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The Schatten current sheet

Kalman J. Knizhnik*

Naval Research Laboratory, Washington, DC, United States

Space weather models endeavoring to connect remote observations to in-situ
measurements at various locations in the heliosphere invariably require a coronal
model to connect the photosphere magnetically to the inner heliosphere. The
most famous and popular implementation of this connection is a potential field
source surface (PFSS) model out to the source surface, typically located at 2.5
solar radii, combined with a Schatten current sheet (SCS) model. While the PFSS
model is mostly understood, the SCS has been utilized in heliospheric physics
for nearly 50 years with little understanding of it’s physical and mathematical
underpinnings. In this overview article, I lay out the mathematical formalism of
the SCS, describe how it differs from the PFSS, and summarize several techniques
used to combine the PFSS and SCS to create a global coronal model from the
photosphere to the inner heliosphere.
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1 Background

The ultimate goal of heliospheric modeling is rapid and reliable space weather
forecasting at 1 AU for operational capabilities. Such models require a number of inputs
from the surface as initial or boundary conditions which are then propagated from the
Sun to Earth via a combination of empirical or magnetohydrodynamic (MHD) models. A
major challenge for space weather forecasting models is the lack of remote measurements
of the magnetic field in the solar atmosphere, above the photosphere. Although there are
a number of obstacles to such measurements, recent advances in radio astronomy have
started to enable magnetic field measurements in the solar corona (Alissandrakis and Gary,
2021). Nevertheless, there are still no global measurements of the magnetic field in the solar
atmosphere, necessitating the development of approximatemodels for the three dimensional
structure of the Sun’s magnetic field.

The three most common models of the magnetic field in the solar atmosphere are the
potential field source surface (PFSS; Altschuler and Newkirk, 1969) model, the linear force
free magnetic field (LFF; Nakagawa, 1973; Levine and Altschuler, 1974), the nonlinear force
free magnetic field (NLFF; Wiegelmann, 2007) model, which are summarized nicely in
Mackay and Yeates (2012). Another approach that avoidsmany of the flawed assumptions in
the first three techniques is the non force-free field (NFFF; Hu and Dasgupta, 2006) model.
By themselves, all of these models suffer from a lack of sufficient constraints: while the
photospheric magnetic field is well observed, and can be used as a boundary condition
to calculate the solution to each model, global models still require an outer boundary
condition to fully constrain the problem numerically. In PFSS models, the outer boundary
condition is assumed to be a perfectly radial magnetic field at a location called the “source
surface.” Although there are good theoretical reasons to assume the existence of such a
surface, early eclipse observations (Schatten, 1971) and MHD (Pneuman and Kopp, 1971)
models indicated that polar plumes tended to bend more equator-ward than was predicted
by the PFSS model, while the bending of streamers should, contrary to the results of the

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2024.1476498
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2024.1476498&domain=pdf&date_stamp=2024-11-01
mailto:kalman.j.knizhnik.civ@us.navy.mil
mailto:kalman.j.knizhnik.civ@us.navy.mil
https://doi.org/10.3389/fspas.2024.1476498
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2024.1476498/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Knizhnik 10.3389/fspas.2024.1476498

PFSS extrapolation, depend on the amplitude of the solar cycle
(Mackay and Yeates, 2012). Furthermore, Ulysses observations
initially supported the view that the magnetic field was essentially
uniform in latitude (Wang and Sheeley, 1990). These considerations
prompted the development of the Schatten et al. (1969) model,
which we will call the SCS, in which the magnetic field outside the
source surface produced by the PFSS was replaced with a similar
current free magnetic field into which currents are introduced,
essentially, by hand. A subsequent addition to this model attempted
to minimize the magnitude of extraneous currents introduced by
this process (Schatten, 1971).

Although the SCS is used ubiquitously in the literature, and
indeed forms the basis of present-day operational space weather
modeling, there is a paucity in the literature of its mathematical
formalism. Much of the formalism has been derived previously
(Altschuler and Newkirk, 1969; Schatten et al., 1969; Schatten,
1971; Wang and Sheeley, 1992; Zhao and Hoeksema, 1994;
Nikolić, 2017; Reiss et al., 2019; Narechania et al., 2021; Song, 2023;
Knizhnik et al., 2024a), but different parts of the mathematical
basis for the SCS are scattered among these various sources.
Curiously, many authors use the SCS model but do not describe its
implementation, making those references insufficiently descriptive
for scientists to implement the technique from scratch, and the
actual equations for the SCS are given, to my knowledge, only in
Nikolić (2017) and Knizhnik et al. (2024a). The literature is replete
with papers that state that the SCS has been implemented, but do
not fully describe it, or do not fully describe whether, how, or if any
techniques have been employed to minimize extraneous currents in
the region outside the source surface. This review article, therefore,
endeavors to derive the mathematical formalism of the SCS by
showing how it is an extension of the PFSS model, and lay out the
current-minimizingmethods described by Schatten (1971) aswell as
the interface region approach introduced byMcGregor et al. (2008).
Finally, we describe the process for obtaining the heliospheric
current sheet from the SCSmodel, andwe comment on the preferred
approach to implementing the SCS.

2 Mathematical formalism

2.1 Potential magnetic field inside a
spherical shell

The mathematical formalism of the SCS is closely linked with
that of the PFSS. As a result, we will start the derivation of the SCS
by deriving the expressions for the magnetic field inside a spherical
shell, since at the heart of both the PFSS and SCS magnetic field
models is that they are solutions of a Laplace equation in such a
shell, bounded from below by a spherical surface magnetic field
distribution. In the case of the PFSS, the magnetic field is prescribed
between the spherical surface at r = R⊙ and r = Rss. In the case of
the SCS, the magnetic field is prescribed between r = Rss and∞. In
both cases, the magnetic field in that volume is solenoidal

∇ ⋅B = 0, (2.1)

and potential

∇×B = 0. (2.2)

The solution of Equation 2.2 is identically

B = −∇Ψ, (2.3)

and using Equation 2.1, Ψ satisfies

∇2Ψ = 0

whose general solution in spherical coordinates
is given by (Jackson, 1998):

Ψ(r,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l
[Almr

l +Blmr
−(l+1)]Ylm(θ,ϕ). (2.4)

The Ylm(θ,ϕ) are orthogonal spherical harmonics

Ylm(θ,ϕ) = √
2l+ 1
4π
(l−m)!
(l+m)!

Pml (cos θ)e
imϕ,

where Pml (cos θ) are the associated Legendre polynomials (Arfken,
1985). Spherical harmonics satisfy the orthogonality relation

∫
2π

0
dϕ∫

π

0
dθ sin θ Y∗l′m′(θ,ϕ)Ylm(θ,ϕ) = δl′lδm′m, (2.5)

where δi,j is the Kroenecker delta. Equation 2.3 then leads to:

Br = −
∂Ψ
∂r
= −
∞

∑
l=0

l

∑
m=−l
[lAlmr

l−1 − (l+ 1)Blmr
−(l+2)]Ylm(θ,ϕ), (2.6)

Bθ = −
1
r
∂Ψ
∂θ
= −
∞

∑
l=0

l

∑
m=−l
[Almr

l−1 +Blmr
−(l+2)]

∂Ylm(θ,ϕ)
∂θ
, (2.7)

Bϕ = −
1

r sin θ
∂Ψ
∂ϕ
= − 1

sin θ

∞

∑
l=0

l

∑
m=−l
[Almr

l−1 +Blmr
−(l+2)] imYlm(θ,ϕ).

(2.8)

This is the general form of a potential, solenoidal field B
in spherical coordinates. The key task of the PFSS and SCS
models is determining the forms of the expansion coefficients
Alm and Blm in terms of spherical harmonics from Equation 2.6,
Equation 2.7, Equation 2.8 by using the appropriate boundary
conditions.

2.2 The potential field source surface
model

2.2.1 Boundary conditions
In the PFSS model (Altschuler and Newkirk, 1969), the

boundary conditions are specified at some inner radius r = R1 and
some outer radius r = R2. The boundary condition at r = R1 is the
Neumann condition

∂Ψ
∂r
(r,θ,ϕ) |

R1

= −Br(R1,θ,ϕ) ̂r. (2.9)

This boundary condition applies to Br(R1,θ,ϕ) only, leaving
Bθ(R1,θ,ϕ) and Bϕ(R1,θ,ϕ) unconstrained.

The boundary condition at R2 is the Dirichlet condition

Ψ(R2,θ,ϕ) = 0. (2.10)
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2.2.2 The PFSS solution
From Equation 2.4, Equation 2.10 means that

Blm = −AlmR
2l+1
2 .

Thus, the general solution for the radial magnetic field
component in the region R1 ≤ r ≤ R2 is:

∂Ψ
∂r
= −Br(r,θ,ϕ) =

∞

∑
l=0

l

∑
m=−l
[lAlmr

l−1 + (l+ 1)AlmR
2l+1
2 r−(l+2)]Ylm(θ,ϕ)

=
∞

∑
l=0

l

∑
m=−l

AlmYlm(θ,ϕ)(lr
l−1 + lR2l+1

2 r−(l+2) +R2l+1
2 r−(l+2)) .

(2.11)

The coefficients Alm are obtained via the orthogonality
condition in Equation 2.5. Multiplying both sides of Equation 2.11
by sin θY∗l′m′(θ,ϕ), evaluating at r = R1 using boundary
condition Equation 2.9, and integrating over θ and ϕ:

∫
2π

0
dϕ∫

π

0
dθ sin θY∗l′m′(θ,ϕ)Br(R1,θ,ϕ)

=
∞

∑
l=0

l

∑
m=−l
(lRl−1

1 + lR
2l+1
2 R−(l+2)1 +R

2l+1
2 R−(l+2)1 )

×Alm∫
2π

0
dϕ∫

π

0
dθ sin θY∗l′m′(θ,ϕ)Ylm(θ,ϕ),

so that

∫
2π

0
dϕ∫

π

0
dθ sin θY∗l′m′(θ,ϕ)Br(R1,θ,ϕ)

=
∞

∑
l=0

l

∑
m=−l
(lRl−1

1 + lR
2l+1
2 R−(l+2)1 +R

2l+1
2 R−(l+2)1 )Almδl′lδm′m.

TheKroenecker δ’s set all terms to 0 except l′ = l andm′ =m, so
that the double sums each only have a single term, yielding:

∫
2π

0
dϕ∫

π

0
dθ sin θY∗lm(θ,ϕ)Br(R1,θ,ϕ)

= Alm (lR
l−1
1 + lR

2l+1
2 R−(l+2)1 +R

2l+1
2 R−(l+2)1 ) .

Therefore:

Alm =
alm

lRl−1
1 + lR

2l+1
2 R−(l+2)1 +R

2l+1
2 R−(l+2)1

, (2.12)

where

alm ≡ ∫
2π

0
dϕ∫

π

0
dθ sin θY∗lm(θ,ϕ)Br(R1,θ,ϕ). (2.13)

Combining Equation 2.11, Equation 2.12, and Equation 2.13,
the radial magnetic field in the volume is therefore:

Br,pfss(r,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l

almYlm(θ,ϕ)
lrl−1 + lR2l+1

2 r−(l+2) +R2l+1
2 r−(l+2)

lRl−1
1 + lR

2l+1
2 R−(l+2)1 +R

2l+1
2 R−(l+2)1

=
∞

∑
l=0

l

∑
m=−l

almYlm(θ,ϕ)(
R1

r
)
(l+2)
(

l(r/R2)2l+1 + l+ 1
l(R1/R2)2l+1 + l+ 1

)

≡
∞

∑
l=0

l

∑
m=−l

almcl(r)Ylm(θ,ϕ).

(2.14)

where

cl(r) ≡ (
R1

r
)
(l+2)
(

l(r/R2)2l+1 + l+ 1
l(R1/R2)

2l+1 + l+ 1
).

Similarly, following Wang and Sheeley (1992) and defining

dl(r) ≡ −(
R1

r
)
l+2
(
(r/R2)2l+1 − 1

l(R1/R2)2l+1 + l+ 1
),

The other two components of the magnetic field become, from
Equation 2.7 and Equation 2.8:

Bθ,pfss(r,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l

almdl(r)
∂Ylm(θ,ϕ)

∂θ
, (2.15)

Bϕ,pfss(r,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l

i m almdl(r)
Ylm(θ,ϕ)
sin θ
. (2.16)

A key feature of the PFSS solution is that at r = R2, dl(r) = 0 for
all l, meaning that

Br,pfss(R2,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l

alm(
R1
R2
)
(l+2)
( 2l+ 1
l(R1/R2)

2l+1 + l+ 1
)Ylm(θ,ϕ)

(2.17)

Bθ,pfss(R2,θ,ϕ) = 0, (2.18)

and

Bϕ,pfss(R2,θ,ϕ) = 0. (2.19)

In other words, the magnetic field determined from the PFSS
solution is purely radial at r = R2.

In terms of the Legendre Polynomials, the solution of the PFSS
can be written as (Nikolić, 2017; 2019):

Br,pf fs(r,θ,ϕ) =
∞

∑
l=1

l

∑
m=0
[(l+ 1)(

R1

r
)
l+2
+m(

R1

R2
)
l+2
( r
R2
)
l−1
]

× Pml (θ) (glm cos (mϕ) + hlml sin (mϕ)) ,

Bθ,pf fs(r,θ,ϕ) = −
∞

∑
l=1

l

∑
m=0
[(

R1

r
)
l+2
−(

R1

R2
)
l+2
( r
R2
)
l−1
]

×
dPml (θ)
dθ
(glm cos (mϕ) + hlm sin (mϕ)) ,

Bϕ,pf fs(r,θ,ϕ) =
∞

∑
l=1

l

∑
m=0
[(

R1

r
)
l+2
−(

R1

R2
)
l+2
( r
R2
)
l−1
]

× Pml (θ)
m

sin θ
(glm sin (mϕ) − hlm cos (mϕ)) ,

where

glm = 2l+ 1

4π(l+ 1+ l( R1R2
)2l+1)
∫
2π

0
dϕ∫

π

0
dθ sin θPml (θ)Br(R1,θ,ϕ)cos (mϕ),

and

hlm =
2l+ 1

4π(l+ 1+ l( R1R2
)2l+1)
∫
2π

0
dϕ∫

π

0
dθ sin θPml (θ)Br(R1,θ,ϕ) sin (mϕ),

and Plm(θ) are the Schmidt functions, related to the Legendre
polynomials Plm cos (θ) via

Plm(θ) = √
(2− δm,0)(l−m)!
(l+m)!

Plm cos (θ).
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2.3 The Schatten model

2.3.1 Boundary conditions
In the SCS model (Schatten, 1971), the boundary conditions

are specified at the inner radius R2 (which coincides with the outer
boundary R2 of the PFSS model1), and the outer radius at∞. This
time, the boundary conditions on Ψ are the Neumann boundary
condition at R2:

∂Ψ
∂r
(r,θ,ϕ) |

R2

= |Br,pfss(R2,θ,ϕ)| ̂r, (2.20)

and the Dirichlet condition

Ψ(r→∞,θ,ϕ) = 0. (2.21)

There are two crucial features of Equation 2.20. First, the
absolute value sign ensures that all of the field is pointing outward
from R2, enabling the solution to represent a current free magnetic
field, and in the process ensuring that the potential field solution
will be dominated by a monopole term. Although this violates
Equation 2.1, the solenoidality of the magnetic field will be enforced
in a later step, described in Section 3.

Second, the Neumann boundary condition at R2 in the SCS is a
direct contrast to theDirichlet boundary condition atR2 in the PFSS.
As will be shown below, this creates a tangential discontinuity and a
current sheet at R2 that requires various minimization techniques.

2.3.2 The SCS solution
Combining Equation 2.21 and the general expression for

the three magnetic field components given in Equation 2.6,
Equation 2.7, Equation 2.8 we obtain that

Alm = δl0,

since keeping terms that go like rl−1 will cause the magnetic
field to blow up as r→∞ unless l < 1. Thus, Equation 2.6,
Equation 2.7, Equation 2.8 simplify to:

Br =
∞

∑
l=0

l

∑
m=−l
[(l+ 1)Blmr

−(l+2)]Ylm(θ,ϕ), (2.22)

Bθ = −
∞

∑
l=0

l

∑
m=−l
[Blmr
−(l+2)]

∂Ylm(θ,ϕ)
∂θ
, (2.23)

Bϕ = −
∞

∑
l=0

l

∑
m=−l
[Blmr
−(l+2)] imYlm(θ,ϕ). (2.24)

Orthogonality of the spherical harmonics allows us to determine
the expansion coefficients Blm by multiplying Equation 2.22 by
sin θY∗l′m′(θ,ϕ), evaluating atR2 using Equation 2.20, and integrating
over θ and ϕ:

∫
2π

0
dϕ∫

π

0
dθ sin θY∗l′m′(θ,ϕ)|Br,pfss(R2,θ,ϕ)|

=
∞

∑
l=0

l

∑
m=−l
[(l+ 1)BlmR

−(l+2)
2 ]∫

2π

0
dϕ∫

π

0
dθ sin θY∗l′m′(θ,ϕ)Ylm(θ,ϕ).

1 As will be described below, this is often not how the SCS is

implemented (McGregor et al., 2008).

The orthonormality of the spherical harmonics in
Equation 2.5 yields:

∫
2π

0
dϕ∫

π

0
dθ sin θY∗l′m′(θ,ϕ)|Br,pfss(R2,θ,ϕ)|

=
∞

∑
l=0

l

∑
m=−l
(l+ 1)BlmR

−(l+2)
2 δl′lδm′m.

All contributions to the double sums vanish due to the
Kroenecker δ’s, with the exception of l′ = l andm′ =m, so that

∫
2π

0
dϕ∫

π

0
dθ sin θY∗lm(θ,ϕ)|Br,pfss(R2,θ,ϕ)| = (l+ 1)BlmR

−(l+2)
2 .

If we define

blm ≡ ∫
2π

0
dϕ∫

π

0
dθ sin θY∗lm(θ,ϕ)|Br,pfss(R2,θ,ϕ)|,

Then Blm is given by

Blm =
blm

(l+ 1)R−(l+2)2

.

Plugging this into Equation 2.22, Equation 2.23, Equation 2.24,
the magnetic field components outside R2 are, then2,

Br,sch(r,θ,ϕ) =
∞

∑
l=0

l

∑
m=−l

gl(r)blmYlm(θ,ϕ), (2.25)

Bθ,sch(r,θ,ϕ) = −
∞

∑
l=0

l

∑
m=−l

hl(r) blm
∂Ylm(θ,ϕ)

∂θ
, (2.26)

Bϕ,sch(r,θ,ϕ) = −
∞

∑
l=0

l

∑
m=−l

hl(r) i m blm
Ylm

sin θ
(θ,ϕ), (2.27)

where

gl(r) ≡ (
R2

r
)
(l+2)
, (2.28)

and

hl(r) ≡ (
R2

r
)
(l+2) 1

l+ 1
. (2.29)

In terms of the Schmidt-Legendre functions, the SCS can be
written as (Nikolić, 2019):

Br,sch(r,θ,ϕ) =
∞

∑
l=1

l

∑
m=0
(l+ 1)(

R2
r
)
l+2

Pml (θ) ( flm cos (mϕ) + qlm sin (mϕ))

(2.30)

Bθ,sch(r,θ,ϕ) = −
∞

∑
l=1

l

∑
m=0
(
R2
r
)
l+2 dPml (θ)

dθ
( flm cos (mϕ) + qlm sin (mϕ))

(2.31)

Bϕ,sch(r,θ,ϕ) =
∞

∑
l=1

l

∑
m=0
(
R2
r
)
l+2 m

sin (θ)
Pml (θ) ( flm sin (mϕ) − qlm cos (mϕ))

(2.32)

2 There is a typo in Equations C13-C14 of Knizhnik et al. (2024a) in the

expression for Bθ,sch(r,θ,ϕ) and Bϕ,sch(r,θ,ϕ).
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where

flm =
2l+ 1

4π(l+ 1)
∫
2π

0
dϕ∫

π

0
dθ sin θPml (θ)|Br(R2,θ,ϕ)|cos (mϕ),

and

qlm =
2l+ 1

4π(l+ 1)
∫
2π

0
dϕ∫

π

0
dθ sin θPml (θ)|Br(R2,θ,ϕ)| sin (mϕ),

There are three important features of Equation 2.25,
Equation 2.26, Equation 2.27. First, since the SCS is effectively
just another calculation of the PFSS solution where the outer
boundary is at∞, it makes sense that the transformation R2→∞
and R1→ R2 makes cl(r) = gl(r) and dl(r) = hl(r) (and similarly
makes gml = f

m
l and hml = q

m
l ), thus allowing the PFSS solution

Equation 2.14, Equation 2.15 and Equation 2.16 to reduce to the
SCS solution Equation 2.25, Equation 2.26, Equation 2.27 when
the outer boundary is at ∞. Second, at r = R2 it can readily be
shown that Br,sch(R2,θ,ϕ) = |Br,pfss(R2,θ,ϕ)|. Third, it can also be
readily shown that

Bθ,sch(R2,θ,ϕ) ≠ 0,

and

Bϕ,sch(R2,θ,ϕ) ≠ 0,

in stark contrast to Equation 2.18, Equation 2.19.
Mathematically, this discontinuity results from using a Dirichlet
boundary condition at r = R2 when computing the PFSS, but a
Neumann condition at r = R2 when computing the SCS. Physically,
this occurs because the PFSS solution places all of the currents which
generate the potential field in the volume R1 < r < R2 inside or at R1
and outside R2. In contrast, the SCS puts all of these currents at
R2. However, these sets of currents are fundamentally inconsistent
with the idea that there is no current anywhere in the entire volume
(Schuck et al., 2022). In models that splice together the PFSS and
SCS solutions, such as WSA (Wang and Sheeley, 1990; Arge and
Pizzo, 2000), this discontinuity in the tangential magnetic field
components creates a sharp current sheet at r = R2. This feature of
the SCS also might create the impression that the magnetic field is
singular at R2, since Ψ is discontinuous there. However, the presence
of this current sheet implies that B ≠ −∇Ψ, so there is no singularity
in the magnetic field. However, this discontinuity does produce an
unphysical ‘kink’ in magnetic field lines traced from outside R2 to
R1. This creates significant issues for identifying source regions of
plasma measured in-situ, as well as for predicting in-situ plasma
parameters McGregor et al. (2008).

3 Dealing with the pfss-scs
discontinuity

One approach to deal with the discontinuity is simply to
assume that its effects are small or negligible, which is the
assumption underlying the heliospheric modeling in Knizhnik et al.
(2024a). However, Zhao and Hoeksema (1994) showed that this
unphysical kinking of the field at R2 produces noticeable deviations
from observations.

To mitigate this issue, two approaches have been proposed.

3.1 Schatten’s minimization

In the approach originally proposed by Schatten (1971) and
implemented by, e.g., Zhao and Hoeksema (1994) and Reiss et al.
(2019), the sum of squared residuals between the PFSS solution atR2
and the SCS solution is minimized to obtain expansion coefficients
from the SCS solution which are not, in general, the same as those
derived in Section 2.3. This approach does not require solving the
Laplace equation in the SCS region r > R2. Instead, amatrix equation
is solved, which produces the expansion coefficients in this region as
functions of the PFSS solution at R2.

This is derived by Schatten (1971), Zhao and Hoeksema (1994)
and Reiss et al. (2019) as follows. The quantity to be minimized can
be written as

F =
Ni

∑
i=1

Nj

∑
j=1

3

∑
k=1
[Bk,pfss(R2,θi,ϕj) −Bk,sch(R2,θi,ϕj)]

2, (3.1)

where i, j index the angular directions at a given radius, in this
case taken to be r = R2, and k = 1,2,3 corresponds to the r,θ,ϕ
directions. Taking the PFSS solution as the “ground truth” at
r = R2, the minimization of the functional F attempts to bring
the three SCS components of the magnetic field as close as
possible to the corresponding PFSS magnetic field components
while maintaining the current-free assumption in the region r > R2.
Using Equation 2.25, Equation 2.26, Equation 2.27, Equation 2.28,
Equation 2.29, (evaluated at r = R2, such that gl(R2) = 1 and hl(R2) =
(l+ 1)−1), and having l only go up toNl for practical purposes, rather
than∞, Equation 3.1 can be written as

F =
Ni

∑
i=1

Nj

∑
j=1

3

∑
k=1
[Bijk −

Nl

∑
l=0

l

∑
m=−l

ϒlmkblm]
2

=
Ni

∑
i=1

Nj

∑
j=1

3

∑
k=1
[B2

ijk +
Nl

∑
l=0

l

∑
m=−l

ϒlmkblm
Nl

∑
n=0

n

∑
p=−n

ϒnpkbnp

−2Bijk

Nl

∑
l=0

l

∑
m=−l

ϒlmkblm],

where Bijk ≡ Bk,pfss(R2,θi,ϕj). From Equation 2.25, Equation 2.26,
Equation 2.27, Equation 2.28, Equation 2.29, we have, respectively,

ϒlm1 = Ylm(θ,ϕ),

ϒlm2 =
1

l+ 1
∂Ylm(θ,ϕ)

∂θ
,

and,

ϒlm3 =
im
l+ 1

Ylm(θ,ϕ).

The minimization can then be performed by differentiating F
with respect to the coefficients blm:

∂F
∂blm
= 0.

This can be written down as

Ni

∑
i=1

Nj

∑
j=1

3

∑
k=1

ϒlmk

Nl

∑
n=0

n

∑
p=−n
[ϒnpkbnp − 2Bijk] = 0
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The sum over l,m disappeared since we differentiated only with
respect to a specific l,m. For each l and m, this can be written in
matrix form as

↔
U
↔
U
⊤
⋅ b = 2

↔
U ⋅
↔
B,

where
↔
B is a matrix of length Ni ×Nj × 3:

↔
B =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

Br,pfss (R2,θ1,ϕ1)
Br,pfss (R2,θ1,ϕ2)
⋮

Br,pfss (R2,θ2,ϕ1)
Br,pfss (R2,θ2,ϕ2)
⋮

Bθ,pfss (R2,θ1,ϕ1)
Bθ,pfss (R2,θ1,ϕ2)
⋮

Bθ,pfss (R2,θ2,ϕ1)
Bθ,pfss (R2,θ2,ϕ2)
⋮

Bϕ,pfss (R2,θ1,ϕ1)
Bϕ,pfss (R2,θ1,ϕ2)
⋮

Bϕ,pfss (R2,θ2,ϕ1)
Bϕ,pfss (R2,θ2,ϕ2)
⋮

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

and similarly
↔
U is a matrix of dimensions N2

l × 3NiNj such that

↔
U
⊤
=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

ϒ001 (θ1,ϕ1) … ϒ0Nl1 (θ1,ϕ1) … ϒNl01 (θ1,ϕ1) … ϒNlNl1 (θ1,ϕ1)⋮ … ⋮ … ⋮ … ⋮
ϒ001 (θ1,ϕj) … ϒ0Nl1 (θ1,ϕj) … ϒNl01 (θ1,ϕj) … ϒNlNl1 (θ1,ϕj)ϒ001 (θ2,ϕ1) … ϒ0Nl1 (θ2,ϕ1) … ϒNl01 (θ2,ϕ1) … ϒNlNl1 (θ2,ϕ1)⋮ … ⋮ … ⋮ … ⋮
ϒ001 (θi,ϕj) … ϒ0Nl1 (θi,ϕj) … ϒNl01 (θi,ϕj) … ϒNlNl1 (θi,ϕj)ϒ002 (θ1,ϕ1) … ϒ0Nl2 (θ1,ϕ1) … ϒNl02 (θ1,ϕ1) … ϒNlNl2 (θ1,ϕ1)⋮ … ⋮ … ⋮ … ⋮
ϒ002 (θ1,ϕj) … ϒ0Nl2 (θ1,ϕj) … ϒNl02 (θ1,ϕj) … ϒNlNl2 (θ1,ϕj)ϒ002 (θ2,ϕ1) … ϒ0Nl2 (θ2,ϕ1) … ϒNl02 (θ2,ϕ1) … ϒNlNl2 (θ2,ϕ1)⋮ … ⋮ … ⋮ … ⋮
ϒ002 (θi,ϕj) … ϒ0Nl2 (θi,ϕj) … ϒNl02 (θi,ϕj) … ϒNlNl2 (θi,ϕj)ϒ003 (θ1,ϕ1) … ϒ0Nl3 (θ1,ϕ1) … ϒNl03 (θ1,ϕ1) … ϒNlNl3 (θ1,ϕ1)⋮ … ⋮ … ⋮ … ⋮
ϒ003 (θ1,ϕj) … ϒ0Nl3 (θ1,ϕj) … ϒNl03 (θ1,ϕj) … ϒNlNl3 (θ1,ϕj)ϒ003 (θ2,ϕ1) … ϒ0Nl3 (θ2,ϕ1) … ϒNl03 (θ2,ϕ1) … ϒNlNl3 (θ2,ϕ1)⋮ … ⋮ … ⋮ … ⋮
ϒ003 (θi,ϕj) … ϒ0Nl3 (θi,ϕj) … ϒNl03 (θi,ϕj) … ϒNlNl3 (θi,ϕj)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

,

Such thatb is a vector of lengthN2
l , which contains the expansion

coefficients:

b =
[[[[[

[

b00
b10
⋮
blm

]]]]]

]

.

If working with the more common Legendre polynomial
formulation, Equation 2.30, Equation 2.31, Equation 2.32, the
minimization has been derived by several authors: (Schatten, 1971;
Zhao and Hoeksema, 1994; Reiss et al., 2019; Nikolić, 2017). The
most thorough derivation is by Nikolić (2017), who writes down the

vector of expansion coefficients

↔
FQ =

[[[[[[[[[[[[[[[[[[[

[

f00
f10
⋮
fNlNl

⋮
q00
q10
⋮
qNlNl

]]]]]]]]]]]]]]]]]]]

]

,

In terms of the vector
↔
B above (Equation 2.65) and the matrix

↔
D, where

↔
D
⊤
=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

α001 (θ1,ϕ1) … α0Nl1 (θ1,ϕ1) … αNl01 (θ1,ϕ1) … αNlNl1 (θ1,ϕ1) … α⇔ β

⋮ … ⋮ … ⋮ … ⋮ … ⋮

α001 (θ1,ϕj) … α0Nl1 (θ1,ϕj) … αNl01 (θ1,ϕj) … αNlNl1 (θ1,ϕj) … α⇔ β

α001 (θ2,ϕ1) … α0Nl1 (θ2,ϕ1) … αNl01 (θ2,ϕ1) … αNlNl1 (θ2,ϕ1) … α⇔ β

⋮ … ⋮ … ⋮ … ⋮ … ⋮

α001 (θi,ϕj) … α0Nl1 (θi,ϕj) … αNl01 (θi,ϕj) … αNlNl1 (θi,ϕj) … α⇔ β

α002 (θ1,ϕ1) … α0Nl2 (θ1,ϕ1) … αNl02 (θ1,ϕ1) … αNlNl2 (θ1,ϕ1) … α⇔ β

⋮ … ⋮ … ⋮ … ⋮ … ⋮

α002 (θ1,ϕj) … α0Nl2 (θ1,ϕj) … αNl02 (θ1,ϕj) … αNlNl2 (θ1,ϕj) … α⇔ β

α002 (θ2,ϕ1) … α0Nl2 (θ2,ϕ1) … αNl02 (θ2,ϕ1) … αNlNl2 (θ2,ϕ1) … α⇔ β

⋮ … ⋮ … ⋮ … ⋮ … ⋮

α002 (θi,ϕj) … α0Nl2 (θi,ϕj) … αNl02 (θi,ϕj) … αNlNl2 (θi,ϕj) … α⇔ β

α003 (θ1,ϕ1) … α0Nl3 (θ1,ϕ1) … αNl03 (θ1,ϕ1) … αNlNl3 (θ1,ϕ1) … α⇔ β

⋮ … ⋮ … ⋮ … ⋮ … ⋮

α003 (θ1,ϕj) … α0Nl3 (θ1,ϕj) … αNl03 (θ1,ϕj) … αNlNl3 (θ1,ϕj) … α⇔ β

α003 (θ2,ϕ1) … α0Nl3 (θ2,ϕ1) … αNl03 (θ2,ϕ1) … αNlNl3 (θ2,ϕ1) … α⇔ β

⋮ … ⋮ … ⋮ … ⋮ … ⋮

α003 (θi,ϕj) … α0Nl3 (θi,ϕj) … αNl03 (θi,ϕj) … αNlNl3 (θi,ϕj) … α⇔ β

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

.

Here the notation α⇔ β is meant to indicate that the preceding
columns should be duplicated, but swapping α and β, which
are defined as

αlm1 = (l+ 1)P
m
l (θ)cos (mϕ),

αlm2 = −
∂Pml (θ)
∂θ

cos (mϕ),

αlm3 =
m

sin θ
Pml (θ) sin (mϕ),

βlm1 = (l+ 1)P
m
l (θ) sin (mϕ),

βlm2 = −
∂Pml (θ)
∂θ

sin (mϕ),

βlm3 =
m

sin θ
Pml (θ)cos (mϕ).

with these definitions, the solution that minimizes the sum
of squared residuals (Equation 2.57) in the region r > R2 is
Equation 2.30, Equation 2.31, Equation 2.32, but with flm and
qlm given by

↔
FQ = (

↔
D
−1
)
⊤↔
D
−1
⋅
↔
D ⋅
↔
B
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3.1.1 Weakness of the minimization approach
The problem with the approach described in Section 2.4 is that

in attempting to minimize the magnitude of the current sheet
created at R2 by the discontinuity in the tangential components
of the magnetic field, the least squares minimization created a
discontinuity in the radial component of the magnetic field, in
direct violation of Gauss’s law Equation 2.1. Such a trade-off, where
a physical law of nature is sacrificed, is unlikely to produce more
realistic results. Furthermore, the net gains from this minimization
are unclear. Zhao and Hoeksema (1994) argues that this approach
bringsmodeled coronal plumes and streamers into better agreement
with eclipse observations than not performing this minimization.
However, McGregor et al. (2008) find that kinks in the field lines
in the non-minimized SCS model do not generally affect in-situ
measurements at 1 AU, at least when using the WSA model for
velocity prediction. Furthermore, the minimization approach seems
to decrease the current density at the source surface only by a
factor of 5− 10 (relative to the direct SCS or McGregor et al. (2008)
approaches), at the cost of a significant increase in the divergence of
B (Zaveri et al., 2024 in prep).

3.2 The interface region

A second approach, developed by McGregor et al. (2008) and
Meadors et al. (2020), and curently implemented in the EUHFORIA
code Pomoell and Poedts (2018), is to compute the PFSS solution
as described above, but use the radial magnetic field at a radius
R2 − ϵ as a boundary condition for the SCS, rather than R2. Here
ϵ is a small radial distance in from the radius R2, such that at
R2 − ϵ, the magnetic field was not forced to be entirely radial, thus
minimizing the discontinuity between the PFSS and SCS solution.
To best match the two solutions, McGregor et al. (2008) attempted
simultaneously to 1) conserve the amount of open flux calculated
by the ‘new’ SCS model and 2) minimize the total current along
what they termed the “interface surface.” Using a number of different
combinations of choices for R2 and ϵ, McGregor et al. (2008) found
that values of R2 = 2.6R⊙ and ϵ = 0.3 performed best at conserving
total open flux and minimizing total current. They demonstrated
that these choices reduces, but does not get rid of, unphysical
kinks in magnetic fields traced near R2, and that this resulted in
improved prediction skill scores for the solar wind velocity and
interplanetary magnetic field polarity. Meadors et al. (2020) showed
that the choices for R2 and ϵ significantly affected the prediction
skill score. In the current implementation ofWSA, R2 = 2.51 and ϵ =
0.02 are used (Meadors et al., 2020), and the SCS model seems to be
truncated at 5R⊙, whereupon the field direction is reversed, as will
be discussed in Section 3.

4 Reversing the polarities

Equation 2.20 used the absolute value of the radial magnetic
field at R2 as a boundary condition, creating a magnetic field that
is everywhere positive. This not only creates a magnetic monopole,
violating the fundamental physical law in Equation 2.1, but also
creates a discontinuity in the radial component of the magnetic
field, since the boundary condition on Br in the region r ≥ R2 is

inconsistent with the PFSS solution of Br at r = R2, which was
not positive definite. Both issues are resolved with the following
procedure.

After the expansion coefficients are calculated as described
above, either by directly implementing the expansion in spherical
harmonics at R2 (Knizhnik et al., 2024a; b) or at some interface
radius R2 − ϵ (McGregor et al., 2008; Meadors et al., 2020), or by
performing a minimization procedure (§subsection 2.4; Zhao and
Hoeksema, 1994; Reiss et al., 2019), the correct polarity of the
magnetic field must be recovered. This has typically been done by
brute force: a magnetic field line is traced towards the source surface
from each target location where the polarity is needed. The sign of
themagnetic field at the footpoint of the traced field line at the source
surface is identified by interpolating from the sign of nearest grid
points. All locations along this field line are assigned to the polarity
of the footpoint.

In practice, this brute force technique is unavoidable, but it
also becomes computationally intensive when a large number of
target points are required. For example, if the sign of the field is
needed on some surface to be used as input to an MHD model
(e.g., Reiss et al., 2019; Knizhnik et al., 2024a), a field line needs
to be traced from each grid location on that surface. Even more
computationally intensive is a scenario when the magnitude and
polarity of the magnetic field needs to be known in the entire
volume, requiring field line tracing from every single grid point in
the volume (e.g., Scott et al., 2018).

The end result of the polarity reversal is that the boundary
condition on the SCS region implicitly matches the PFSS solution at
r = R2, and Equation 2.1 is satisfied. Physically, the polarity reversal
creates a large current sheet at the boundary between positive
and negative polarities. This is known as the heliospheric current
sheet (HCS).

It should be noted that the Lorentz force

J×B = ∇ ⋅
↔
M,

and the associatedmagnetic stresses remain constant before and
after the polarity reversal, since the Maxwell stress tensor

↔
M = 1

μ0
(BiBj −

1
2
δijB

2),

Is quadratic in magnetic field components, so changing
the sign of all components of the magnetic field leaves

↔
M

unchanged (Schatten, 1971).

5 Discussion

The SCS model is a key component for many coronal and
heliospheric models. It connects the PFSS regime to the inner
heliosphere, and is used as input for MHD and WSA heliospheric
models. Unfortunately, the mathematical formalism, reasoning, and
physical motivation behind the use of the SCSmodel is very difficult
to find in the literature. This article has endeavored to describe the
SCS completely. The SCS has several important properties.

First, it smooths out the magnetic field in the inner heliosphere
from an initially complicated and salt-and-pepper photospheric
distribution and a slightly smoother, yet still complex magnetic field

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2024.1476498
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Knizhnik 10.3389/fspas.2024.1476498

on the source surface, to an essentially bipolar magnetic field in
the inner heliosphere. At large radii, the SCS magnetic field has
essentially constant magnitude as a function of both longitude and
latitude, and creates a well defined, smooth heliospheric current
sheet separating positive and negative polarities.

Second, it shows better agreement with observations of solar
plumes and streamers by bending magnetic field lines toward the
equator outside of the source surface, in direct contrast to the PFSS
model, which assumes perfectly radial magnetic field outside the
source surface (Schatten, 1971; Zhao and Hoeksema, 1994).

Third, it is analytically tractable, conserves the solenoidality of
the magnetic field (at least when not employing the minimization
techniques of Section 2.4), and is relatively simple to compute. The
most computationally intensive step is the field line tracing, which
for reasonable model resolutions only takes up to several hours on a
single CPU.

Nevertheless, the model has significant downsides. First, there is
no theoretical reason to believe that the magnetic field in the solar
atmosphere is divided into 1) a current free region below R2, 2) a
region outside R2 that contains no currents except for the HCS and
a current sheet at R2. The division of the coronal volume into two
distinct magnetic domains was done to better match observations,
and can physically be justified by arguing that the distance r = R2
is the location where the plasma and magnetic pressures balance,
and the plasma is able to open up any remaining closed field lines.
This surface, known as the Alfvén surface (Cranmer et al., 2023;
Chhiber et al., 2024), where the solar wind speed and Alfvén speed
match, divides a plasma dominated region from a magnetic field
dominated region. While this explains the assumption of a purely
radial field at R2 (with the dominant solar wind pressure opening
up all field lines outside the Alfvén surface), the assumption of a
vanishing current above and below R2 remains unjustified. Recent
measurements from Parker Solar Probe entering the magnetically
dominated corona revealed significant structure in the magnetic
field on both sides of the Alfvén surface, suggesting the presence
of non-zero electric currents (Kasper et al., 2021). Furthermore,
Schuck et al. (2022) has convincingly argued that there must be
significant currents in the corona, likely contributing to 20− 30% of
the photospheric flux. Since currents are the source of free energy
needed for solar eruptions (as potential fields are the lowest energy
state of any magnetic field configuration), they must exist in the
solar atmosphere. The locations of these currents in the corona will
affect the magnetic field distribution at and above the photosphere,
and influence the boundary condition for the region r ≥ R2. Finally,
there are likely to be significant currents away from the Alfvén
surface generated by turbulence in the solar wind. Additionally, the
assumption of spherical symmetry of the source surface is suspect, as
the radius of Alfvén surface is likely to vary in longitude and latitude
(Levine et al., 1982; Verscharen et al., 2021). While conceptually
it is straightforward to extend the PFSS + SCS model to non-
spherical surfaces, mathematically defining and using the boundary
conditions to calculate an analytic model of the magnetic field
everywhere is likely to be a major challenge.

A further issuewith the SCSmodel is the approach often employed
to minimize the current sheet at r = R2. The trade-off of sacrificing the
solenoidality of B in favor of a slightly smaller current sheet at r = R2
is suspect, and it is not clear whether this truly produces improved in-
situ predictions. Although the approach proposed by McGregor et al.

(2008) removes any unphysical divergence of B, the extent to which it
furtherminimizes the current sheet at r = R2 has not yet been explored
(see, however, Zaveri et al., 2024, in prep).

Finally, the view that the interplanetary magnetic field was
essentially uniform with heliospheric latitude, as indicated by early
Ulysses observations, and which is meant to be reproduced by the
SCS model, has been shown to be on poor observational footing.
Later Ulysses measurements show significant variability in the
interplanetary magnetic field (e.g., Khabarova and Obridko, 2012;
Khabarova, 2013; Erdős and Balogh, 2014), as well as in the solar
wind velocity and density (McComas et al., 2008; Khabarova et al.,
2018). Although significant variation in the velocity and density is
seen with theWSAmodel due to its reliance on the expansion factor
and distance from the nearest coronal hole boundary, the magnetic
variations seen by Ulysses are not reproduced by the SCS model,
which typically creates a bipolar magnetic field outside R2. The
velocity and density variations around the HCS, meanwhile, form
the heliospheric plasma sheet (HSP; e.g., Bavassano et al., 1997),
which typically shows slow wind streams (at least at 1 AU; Eselevich
and Fainshtein, 1991) and higher plasma densities than higher
latitude solar wind streams (Kislov et al., 2015;Maiewski et al., 2018;
Lavraud et al., 2020). In in-situ measurements, the HPS can lead
or follow the HCS signatures (Eselevich and Fainshtein, 1991;
Winterhalter et al., 1994). Since near theHPS the expansion factor is
large and the distance to the nearest coronal hole is small, the WSA
model naturally predicts a slow solar wind speed and, subsequently,
an increased plasma density (McGregor, 2011; Merkin et al., 2016).
Indeed, all of these features are well reproduced by MHD models
that employ the WSA formalism as a boundary condition at R2 (cf.
Figures 2, 4–6 of Knizhnik et al., 2024a).
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