associatedwith
“free running” triggered waves (Harid et al., 2022; Tao et al., 2021).

If the conversion to adiabatic motion takes place before (after)
the equator toward a region of lower (higher) gyrofrequency, the
radiated frequencies are frequency-time risers (fallers). This finding
is consistent with change of fallers to risers in the experimental
data when transmitted pulse duration is changed (Li et al., 2014).
Specifically, Helliwell and Katsufrakis (1974) showed that fallers are
generated by short pulses up to 250ms in duration and risers are
generated by longer pulses 300− 400ms long.This simple yet elegant
model was originally put forth by Roux and Pellat [1978].The caveat
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FIGURE 5
Test particle trajectories for a monochromatic constant lower (5 pT) amplitude wave. For this lower amplitude the (A) linear and (B) nonlinear models
yield the same results.

FIGURE 6
Test particle trajectories for an injected short (0.5 s) pulse with wave amplitude of 60 pT right panel (B) compared to a “long” pulse left panel (A) that fills
the simulation space.

is that the detrapped electrons will quickly mix in gyrophase, so the
distance over which coherent radiation takes place would have to
be small.There are more complicated theories of risers versus fallers
that are based on coherent radiation by phase trapped particles while
being forced in resonance with the wave but on different sides of
the equator (Nunn and Omura, 2012). In either case, the magnitude
and position of wave amplitude spatial gradients along the field
aligned propagation path is seen as a key parameter.

The above-described backward test particle (BTP) simulation
demonstrates some important physical concepts of individual
particle motion such as phase trapping, detrapping, and the
possibility of end-fire antenna radiation. In this section, we use
the BTP approach which solves the same equations of motion
for sampled phase space grid points sampled to represent the
distribution function. This backward scheme thus investigates the
dynamic of the phase space distribution function for a counter-
streaming whistler mode pulse.

The shape of the phase space trap changes along the geomagnetic
field line. The top panels (d-f) of Figure 7 shows the structure of
the phase space trap at several position along the field line for
a monochromatic constant amplitude whistler mode wave. As a

reminder, ζ represents gyrophase and the vertical axis is defined by
a normalized deviation of v∥ from resonance, as Equation 20:

ζ =
k(v∥ − vr)

√2ωtr

(20)

where zero value on the vertical axis corresponds to the resonance
velocity.The closed curves in phase-space correspond to the trapped
trajectories that are separated by the separatrix from the open curves
representing untrapped particles. The separatrix is shown on the
contours as a red dashed line in the top panels of Figures 7D–F.
Trapped particles that are forced to remain in resonance from their
initial contact with the wave for a long period of time, moving
toward the equator, drag the value of their distribution function to
phase space locations that are upstream. Here, downstream is the
direction of the wave propagation, the resonant particles travel in
the opposite direction so they travel upstream, As shown in the
test particle (see Figure 4), electrons that are trapped downstream
of the wave will start at a higher value of v∥ and follow the resonance
curve to lower values of v∥ around the magnetic equator. Since
the initial velocity distribution (e.g., the subtracted bi-Maxwellian
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FIGURE 7
Formation of phase-space electron hole from test particle trajectories. (A) upstream location, (B) equator, and (C) downstream location relative to the
wave propagation direction compared to theory (D–F).

distribution Figure 3, or any realistic distribution) has a lower
value at higher particle velocities, the density inside the trap at
the equator will be much lower than the surrounding regions
of phase-space. This results in what is known as an “electron
hole” in phase-space (Omura et al., 2008; Chen et al., 2024b;
Ozaki et al., 2024).

By running test particle trajectories backwards in time,
and using Liouville’s theorem, the distribution function can be
reconstructed in high resolution. It is important to note that
running the simulation backwards in time means that we can have
arbitrary resolution of the perturbed distribution as this maps to
known coordinates of the known initial distribution. In contrast,
when simulations are run forward in time, it is not clear how
finely the initial distribution must be sampled in phase space
to capture all salient features of the disturbed distribution. For
the case of a monochromatic and constant amplitude wave, the
bottom panels of Figures 7A–C shows the electron hole for three
different locations along the field line (upstream (a), equator (b),
and downstream (c) of the wave). It is worth noting that the concept
of t = 0 for a constant amplitude wave happens when the wave
enters the wave-particle interaction region. As shown, the electron
hole is well-defined and has an approximately constant density
(i.e., phase-mixed) inside the phase-space trapping region while the
region outside the trap will be close to the unperturbed velocity
distribution.

One should note that for a short pulse (or higher pitch angles)
the opposite can occur and an “electron hill” can be formed as
well (Nunn and Omura, 2012; Hikishima and Omura, 2012). It is
worth noting that the trapping mechanism transports one region
of phase space to another, carrying with it the phase space density
from one location and displacing the one that would be there

from adiabatic motion. Whether a hole or hill is formed depends
on where the particles are initially trapped and the value of their
resonance velocity when they are released as compared to the
adiabatic background. Here the wave has sufficient amplitude that
the leading edge of the wave pulse immediately phase traps electrons
that are locally resonant.The initial location of trapping is a function
of time, changing as the wave propagates downstream.The electrons
will be de-trapped when they are no longer under the influence
of the wave. Therefore, where the electrons exit the trap depends
on the length of the pulse in time which is proportional to its
length in physical space. The exit location also changes in time
and can be before the particles reach the equator, at the equator or
upstream of the equator on the other side. For a constant frequency
considered here, a phase space hole is formed for particles trapped
downstream of the equator and released on the downstream side
of the equator or at the equator. A hill will be formed if particles
are released upstream of the equator. Such electrons are trapped
initially closer to the equator and released farther away so they are
transported to a higher resonant velocity. In the above discussion we
have assumed that the pitch angles are low enough so that they donot
limit the interaction length with the wave. Higher pitch angles limit
the interaction length, so they have the same effect as a shortened
pulse length.

For a monochromatic constant wave amplitude higher than the
trapping threshold, the electron hole exists when −1 < S < 1 and its
shape changes along the geomagnetic field line. It is worth noting
that for rising or falling frequency tone waves, the shape of the hole
or hill could remain unchanged. For short pulses, since thewave only
fills certain locations along the geomagnetic field line, the phase-
space hole formation also depends on the presence of the traveling
wave and its time span. That is, the phase-space hole/hill starts
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FIGURE 8
Phase space distribution for five different locations [z = 1,750 km (F, L, R), 750 km (E, K, Q), −250 km (D, J, P), −1,250 km (C, I, O), and −2,250 km (B, H,
N)] along the field line at three specific times [t = 0.24 s (A), 0.30 s (G), and 0.35 s (M)].

forming once the travelingwave front reaches the counter-streaming
particles and stays until the back end of the pulse leaves the particles’
location. Once the wave is gone, the phase trapped particles are
getting detrapped and keep moving on adiabatic trajectories.

Figure 8 shows the phase space distribution for five different
locations along the field line (z = 1750, 750, −250, −1,250,
and −2,250 km) at three specific times (t = 0.24 s (Figure 8A),
0.30 s (Figure 8G), and 0.35 s (Figure 8M) after injection of a
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FIGURE 9
Linear scattered particle distribution (top a-e panels) for five different locations [z = 1,750 km (A), 750 km (B), −250 km (C), −1,250 km (D), and
−2,250 km (E)] along the field line at (F) t = 0.30s compared with the nonlinear scattering case [bottom (G–K) panels] for a monochromatic half a
second pulse with 1pT wave amplitude.

monochromatic 0.5 s pulse. At t = 0.24 s (Figures 8B–F) the pulse
mainly only fills out the upstream locations (first two locations in
panel e and f) which creates an electron hill at the resonance velocity
of each location. One can see that the electron hill at z = 1750km
(panel f) is formed at higher velocity range than the z = 750km
(panel e) location. It is worth noting that the color scale used in
Figures 8–10 is the same as Figure 3.

At t = 0.30 s (Figures 8H–L) the pulse has left the z = 1750km
location (panel l) and the electron hill is washed out. However, the
pulse is still passing over the three middle locations (panels i–k) and
thus we see the formation of an electron hole (hill) at the upstream
(downstream) locations corresponding to z = − 250,−1250km (z =
750km). This is due to the fact that trapped particles are forced to
stay in resonance with the wave and will drag the downstream value
of the distribution function to locations that are upstream.

At t = 0.35 s (Figures 8N–R) the wave is only passing over the
two furthest negative locations (panels n and o) and there is an
electron hole at both locations, but the one located at z = − 2250km
(panel n) is partially outside of the phase space simulation domain.
In general, once the wave leaves each location, the created electron
hill (hole) starts to wash away and shifts to lower (higher) velocities
due to the adiabatic motion of the detrapped particles. For example,
considering the phase space distribution at z = − 2250km for all
three timeframes (panels b, h, and n), one can see that the electron
hill created at v∥ = 0.074cwashes away to a distribution enhancement
strip around v∥ = 0.073c. The velocity shift is associated with the

detrapped particles moving on adiabatic trajectories after being let
go by the wave.

5 Comparison to linear theory

As mentioned before, phase trapping is a nonlinear process
and therefore is not in the scope of linear scattering theory.
The distribution function is calculated when particles are linearly
scattered by the wave. The linearly scattered distribution can be
reconstructed by running test particle trajectories backwards in
time over linearized equations of motion and employing Liouville’s
theorem. The goal was to be able to compare the distribution
dynamic in the linear regime with the results when full equations
of motion are considered in constructing the distribution function.

Figure 9 shows the Linear scattered particle distribution (top a-
e panels) for five different locations (z = 1750, 750, −250, −1,250,
and −2,250 km) along the field line at t = 0.30 s along with the
nonlinear scattering case (bottom g-k panels) for a monochromatic
half a second pulse with 1pT wave amplitude. As is shown in
Figures 9A–E, the linearized equations of motion give the same
results as the nonlinear model (Figures 9G–K). This is expected
when the wave amplitude shown in Figure 9F is below the phase
trapping threshold. In general, since the wave amplitude can grow to
values larger than the phase trapping threshold (Bell and Inan, 1981),
the scattering model should solve the full equations of motion.
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FIGURE 10
Linear scattered particle distribution (top a-e panels) for five different locations [z = 1,750 km (A), 750 km (B), −250 km (C), −1,250 km (D), and
−2,250 km (E)] along the field line at (F) t = 0.30s comparing with the nonlinear scattering case [bottom (G–K) panels] for a monochromatic half a
second pulse with 1pT wave amplitude.

There is no formation of phase-space hole and both models show
features that can be characterized as linear striations or ripples in
phase-space.

Following the previous Figure setup, Figure 10 shows the
distribution function for a 20pT wave amplitude while other
simulation parameters remain unchanged. No electron hole or hill
shows up in the linear case (panels a–e) since phase trapping cannot
be consideredwithin the scope of linear scattering theory (linearized
equations of motion).

6 Conclusion

We developed a backward test particle numerical model that
calculates scattering of the energetic electrons distribution by
coherent whistler mode waves. This model requires specifying the
wave fields a priori and is quite useful at evaluating the effect ofwaves
on the particles in terms of scattering.This study provides important
insights into the nonlinear dynamics of wave-particle interactions
in Earth’s radiation belts, particularly through the lens of coherent
whistler wave instability and whistler mode wave amplification. By
utilizing a backward test particle model, we have demonstrated the
formation of distinct phase space structures, such as electron phase
space holes, in the nonlinear regime, which are not present under
linear conditions.These findings underscore the limitations of quasi-
linear diffusion theory in capturing the full scope of wave-induced

perturbations. The differences observed between the linear and
nonlinear perturbations confirm the significant role of nonlinear
phase trapping in driving the amplification of whistler mode waves.
Although, the presented model is not able to reproduce the effect
of the particles on the wave’s amplitude and phase, the formation of
nonlinear structures in phase-space can be obtained and analyzed
and the expected radiation currents from the perturbed distribution
can be evaluated. These results contribute to a more comprehensive
understanding of radiation belt dynamics and the complex processes
involved in particle acceleration and scattering, with implications
for future studies in space weather modeling and the prediction of
radiation belt behavior.
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