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The evolution of the flux tube stability parameters in plasma injections at
the Saturnian magnetosphere is reviewed. Plasma injections result from an
imbalance in the centrifugal, total pressure gradient, and magnetic tension
forces acting on plasma in the magnetosphere. Plasma originating from
Enceladus tends to move outward due to centrifugal forces while reconnected
flux tubes that are depleted of plasma collapse because of the magnetic tension
leading to plasma injections. As the flux tube moves inward and contracts,
the ambient density and pressure increase sufficiently to resist further collapse
and the injected flux tube brakes. During this process the flux tube may also
lose its integrity due to particle drifts, which allow exchange of plasma with
adjacent flux tubes so as to bring the flux tube closer to equilibrium and stability
so that it is indistinguishable from adjacent plasma. Stability parameters using
this energy approach are defined and examined. The results show that the
net forces push the plasma moves inward for L > 11 and outward for L <
8.5, while equilibrium is generally reached for 8.5 < L < 11, where L is the
equatorial magnetic field crossing measured in Saturnian radii. The evolution of
the stability parameters can also apply to Jovian and other fast rotating planetary
magnetospheres.

KEYWORDS

flux tube interchange, plasma injection, plasma transport, saturn magnetosphere, flux
tube entropy instability, braking of plasma injection, Rayleigh-Taylor instability

1 Introduction

In the study of the Saturnian magnetosphere, the radially inward plasma transport
or plasma injection has long been a fascinating and confounding topic. The plasma
injection in the inner magnetosphere is often characterized by a sudden incursion of
plasma having higher temperature and lower density than the ambient plasma (Burch et al.,
2005; Azari et al., 2018; Thomsen, 2013). The injected plasma or flux tube has been
observed to be nearly in pressure balance with the ambient plasma and hence there
is often an accompanying sudden increase or decrease in the magnetic field strength
and pressure (André et al., 2005; 2007; Azari et al., 2018; Wing et al., 2022). As the
injected hot plasma moves radially inward, the ions and electrons execute an energy
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dependent curvature and gradient azimuthal drift, leading to an
energy dispersion signature from which the age and location of the
injection can be estimated (Burch et al., 2005; Chen and Hill, 2008;
Yin et al., 2023; Thomsen, 2013). Hill et al. (2005) reported that
injections have typical ages <11 h and azimuthal widths <1 Rs in a
sample of 48 events. Azari et al. (2018), Azari et al. (2019) found
that plasma injections rarely reach r < 6 Rs in observations gathered
by Cassini spacecraft. Paranicas et al. (2020) found that the inflow
speeds of the energetic particle injections range from 0 to 50 km s–1

in 20 events. The flux-tube interchange injections have been
associated with electron cyclotron harmonic (ECH), whistler mode,
and upper-hybrid waves (Kennelly et al., 2013; Long et al., 2023;
Menietti et al., 2008) and periodic 5 kHz narrowband radio wave
emissions (Mitchell et al., 2009; Mitchell et al., 2015; Menietti et al.,
2016; Wing et al., 2020). A comprehensive review of the plasma
injections at the Saturnianmagnetosphere can be found inThomsen
(2013) and Achilleos et al. (2015).

Two key factors contribute to the complexity of the plasma
injections: (1) Saturn rotates on its axis rapidly with a periodicity
of about 10–11 h (Azari et al., 2019) and (2) Enceladus, a moon
located at r ∼ 4 Rs where Rs = Saturn radius ∼60,268 km,
continuously sources cold plasma at the rate of 12–250 kg s–1 in
the magnetosphere (Bagenal and Delamere, 2011). Thus, many or
most studies considered the effective gravity or Rayleigh-Taylor
like instability as the mechanism for plasma injections where hot
tenuous flux tubemoves in and replaces the cold dense flux tube that
moves out (e.g., Hill, 1976; Chen and Hill, 2008; Sittler et al., 2008;
Bagenal and Delamere, 2011; Liu and Hill, 2012; Thomsen et al.,
2013; Azari et al., 2019;Ma et al., 2016; Stauffer et al., 2019;Thomsen
and Coates, 2019). Liu et al. (2010) simulated this process using
Rice Convection Model (RCM) showing narrow radial fingers of
hot tenuous inflowing plasma adjacent to fingers of cold dense
outflowing plasma.

At Earth where the planet rotatesmore slowly and its moon does
not source plasma, observations and simulations have shown that
flux tube entropy instability where injected flux tube having depleted
flux tube entropy (S) resulting from magnetotail reconnection
can move inward until its S reaches the same value as that of
the ambient plasma (e.g., Birn et al., 2006; 2009; Pontius and
Wolf, 1990; Wing and Johnson, 2009; Johnson and Wing, 2009;
Dubyagin et al., 2010). Ma et al. (2019) investigated the role of the
flux tube entropy instability in the plasma injections at Saturnian
magnetosphere, but they did not consider the effective gravity.
Nonadiabatic plasma heating such as turbulent heating can increase
flux tube entropy and hence can affect the plasma injection (Saur,
2004; Neupane et al., 2021; Wing et al., 2014).

Plasma in the rotating magnetosphere is affected by the
centrifugal force that tends to push plasma outward, magnetic
tension that resists stretching of field lines, and total pressure,
which tends to push plasma outward. Dense plasma originating at
Enceladus in the inner magnetosphere is pushed outward by the
centrifugal force, while flux tubes that are depleted by reconnection
in the magnetotail collapse under the magnetic tension leading to
plasma injections. Southwood and Kivelson (1987) developed an
energy-based formalism for the stability requirement of an inward
moving flux tube that includes both the effective gravity (centrifugal
force + gravity) and the flux tube entropy instabilities in fast rotating
magnetosphere (cf., Ferrière et al., 2001). Based on the Southwood

and Kivelson (1987) formalism, Wing et al. (2022) examined the
roles of the effective gravity and flux tube entropy in seven plasma
injection events observed by Cassini spacecraft in the Saturnian
magnetosphere.

The present paper reviews the above studies of the plasma
injections at the Saturnian magnetosphere, but narrowly focuses on
the following two questions: (1) What roles do the effective gravity
and flux tube entropy play in the Saturnian plasma injections?
Which term is dominant? and (2) Why do injections rarely reach
r < 6 Rs as reported in Azari et al. (2018), Azari et al. (2019)?

2 Flux tube instability parameters

The stability requirement for the inward moving flux tube
interchange for a fast rotating magnetosphere is given in Equation
1 (Southwood and Kivelson, 1987):

[[[

[

K( ∂S
∂Xp
)

Vγ –(
mgeh
V
)( ∂N

∂Xp
)]]]

]

< 0 (1)

where K = [2(B2/μo) (hc) + nmhg]/Pγ, n = plasma density, N = flux-
tube content, Pγ = (γp+B2/μo), p = flux-tube averaged plasma
pressure, γ = polytropic index = 5/3, B = magnitude of the magnetic
field, Xp = the displacement of the interchange motion, h =
Lamé coefficient along Xp, m = average ion mass, μo = magnetic
field permeability constant, c = component of the magnetic field
curvature in the Xp direction, S = flux-tube or total entropy = pVγ,
V = flux-tube volume, and ge = effective gravity given by Equation 2,

ge = rΩ
2–g (2)

where g = gravity, Ω = planet angular velocity and r = radial distance.
The first term of Equation 1 tends toward instability when

the entropy gradient is negative radially outward given that the
curvature is negative. In this case, an outward perturbation of
plasma governed by an adiabatic pressure law would have a higher
entropy than the flux tube it displaced and therefore a higher
pressure. The increased pressure would push the perturbed plasma
further outward leading to instability. On the other hand, if the
entropy gradient were positive, the displaced flux tube would
have a lower pressure than the flux tube it displaced. In this
case, the JxB force would push the low pressure flux tube back
toward its original position and the configuration is stable. The
second term of Equation 1 tends toward instability when the
gradient of the flux tube content is negative outwards. In this case
an outward displacement of a flux tube increases the outward force
it exerts relative to that of the displaced plasma leading to instability.
On the other hand, a positive outward gradient of the flux tube
content is stable because the total outward force exerted by the
flux tube decreases relative to the displaced flux tube and therefore
the surrounding flux tubes will push it back toward the original
position. At the Saturnian magnetosphere, Enceladus provides a
steady plasma source and therefore the overall profile of the flux tube
content is generally decreasing in the radial direction at r > 5–6 Rs,
and such a configuration is unstable to centrifugal interchange.

Based on Equation 1, Wing et al. (2022) considered the stability
of the inner and outer edges of the injected flux tube and derived
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a Total Stability (TS) parameter, which quantifies the conditions for
which flux tubes are unstable to inward and outward displacement.
Additionally, in order to study the roles of the flux tube entropy and
the effective gravity separately, they separated the TS parameter into
its two components as shown in Equation 3:

TS = Et +Gt (3)

where the first term is the entropy term (Equation 4),

Et = V–γ∆S (4)

and the second term is the effective gravity term (Equation 5),

Gt = (−1)K−1(
mgeh
V
)(∆N). (5)

If TS = 0, the condition predicts that the flux-tube is in
equilibrium, but if TS < 0 or TS > 0, it would describe the flux
tube instability condition for inward and outward moving flux tube,
respectively. If TS > 0, the net force would push the flux tube outward
and conversely, if TS < 0, the net force would push the flux tube
inward. If the effective gravity is negligible, i.e., Gt = 0, then TS =
Et, which is similar to the formalism for the flux tube interchange
developed for Earth (e.g., Erickson and Wolf, 1980; Pontius and
Wolf, 1990; Birn et al., 2006; Birn et al., 2009).

3 Evolution of the stability parameters
TS, Et, and Gt in the plasma injection

The Cassini spacecraft orbited Saturn 2004 to 2017 and carried
Cassini Magnetospheric Imaging Instrument (MIMI), Cassini
Plasma Spectrometer (CAPS), and Dual Technique Magnetometer
(MAG) instruments. The CAPS instrument observed ions with
energy range 1 eV/q–50 keV/q and electrons with energy range
1 eV–30 keV (Young et al., 2004). CAPS ion moments (density,
temperature, flow velocity) have been calculated by numerical
integration over the observed distribution (Thomsen et al.,
2010) while the CAPS electron moments are computed as
described by Lewis et al. (2008). The CHarge Energy Mass
Spectrometer (CHEMS) is part of the MIMI instrument suite and
observed ions with energy range 3–220 keV/q (Krimigis et al.,
2004). The MAG instrument detected magnetic fields up to
44,000 nT (Dougherty et al., 2004).

Wing et al. (2022) used CAPS, CHEMS, and MAG data,
which are publicly available at the NASA Planetary Data System
(PDS) Planetary Plasma Interaction (PPI) node (https://pds-ppi.
igpp.ucla.edu/index.jsp). The Wing et al. (2022) study selected 7
plasma injections from previously published injection events in
Thomsen et al. (2014); (events 1, 2, 3), Mitchell et al. (2015); (events
4, 5, 6), and Rymer et al. (2009); (event 7).These events were selected
because they have clear injection signatures andCAPS, CHEMS, and
MAGhave good data.The 7 events, which range fromL∼ 14 to 7, are
given in Table 1 in Wing et al. (2022). The L-value gives the distance
in planetary radii where the magnetic field intersects the equatorial
plane (McIlwain, C. E., 1961) and is computed using Achilleos et al.
(2010) magnetic field model. For completeness, these 7 events are
listed here in quintuplets.

FIGURE 1
The evolution of the stability parameters TS, Et, and Gt. The red, green,
and blue curves correspond to Et, Gt, and TS,
respectively (from Wing et al., 2022).

(event number, time (UT), location SZS (X, Y, Z) Rs, L,
Latitude (degree)):

{(1, 2010–06–02 12:20:00, (−8.9, 7.6, 2.4), 14.2, 11.6),
(2, 2007–05–27 14:38:00, (9.2, −0.46, −2.2), 11.3, −13.4),
(3, 2007–10–24 19:27:30, (5.7, −6.1, 0.5), 8.5, 3.4),
(4, 2006–03–21 05:15:53, (−2.5, 7.2, 4.0e-2), 7.6, 0.3),
(5, 2006–03–21 04:44:25, (−2.2, 7.1, 3.0e-2), 7.4, 0.2),
(6, 2006–03–21 04:23:05, (−1.9, 7.0, 3.0e-2), 7.3, 0.2),
(7, 2005–10–30 07:34:48, (−6.9, 1.4, 5.0e-2), 7.0, 0.4)}.
Flux tube entropy, S, and content, N, were calculated from

the Cassini (CAPS, CHEMS, MAG) observations, the pressure and
density scale height parameters obtained from a method developed
in Thomsen et al. (2010), and Achilleos magnetic field model
(Achilleos et al., 2010). S and N were calculated inside and outside
(ambient) the injected flux tubes with the assumption that the
injected flux tube plasma is isotropic and outside is anisotropic. This
assumption is perhaps more similar to old injections (Mitchell et al.,
2015) and to the selected events.

Figure 1 shows TS, Et, and Gt for the 7 injected events. At large
L (L > 11), Et < 0, Gt < 0, and hence TS < 0. Apparently, the
entropy and effective gravity terms work in tandem to destabilize
flux tube to move inward. As the plasma moves inward, the
ambient flux tube entropy (Sa) becomes smaller, which allows Gt
to become more positive. At some point, at 8.5 < L < 11, Et
> 0, Gt < 0, |Et| = |Gt|, and hence TS = 0, and equilibrium
is reached. At L < 8.5, with the exception of one event (Event
6), Et > 0 and |Et| > |Gt|, which causes TS > 0. A possible
interpretation is that the injection may overshoot the equilibrium
and oscillate around equilibrium as observed at Earth (Wolf et al.,
2012; Panov et al., 2013; Merkin et al., 2019; Yang et al., 2019). Thus,
at L < 8.5, if the flux tube is not moving outward, its inward motion
is decelerating.

It is worth noting that in all cases but one, |Et| dominates |Gt|.
Gt is negative in all cases. If the plasma injection stops, it is because
of the Et term. In other words, the entropy term, Et, acts to brake the
injections at L < 11.

Wing et al. (2022) repeated the stability calculations using
dipole and Khurana et al. (2006) magnetic field models. They
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FIGURE 2
Schematic diagram illustrating the evolutions of TS, Et, and Gt as the plasma injection moves inward based on Wing et al. (2022). The magenta curve on
the left panels (panels A–C) show the ambient flux tube content (Na) whereas the blue curve on the right panels (panels D–F) show the ambient flux
tube entropy (Sa). In panels (A–C), the green tube is an injected flux tube content, which has lower N than Na. The red tube is an injected flux tube
entropy, which has lower S than Sa in panel (D), but higher S than Sa in panels (E, F). Na and Sa are based on the Cassini measurements [CAPS
(Thomsen et al., 2010) and CHEMS (Wing et al., 2022) moment data products] and a steady-state magnetic field model [i.e., the Saturn version of
Caudal model (Caudal, 1986), see details in Ma et al. (2019)].

found that qualitatively the results are similar to those obtained
using Achileos et al. (2010) magnetic field model (plotted in
Figure 1). However, the results obtained from using Khurana et al.
(2006) andAchileos et al. (2010)models are closer to each other than
those obtained using dipole magnetic field.

Ma et al. (2019) found that based on the flux tube entropy alone,
plasma injections resulting from magnetodisk reconnections at r =
22.5–27.5 Rs, should reach equilibrium at r = 8.8–10.5 Rs. As shown
in Figure 1, Et < 0 at L ∼ 11.3 and Et > 0 at L = 8.5 (the red curve in
Figure 1), suggesting that based on the consideration of the flux tube
entropy alone, equilibrium should be reached somewhere between
8.5 and 11.3. This result is similar to the equilibrium positions
obtained in Ma et al. (2019).

4 Conclusion and summary

Wing et al. (2022) examined the stability parameters (TS, Et, Gt)
in 7 injection events ranging from L ∼ 14 to 7. Figure 1 plots these
parameters.

Figure 2 shows a schematic diagram that can help illustrate the
evolution of TS, Et, Gt as plasma injection moves inward. In the left
panels (panels A, B, and C), the magenta curve shows the ambient
flux tube content Na while in the right panels (panels D, E, and F),
the blue curve shows the ambient flux tube entropy Sa. Na has an
outward negative gradient whereas Sa has a positive gradient. These
opposite gradients have an impact on the evolution of the plasma
injection as it moves inward, as discussed next.
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The evolution of Gt is illustrated in Figure 2 panels A, B, and
C. The injected flux tube is characterized as having lower density
(Chen andHill, 2008; Liu et al., 2010;Thomsen et al., 2014;Thomsen
et al., 2016; Azari et al., 2018) and flux tube content (Thomsen
and Coates, 2019) relative to those of ambient plasma (depicted
with a green tube in Figure 2). As a result, at L > 11, Gt < 0 and
based on N alone, the flux tube should move inward (panel A). The
centrifugal force pushes the flux tube with higher content outward
while the flux tube with lower content moves inward. The flux tube
that has Gt < 0 would continue having Gt < 0 as the injection
moves inward because the ambient flux tube content Na has negative
gradient (panels B and C). As the injection moves inward, the
difference between Na and Ni (injected flux tube content) becomes
larger and as a result, Gt becomes more negative as shown by the
green tube in Figure 1 panels A–C.

However, Et evolves differently. At large L, L > 11, the injected
flux tube (depicted by the red tube in Figure 2) has lower flux tube
entropy Si relative to that of the ambient plasma Sa (panel D) and
hence Et < 0. Thus, at large L, TS < 0 because Et < 0 and Gt < 0
(panel A) and hence, plasma moves inward. The reconnected flux
tube with lower plasma density and content collapses and moves
inward due to the magnetic tension force. Here, the centrifugal
and the magnetic tension forces work in tandem to push the flux
tube inward. As the injection moves inward, the ambient flux tube
entropy Sa gets smaller, but the pressure increases, which would tend
to resist further collapse of the injected flux tube. As a result, Et
becomes more positive. At some point at 8.5 < L < 11, the injected
flux tube entropy Si is slightly larger than that of the ambient plasma
Sa, Et is slightly positive, Gt remains negative (panel B), |Et| = |Gt|,
TS = 0, the net force is zero, and equilibrium is reached (panel
E). However, the injection may overshoot and oscillate around the
equilibrium as seen in observations and simulations at Earth (e.g.,
Wolf et al., 2012; Panov et al., 2013; Merkin et al., 2019; Yang et al.,
2019). So, at L < 8.5, the injected flux tube entropy Si is much larger
than that of the ambient plasma Sa, Et > 0 (panel F), Gt < 0 (panel C),
but because Et dominates Gt, TS > 0 (panel f). The ambient pressure
force, which dominates other forces, pushes the injected flux tube
outward. If the flux tube is not actually moving outward, its inward
motion should be decelerating at this point. While the injected flux
tube moves inward, it can lose integrity as plasma from the injected
flux tube drifts out while the ambient plasma drifts in, which can
also help stabilize the injection. After a while, the injected flux tube
would be indistinguishable from the background or ambient plasma.

The schematic diagram depicted in Figure 2 is constructed using
only the 7 events in the Wing et al. (2022) study. Even with the
small number events, the equilibrium locations obtained from the
consideration of flux tube entropy alone (Et) are remarkably similar
to those obtained statistically in Ma et al. (2019). Nonetheless, the
exact L or region where the equilibrium is reached (TS = 0) can
be expected to vary slightly from one event to another, depending
on magnetospheric activity and other conditions. With more data
points, one can perhaps determine statistically the region where the
transitions from TS < 0 to TS = 0 and to TS > 0 occur, which may
differ from those shown in Figure 2. However, the basic description
of the evolution of TS, Et, and Gt parameters as the plasma moves
inward should still apply.

It is interesting to compare the roles of Et and Gt in plasma
injections at the terrestrial and Saturnianmagnetospheres. At Earth,

Et plays a significant role in moving plasma injection inward
and braking the injection (Birn et al., 2006; 2009; Pontius and
Wolf, 1990; Wing and Johnson, 2009; Wing and Johnson, 2010;
Wing et al., 2014; Johnson and Wing, 2009; Dubyagin et al., 2010).
The Gt term is negligible. The injection reaches equilibrium when
Et = 0. At Saturn, the picture is more complicated. Et and Gt
work in tandem to move the injection inward at L > 11. The
Gt term is always negative because of the negative gradient of
the ambient flux tube content. As the injection gets closer to
the planet (L < 11), the Et term becomes positive and acts to
oppose that of Gt. Because Et dominates Gt, Et acts to brake
the injection.

Azari et al. (2018), Azari et al. (2019) found that statistically,
plasma injections rarely reach r < 6 Rs. The stability analysis
presented in Wing et al. (2022) and reviewed herein can be seen as
consistent with the observations.
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