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Deriving improved plasma fluid
equations from collisional kinetic
theory

Y. S. Dimant*

Center for Space Physics, Boston University, Boston, MA, United States

Introduction: Developing a quantitative understanding of wave plasma
processes in the lower ionosphere requires a reasonably accurate theoretical
description of the underlying physical processes. For such a highly collisional
plasma environment as the E-region ionosphere, kinetic theory represents the
most accurate theoretical description of wave processes. For the analytical
treatment, however, collisional kinetic theory is extremely complicated and
succeeds only in a limited number of physical problems. To date, most research
has applied oversimplified fluid models that lack a number of critical kinetic
aspects, so the coefficients in the corresponding fluid equations are often
accurate only to an order of magnitude.

Methods: This paper presents a derivation for the highly collisional, partially
magnetized case relevant to E-region conditions, using methods of the
collisional kinetic theory with a new set of analytic approximations.

Results: This derivation provides a more accurate reduction of the ion and,
especially, electron kinetic equations to the corresponding 5-moment fluid
equations. It results in a more accurate fluid model set of equations appropriate
for most E-region problems.

Discussion:The results of this paper could be used for a routine practical analysis
whenworking with actual data. The improved equations can also serve as a basis
for more accurate plasma fluid computer simulations.

KEYWORDS

E-region ionosphere,magnetizedplasma, plasma-neutral collisions, kinetic theory, fluid
equations, 5-moment description

1 Introduction

At altitudes of the equatorial and high-latitude E-region ionospheres, the ionosphere is
highly collisional in such away that ions are almost demagnetized by their frequent collisions
with the surrounding neutral molecules while electrons remain stronglymagnetized. Strong
DC electric fields perpendicular to the geomagnetic field cause electrojets and give rise to
plasma instabilities whose nonlinear development produces plasma density irregularities
that can be observed by radars and rockets.

Developing a quantitative understanding of wave plasma processes in the lower
ionosphere requires an accurate theoretical description of the underlying physical
processes. For such a dissipative environment, collisional plasma kinetic theory represents
the most accurate theoretical description of wave processes. Particle-in-cell (PIC)
simulations apply the kinetic approach as a comprehensive numeric experiment, but such
massive computer simulations (Oppenheim and Dimant, 2004; Oppenheim et al., 2008;
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Oppenheim and Dimant, 2013; Oppenheim et al., 2020) are
usually quite costly. In many cases, simple estimates and parameter
dependencies provided by an analytic approach will suffice. For
the analytical treatment, however, the collisional kinetic theory
is extremely complicated and succeeds only in a limited number
of physical problems. To date, most research has applied an
oversimplified fluid model that lacks many critical kinetic aspects.
These models mostly apply to weakly collisional conditions. The
coefficients in the simple fluid equations are often accurate only to
an order of magnitude because they were not obtained using the
full kinetic theory of electron-neutral collisions.This paper presents
the derivation of improved fluid equations for the highly collisional,
partially magnetized case relevant to E-region conditions, starting
from a more consistent kinetic approach. It provides more accurate
values for the fluid model coefficients.

There are different approaches to analytically describing low-
frequency plasma processes in the E-region ionosphere, including
both the kinetic theory and fluid models. Traditionally, the
kinetic theory of the Farley–Buneman (FB) instability applied an
oversimplified Bhatnagar–Gross–Krook (BGK) collision operator
(Bhatnagar et al., 1954). This operator does not follow from an
accurate Boltzmann collision operator [except assuming special
conditions (St-Maurice and Schunk, 1977)] but represents an
artificial construct. It dramatically simplifies the analytical treatment
and satisfies the particle number conservation and the momentum
and energy balances (albeit under certain conditions; see below).
This simplified approach is reasonably applicable to the description
of the heavy ions, but it is totally unacceptable to the description of
the light electrons (Dimant and Sudan, 1995a).

More accurate approaches to the kinetic description of electrons
under conditions of the E-region wave processes, such as the FB
instability, have been developed by a few research groups. Stubbe
(1990) modified the BGK terms to allow for different rates of
electron energy and momentum losses. This simple modification,
however, does not follow from the Boltzmann operator, and its
applicability for given physical conditions should be verified. Later,
two independent research groups developedmore sophisticated and
accurate approaches. Kissack and collaborators (Kissack et al., 1995;
1997; 2008a; b) applied Grad’s method (Grad, 1949; Rodbard et al.,
1995), while Dimant and Sudan (1995a) used an expansion in
Legendre polynomials with respect to the angles in the velocity
space (Gurevich, 1978; Allis, 1982). The latter kinetic approach
has allowed the authors to predict a new electron thermal-
driven instability in the lower-E/upper-D regions (Dimant and
Sudan, 1995b; c), which has been later explained in terms of
a much simpler fluid model (Dimant and Sudan, 1997). This
effect has been verified by others (Robinson, 1998; St. -Maurice
and Kissack, 2000). Later, a similar thermal-instability process has
been suggested for ions (Kagan and Kelley, 2000; Dimant and
Oppenheim, 2004; Dimant et al., 2023).

This paper presents a consistent reduction of the ion and
electron kinetic equations to the 5-moment fluid equations by
using a new set of analytic approximations. This derivation results
in a more accurate fluid model appropriate for most E-region
plasma problems. The main contribution of this work comes
from relaxing the assumption of constant electron-neutral collision
frequency and allowing significant deviations of the electron velocity

distribution from the Maxwellian distribution (although the pitch-
angle anisotropy of the electron distribution function always
remains weak, as described in the text).

The results of this work could be used for a routine practical
analysis when working with actual data. The improved equations
can also serve as a basis for more accurate plasma fluid computer
simulations. Concerning the latter, we note the following. These
improved fluid equations include no Landau damping, so they
cannot properly model the FB instability in the short-wavelength
range of turbulence (of the order of the ion-neutral collisional mean
free path and shorter), where this kinetic effect plays an important
role. However, these improved fluid equations can successfully
model plasma waves generated by the larger-scale gradient drift
and thermal instabilities; see Dimant et al. (2023) and references
therein. Evenmore so, as PIC simulations demonstrate (Oppenheim
and Dimant, 2013), after the brief evolution of the FB instability
to its dynamic nonlinear saturation, the energetically dominant
part of the developed turbulence spectrum usually moves to longer
wavelengths. In this later stage, the kinetic effects of Landaudamping
become less important, so the improved set of fluid equations
could also be successfully employed for reasonably accurate
modeling of the FB instability. A recent work has demonstrated the
satisfactory applicability of fluid modeling to FB instability, both
in the E-region ionosphere (Rojas et al., 2023) and in the solar
chromosphere (Evans et al., 2023). Furthermore, the improved fluid
equations can also model the dynamics of such plasma objects as
quickly ionized chemically released gas clouds, sporadic E-layers,
long-lived meteor plasma, etc.

The paper is organized as follows. Section 2 introduces the
collisional kinetic equation and reviews the generic procedure
for obtaining the moment equations. The collisional parts are
not specified and remain in the general integral form. Section 3
describes the ion momentum equation obtained using the BGK
collision model. The most important part is Section 4. It derives
low-frequency electron fluid equations using a kinetic theory
based on the efficient isotropization of the electron distribution
function in the velocity space (Gurevich, 1978; Dimant and
Sudan, 1995a). This requires a more detailed and sophisticated
treatment. Section 4.1 derives the moment equations where the
heat conductivity and frictional heating are given in terms of a
still unspecified small directional part of the velocity distribution
function. To illustrate major ideas of closing the derivation,
Section 4.2 describes the simplest case of the constant (i.e., velocity-
independent) kinetic collision parameters. Section 4.3 presents the
general results obtained in detail in the Supplementary Appendix.
Compared to the simplest electron fluid equations from Section 4.2,
the general momentum and thermal-balance equations include
more coefficients, as well as additional heat conductivity terms. The
latter may appear collisionless, but they have arisen exclusively due
to the velocity dependence of the kinetic electron-neutral collision
frequency.

2 General kinetic framework

This section discusses a general approach to deriving the fluid
model from the kinetic theory for any plasma particles. To avoid
confusion, we will use the following nomenclature throughout this
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article. We denote various kinds of particles (charged or neutral) by
Latin subscripts: p, q, etc., that stand for electrons (e), ions of various
kinds (i), and neutrals (n), while denoting vector components by
Greek subscripts: α, β, etc.

The non-relativistic kinetics of charged particles of the kind p
with the velocity v⃗p at a given location ⃗r and time t are described by
the Boltzmann kinetic equation,

∂t fp +∇ ⋅ (v⃗p fp) + ∂v⃗p ⋅ [
qp
mp
(E⃗+ v⃗p × B⃗) fp] = (

d fp
dt
)

col

, (1)

where fp(v⃗p, ⃗r, t) is the single-particle velocity distribution
function. The left-hand side (LHS) of Equation (1) describes the
collisionless (Vlasov) dynamics of the p-species charged particles in
smoothed-over-many-particles electric (E⃗) and magnetic (B⃗) fields
(for simplicity, we ignore here a gravity force). qp and mp are the
p-particle charge and mass, respectively. The LHS of Equation (1)
is intentionally written in a conservative (divergence) form that is
more convenient for deriving the moment equations.

The right-hand side (RHS) of Equation (1), term (d fp/dt)col =
∑qSpq, is the collisional operator describing binary collisions of
the p-particles with all available kinds of charged and neutral
particles denoted by q (including the p-particles themselves). In
the general case, the partial components Spq represent integral
operators that involve products of fp(v⃗p, ⃗r, t) by fq(v⃗q, ⃗r, t).The partial
operator Sqq is quadratically nonlinear, while Spqwith p ≠ q are linear
with respect to fp. The linear integral operators describe electron-
neutral (e-n) and ion-neutral (i-n) collisions, while the quadratically
nonlinear operators describe electron–electron (e-e) and ion–ion
(i-i) collisions. The latter redistribute the energy and momentum
within the same-species population. In the E-region ionosphere,
where the Coulomb collisions are usually relatively weak, the e-
e and i-i collisions can often be neglected. In a sufficiently dense
day-time ionosphere, the e-e collisions can sometimes play a role,
resultingmostly in the evolution of fe(v⃗q, ⃗r, t) to a “moreMaxwellian”
distribution. This only helps improve the applicability of the fluid
model compared to the more complicated kinetic theory (Dimant
and Sudan, 1995a).

The binary collisions can be either elastic or inelastic. Elastic
collisions conserve the total kinetic energy, momentum, and
angular momentum of the colliding pair. The corresponding partial
collisional operator, Spq, can be described by the well-known
Boltzmann collision integral (Shkarofsky et al., 1966; Gurevich,
1978; Lifshitz and Pitaevskii, 1981; Schunk and Nagy, 2009;
Khazanov, 2011). During an inelastic collision of a charged particle
with a neutral particle, a fraction of the total kinetic energy goes
to the excitation (de-excitation) of the neutral particle (or ion)
or to the release of electrons via ionization. Inelastic processes
in the lower ionosphere often involve molecular dissociation,
recombination with ions, and electron attachment, accompanied by
photon radiation or absorption. The complete kinetic description
of all these processes is complicated. In many cases, however,
inelastic collisions are close to elastic, and one can continue using
Boltzmann’s integral with minor modifications (Gurevich, 1978;
Shkarofsky et al., 1966). Kinetic Equation (1) with Boltzmann’s
collision integral per se represents a significant simplification over
the full multi-particle kinetics, but it still remains quite difficult for
a mathematical treatment and requires further simplifications.

Being interested in the fluid-model equations that follow
from kinetic Equation (1), we review the conventional approach to
deriving equations for the lowest-order moments of the distribution
function below. The material in this section will serve as a guide for
more specific derivations of the following sections.

The three lowest-order velocity moments include the p-species
particle density,

np ( ⃗r, t) ≡ ∫ fpd
3vp, (2)

the mean fluid velocity,

V⃗p ( ⃗r, t) ≡ ⟨v⃗p⟩ =
1
np
∫ v⃗p fpd

3vp, (3)

and the effective temperature,

Tp ( ⃗r, t) =
mp

3
⟨(v⃗p − V⃗p)

2⟩ =
mp

3np
∫(v⃗p − V⃗p)

2 fpd
3vp. (4)

Note that in all equations, here and below, the temperatures are
given in the energy units; that is, we imply that the temperatures in
Kelvin (K) units are multiplied by the Boltzmann constant, although
the K units will also be used in the text. The derivations below will
also involve other velocity-averaged quantities defined by

⟨⋯⟩ ≡ 1
np
∫(⋯) fpd

3vp. (5)

Integrations in Equations 2–5 are performed over the entire 3-D
velocity space.

First, we consider the particle number balance.
Integrating Equation 1 over the particle velocities with fp→ 0 as
vp ≡ |v⃗p| →∞, we easily obtain the continuity equation for the
p-particle fluid,

∂tnp +∇ ⋅ (npV⃗p) = ∫(
d fp
dt
)

col

d3vp. (6)

The RHS of Equation 6 includes various particle sources and
losses, like ionization, recombination, and electron attachment. The
collisions between the charged particles of the same species usually
conserve the average particle number and, hence, do not contribute
to the RHS of Equation 6.

Second, we obtain the momentum balance equation that
involves themeanfluid drift velocity, V⃗p. Integrating Equation 1with
the weighting functionmpv⃗p, for a given vector-component α of the
momentum density, we obtain

mp∂t (npVpα) +
3

∑
β=1

∂xβPpαβ
+mp

3

∑
β=1

∂xβ (npVpα
Vpβ)

= qp [Eα +
1
c
(V⃗p × B⃗)α]np +mp∫vpα(

d fp
dt
)

col

d3vp, (7)

where Pp is the total pressure tensor with vector
components defined as

Ppαβ
≡mp∫(vpα −Vpα)(vpβ −Vpβ) fpd

3vp. (8)

It combines the isotropic pressure, Ppδmn (δmn = 1 if m = n;
otherwiseδmn = 0), Pp = npTp, with the viscosity tensor,Πpαβ

≡ Ppαβ
−
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Ppδαβ. Equation 7 includes momentum changes due to various
average forces and those caused by particle density variations.
To exclude the latter and separate the net effect of the total
force, we multiply Equation 6 by mpV⃗p and subtract the resultant
equation from Equation 7. This yields the conventional momentum
balance equation,

mpnp
DpV⃗p

Dt
= qpnp [E⃗+

1
c
(V⃗p × B⃗)] −∇ ⋅Pp + R⃗p, (9)

where Dp/Dt ≡ ∂t + V⃗p ⋅∇ is the convective (also called
substantial ormaterial) derivative for the average p-particle flow and

R⃗p ≡mp∫(v⃗p − V⃗p)(
d fp
dt
)

col

d3vp. (10)

Here and below, the “dot”-products of a vector, a⃗, with a two-
component tensor, A, depending on the multiplier order, denote
vectors with the components (a⃗ ⋅A)α ≡ ∑

3
β=1aβAβα or (A ⋅ a⃗)α ≡

∑3β=1Aαβaβ. The tensor divergence, ∇ ⋅Pp = ∇Pp +∇ ⋅Πp, represents
a vector which uses the obvious symmetry Ppαβ

= Ppβα
following

from Equation 8. The RHS of Equation 9 includes all smooth
forces acting on the average particle flow of the charged particles,
such as the total Lorentz force, pressure gradient, and total
friction, R⃗p. The latter is associated with collisions of the given p-
particles with all other charged or neutral particles. It includes no
momentum exchange between the same-species particles because
their mutual collisions automatically conserve the total momentum,
∫ v⃗pSppd3vp = 0.

Third, to obtain the total energy balance equation, we
integrate Equation 1 with the weighting functionmpv

2
p/2 and obtain

∂tEp +∇ ⋅ ∫
mpv

2
p

2
v⃗p fpd

3vp = ⃗jp ⋅ E⃗+
mp

2
∫v2p(

d fp
dt
)

col

d3vp, (11)

where Ep is the p-species average kinetic energy density and ⃗jp is
their electric current density,

Ep ≡ ∫
mpv

2
p

2
fpd

3vp, ⃗jp ≡ qpnpV⃗p. (12)

Note that the particle gyromotion does not contribute to the
kinetic energy balance. Before proceeding, we separate the mean
drift velocity V⃗p from the kinetic particle velocity v⃗p so that
(11) becomes

∂t[np(
mpV

2
p

2
+
3Tp

2
)]

+∇ ⋅ [np(
mpV

2
p

2
+
5Tp

2
) V⃗p +Πp ⋅ V⃗p +

npmp

2
⟨(v⃗p − V⃗p)

3⟩]

= ⃗jp ⋅ E⃗+ V⃗p ⋅ R⃗p +
mp

2
∫(v⃗p − V⃗p)

2(
d fp
dt
)

col

d3vp

+
mpV

2
p

2
∫(

d fp
dt
)

col

d3vp, (13)

where (v⃗p − V⃗p)
3 = |v⃗p − V⃗p|

2 (v⃗p − V⃗p). Equation 13 describes
dynamic variations of the total energy density. It includes a part
associated with the average fluid motion, npmpV

2
p/2, and the

internal thermal energy, npTp. To extract the equation exclusively

for the particle temperature, Tp, we multiply Equation 6 by
(mpV

2
p/2+ 3Tp/2), take the scalar product of Equation 9 with

V⃗p, and subtract the resultant two equations from Equation 13.
This yields

3np
2

DpTp

Dt
+ npTp∇ ⋅ V⃗p +Πp ⋅∇ ⋅ V⃗p +∇ ⋅ [

npmp

2
⟨(v⃗p − V⃗p)

3⟩]

=
mp

2
∫(v⃗p − V⃗p)

2(
d fp
dt
)

col

d3vp +(
mpV

2
p

2
−
3Tp

2
)∫(

d fp
dt
)

col

d3vp, (14)

whereΠp ⋅∇ ⋅ V⃗p ≡ ∑
3
α,β=1Πpαβ

∇αV⃗pβ
. Note that after this step, the

electric field has been eliminated from the energy-balance equation.
This is a crucial step in deriving the proper form of the frictional
heating, as described below.

Typically, equations like Equation 14 represent the final form of
the thermal-balance equation. These equations are most convenient
for calculations. In order to clarify the physical meaning of some
terms, however, it is helpful to recast Equation 14 in a slightly
different form. Rewriting the continuity Equation 6 as

Dpnp
Dt
+ np∇ ⋅ V⃗p = ∫(

d fp
dt
)

col

d3vp,

we recast the two first terms in the LHS of Equation 14 as

3np
2

DpTp

Dt
+ npTp∇ ⋅ V⃗p =

3np
2

DpTp

Dt
−Tp

Dpnp
Dt

+Tp∫(
d fp
dt
)

col

d3vp

= npTp
Dpsp
Dt
+Tp∫(

d fp
dt
)

col

d3vp, (15)

where sp ≡ ln (T
3/2
p /np) = ln (P

3/2
p /n

5/2
p ) represents the specific

entropy of the p-species fluid (Braginskii, 1965) (for a single-atomic
gas, this is the adiabatic coefficient γ = 5/3). This recast allows
interpreting npTp∇ ⋅ V⃗p as the adiabatic heating (cooling) term. The
two remaining terms in the LHS of Equation 14 describe the work
performed by viscous forces and the fluid heat conductance. All
these processes are collisionless.

All collisional processes in the thermal balance Equation 14
are described by its RHS. After rearranging the last term in
Equation 15 to the RHS of Equation 14, the last term there becomes
(mpV

2
p/2− 5Tp/2)∫(d fp/dt)cold

3vp. All integral terms involving
(d fp/dt)col describe the frictional heating and thermal inflows
(outflows) associated with possible emergence (disappearance) of p-
particles as a result of ionization, recombination, etc. For the general
form of (d fp/dt)col, calculating the frictional heating is not an easy
task. Below,we use two different kinds of further approximation: one
is more appropriate for heavy single-charged ions (Section 3), while
the other is suitable for light electrons (Section 4).

Before proceeding further, we emphasize that, in general, no
truncated chain of moment equations is closed because, starting
from the momentum equation, every further moment equation
involves higher-order moments. To allow the moment equation
chain to be rigorously truncated, the most appropriate is the near-
equilibrium case when the particle distribution function, along with
its small perturbations, remains reasonably close to Maxwellian
(Dimant and Sudan, 1995a; Kissack et al., 1995). This case allows
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describing the particle kinetics using a restricted number of spatially
and temporarily varying parameters, such as the particle density,
temperature, and average drift velocity (5-moment equations). In
real situations, however, this is not always the case. That is why
inconsistencies in the fluid description often happen (e.g., García-
Colín et al., 2004;Velasco et al., 2002).Higher-order sets of equations
allow more serious deviations from Maxwellian but still have a
restricted number of additional fluid parameters. Fluid models
that include restricted numbers of equations using approximate
closures, such as the 5-, 8-, or 13-momentmodels (Schunk andNagy,
2009), can be successfully employed in situations when there are no
sharp gradients, extreme fields, abundant superthermal particles, or
extremely large temperature differences between different species
of the colliding particles. These conditions are usually met at the
equatorial electrojet. If they cannot be met, then the adequate
description of plasma dynamics may require a direct solution of the
corresponding collisional kinetic equation.

3 BGK collision kinetics and the fluid
model for ions

For ionospheric ions, an accurate fluid theory has been
developed by several authors who derived the fluid-model equations
using a rigorous collisional kinetic approach; see, for example,
Schunk and Walker (1971), Schunk and Walker (1972), and St-
Maurice and Schunk (1977); for references, see Shkarofsky et al.
(1966), Gurevich (1978), and Schunk and Nagy (2009). This theory
results, for example, in a comprehensive set of 13-moment fluid
equations that contain many transport terms (Schunk and Nagy,
2009). For typical plasma processes in the E-region ionosphere,
however, such comprehensive equations are often excessive, and a
much simpler set of 5-moment ion equations would usually suffice.

The goal of this section is to demonstrate that the derivation of
the 5-moment ion fluid equations that have been successfully used,
for example, for the treatment of the E-region instabilities (Dimant
andOppenheim, 2004; Kovalev et al., 2008;Makarevich, 2020), does
not require a full and rigorous kinetic theory. This set of equations
can be derived from the ion kinetic equation, where the complicated
Boltzmann collision integral is replaced by amuch simpler andmore
practical model discussed below. Under certain conditions, usually
fulfilled automatically in the E-region ionosphere, the resultant 5-
moment ion equations provide quantitatively accurate frictional
heating and cooling terms.

In the lower-E/upper-D regions of the ionosphere (or similar
media), one can usually neglect Coulomb collisions between the
charged particles, compared to their much more frequent collisions
with the dominant neutrals. For the ion-neutral collision integral,
one can use the simple BGK model (Bhatnagar et al., 1954).
Disregarding ionization-recombination processes and assuming in
the general case a neutral wind with the local velocity V⃗n, for the
laboratory frame of reference, we write the simplest BGK collision
operator as

(
d fi
dt
)
BGK

col
= νi ( feff − fi) , (16)

where fi is the real ion distribution function (IDF), while feff is
a fictitious Maxwellian function, normalized to the locally varying

ion density, ni( ⃗r, t), with the constant neutral temperature Tn:

feff (v⃗i, ⃗r, t) ≡ ni ( ⃗r, t)(
mi

2πTn
)
3/2

exp(−
mi(v⃗i − V⃗n)

2

2Tn
). (17)

This simple linear algebraic form of themodel collision operator
has also been called the “relaxation collision model” (St-Maurice
and Schunk, 1973; St-Maurice and Schunk, 1974; St-Maurice and
Schunk, 1977), the “Krook collision model” (Schunk and Nagy,
2009), the “model integral of elastic collisions” (Aleksandrov et al.,
1984), and by some other terms. Note that the BGK collision
model noticeably exaggerates the IDF distortion effect (Schunk
and Nagy, 2009; Koontaweepunya et al., 2024). This happens for
several reasons (Schunk and Nagy, 2009); in particular, because the
BGKoperator does not include any collisional angular scattering and
hence does not include particle redistribution in the velocity space
between the preferred direction of the imposed electric field and the
two perpendicular directions.

For the BGK model, it is essential that the ion-neutral collision
frequency, νi, is assumed constant. The standard justification
for this is that at sufficiently low energies, the ion-neutral
collisions are dominated by the long-range polarization interaction
(Dalgarno et al., 1958; Schunk and Walker, 1971; Schunk and
Walker, 1972), which results in the approximate constancy of νi
(“Maxwell molecule collisions”) (Schunk and Nagy, 2009). The
model collision term in the form of Equation 16 conserves the local
number of particles. Applied to both ions and neutrals, the BGK
model also conserves the total momentum of the two colliding
particles and, after some adjustment to the temperature in feff for
unequal masses of the colliding species, conserves the total energy
of the colliding particles as well (Aleksandrov et al., 1984).

Generally, the BGK model does not follow from Boltzmann’s
collision integral under any rigorous approximations, although this
becomes possible under certain conditions (St-Maurice and Schunk,
1977). This model is a reasonable and simple fit for single-charged
ions that collide, predominantly elastically, with the surrounding
neutrals of the same (or close) mass. Recent 2-D hybrid computer
simulations of the Farley–Buneman instability that used this kinetic
equation for ions (Kovalev et al., 2008) have demonstrated a good
agreement with similar results of the more accurate fully kinetic
PIC or hybrid simulations (Janhunen, 1995; Oppenheim et al.,
2008; Oppenheim et al., 1996; Oppenheim et al., 1995; Oppenheim
and Dimant, 2004; Koontaweepunya et al., 2024). There are two
major reasons why this oversimplified model works well for the
ion-neutral collisions typical for the lower ionosphere. First, within
a 1000 K temperature range, the ion-neutral collision frequency
is almost velocity-independent (Schunk and Nagy, 2009). Second,
collisions of ionswith neutral particles of the sameor closemass have
roughly equal rates of the average momentum and energy transfer,
described by the single parameter νi. Both these factors distinguish
dramatically the ion-neutral collisions from the electron-neutral
ones, as we discuss in the following section.

For the distribution function of single-charged positive ions,
fi(v⃗i, ⃗r, t), the BGK kinetic equation in the conservative (divergence)
form is given by

∂t fi +∇ ⋅ (v⃗i fi) + ∂v⃗i ⋅ [(
eE⃗
mi
+Ωiv⃗i × b̂) fi] = νi ( feff − fi) . (18)
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In this section, we derive the 5-moment ion fluid model
equations for ni = ∫ fid

3vi, V⃗i = ⟨v⃗i⟩ = ∫ v⃗i fid
3vi, and Ti =

mi ⟨δv⃗2i ⟩/3 = (mi/3ni)∫δv⃗2i fid
3vi, where δv⃗i ≡ v⃗i − V⃗i.

Following the steps described in the preceding section
and assuming the laboratory frame of reference, we
obtain from Equation 18 the ion continuity, momentum, and
energy-balance equation,

∂tni +∇ ⋅ (niV⃗i) =
Dini
Dt
+ ni∇ ⋅ V⃗i = 0, (19)

mini
DiV⃗i

Dt
=mini(

eE⃗
mi
+ΩiV⃗i × b̂)−∇ ⋅Pi − νinimi (V⃗i − V⃗n) ,

(20)

3ni
2

DiTi

Dt
−Ti

Dini
Dt
+∇ ⋅ ∫miδv⃗i

δv2i
2

fid
3vi +Πiαβ∇αViβ

=
νimini(Vi − V⃗n)

2

2
+ 3
2
νini (Tn −Ti) . (21)

The two last terms in the LHS of Equation 21 describe
heat conduction. Generally, the thermal flux is given by the
integral term, and Πiαβ should be determined from higher-order
moment equations. In the strongly collisional lower ionosphere,
assuming sufficiently long-wavelength processes (so that the fluid
theory is applicable), these two terms can usually be neglected.
This makes Equations 19–21 a closed set of the 5-moment
equations for the ion density, ni, temperature, Ti, and the three
components of the ion drift velocity, V⃗i. We should bear in mind,
however, that the IDF may deviate from an isotropic Maxwellian
function so that Ti is an effective temperature determined in the
general case by Equation 4 (substituting p = i). For example, if
the ion velocity distribution is approximated by a bi-Maxwellian
function∝ exp [−(mi/2)(V2

⊥/T⊥ +V
2
‖/T‖)], then Ti = (2T⊥ +T‖)/3.

The first term in the RHS of Equation 21 describes the total
rate of ion frictional heating. This term equals the rate that follows
from a more detailed kinetic theory (Schunk and Nagy, 2009),
νimimnni(Vi −Vn)2/(mi +mn), providedmi =mn. Coincidentally, in
the E region, the masses of the major ions (NO+ and O+2 ) and
neutrals (N2 and O2) are indeed close to each other, mi ≃mn ≃
30 amu. Thus, in the E-region ionosphere, the BGK model of
ion-neutral collisions should correctly describe the ion frictional
heating so that one can successfully use it for ions Equations 19–21.
The applicability of the fluid equations is better under moderate
conditions when the IDF is reasonably close to Maxwellian so that
their closing is better justified. Such moderate conditions mostly
occur at the equatorial E region rather than at the high-latitude
ionosphere, especially during the events of the strongly disturbed
magnetosphere–ionosphere–thermosphere system.

To conclude this section, note that closed Equations 19–21
are mostly applicable to moderately disturbed conditions when
the IDF is reasonably close to Maxwellian; otherwise, more
equations for the higher-order moments are required. For strongly
perturbed conditions, however, even higher-order closed sets
of fluid equations are not fully applicable because, unlike the
original kinetic Equation 18, any closed fluid equations do not
include the important kinetic effect of Landau damping and
hence they have limited applicability, for example, to describe the
Farley–Buneman instability in the short-wavelength range of the

turbulence spectrum where the wavelengths become comparable to,
or shorter than, the ion mean free path.

4 Collisional kinetics and the fluid
model for electrons

This section is the central piece of this paper. It derives the
electron-fluid equations from an approximate but rigorous kinetic
theory based on characteristics of the actual physical conditions
and wave processes in the E-region ionosphere. For electrons, the
oversimplified BGK collision model (employed above for ions)
can apply only to plasma processes whose characteristic wave
frequencies substantially exceed the electron collision frequencies.
However, for low-frequency processes in the highly collisional E/D-
region ionosphere, where the opposite condition usually holds (see
Dimant and Sudan, 1995a, and references therein), the electronBGK
collision model is totally unsuitable. The main reason is that the
rate of electron-neutral collisional exchange of momentum, νe, is a
few orders of magnitude larger than the corresponding rate of the
energy exchange, δenνe (Gurevich, 1978). This means that during
collisions with heavy neutrals, the light electrons scatter over angles
in the velocity space much more frequently than they change their
kinetic energy. In low-frequency processes of the lower ionosphere,
this leads to an efficient isotropization of the electron distribution
function (EDF). The BGK model, however, completely ignores this
feature. In addition, the BGK model does not cover the clearly
pronounced velocity dependence of the kinetic electron-neutral
collision frequency νe(ve) (Gurevich, 1978; Schunk and Nagy, 2009).
This velocity dependence plays an important role in some E-region
instabilities (see, e.g., Dimant and Sudan, 1997, and references
therein), and it modifies the instability and wave characteristics.

4.1 General kinetic approach and
momentum equations

In a weakly ionized plasma of the lower ionosphere, collisions
of an electron with other charged particles, including other
electrons, νee,νei, are usually negligible compared to electron-neutral
collisions, νe ≈ νe. At altitudes above 75 km, strongly magnetized
electrons, involved in low-frequency processes with ω≪ νe ≪
Ωe, have an almost isotropic velocity distribution whose speed
dependence can deviate significantly from Maxwellian. For such
processes, an adequate kinetic description is by expanding the
velocity distribution function fe( ⃗r, t, v⃗e) in Legendre polynomials
with respect to angles in the velocity space (Shkarofsky et al., 1966;
Gurevich, 1978; Khazanov, 2011). To the first-order accuracy with
respect to a small anisotropy of fe( ⃗r, t, v⃗e), one can represent the
total EDF as a combination of the major isotropic part, F0( ⃗r, t,ve),
where ve ≡ |v⃗e|, and a relatively small directional part determined
by a single vector-function ⃗f1( ⃗r, t,ve) (Gurevich, 1978; Dimant and
Sudan, 1995a),

fe ( ⃗r, t, v⃗e) ≈ F0 ( ⃗r, t,ve) +
⃗f1 ( ⃗r, t,ve) ⋅ v⃗e

ve
= F0 + | ⃗f1|cos ϑ, (22)

where ϑ is the angle between ⃗f1 and v⃗e. Here, we assume that
| ⃗f1| ≪ F0, along with similar inequalities for the speed derivatives
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(see below).Themajor isotropic part, F0, determines scalar velocity-
averaged characteristics of the electron fluid, such as the electron
density and temperature, while the small directional part, | ⃗f1|cos ϑ,
determines vector characteristics, such as the average drift velocity
and various fluxes. The other (neglected) terms of the expansion
in Legendre polynomials are smaller than the two highest order
terms by positive powers of the small parameter δen, which is
discussed in the following paragraph. In this approximation, any
higher-order anisotropies of the EDF are neglected. For electrons
in the highly collisional E-region ionosphere, the higher-order
anisotropies usually play no role (see below).

The assumption of | ⃗f1| ≪ F0 is well justified for electrons within
the kinetic energy range Ee < 2 eV (ve < 1000 km/s). This range
usually includes both the thermal bulk of electrons (Ee ≲ 0.03 eV
for the cold E-region ionosphere) and a significant fraction of
superthermal electrons. In this energy rate, the ratio of the mean,
mostly inelastic, collisional energy loss to that of the predominantly
elasticmomentum loss, δen(ve)νe(ve)/νe(ve) = δen(ve), is usually quite
small: δen(ve) ∼ (2−−4) × 10−3 (Gurevich, 1978) (although it is two
orders of magnitude larger than the corresponding purely elastic
rate, δelasen ≈ 2me/mn). The ratio of | ⃗f1| to F0 is typically ∼ √δen so
that the directional part of the EDF in Equation 22 turns out to be
automatically small compared to the major isotropic part, | ⃗f1| ≪
F0. However, this raises the following question. If there were an
imposed DC electric field, E⃗⊥B⃗, so strong that the corresponding
E⃗× B⃗-drift velocity, V⃗dr = E⃗× B⃗/B2, would be comparable to the
mean electron thermal speed, veTh = (Te/me)1/2, then the condition
of | ⃗f1| ≪ F0 would become invalid. As a matter of fact, however,
such a strong field would heat electrons so much that the heated
thermal velocity veTh would automatically exceed V⃗dr. If the new
electron temperature is≲ 23,000K (corresponding to 2 eV), then the
approximation given by Equation 22 still holds. This is a significant
difference of electrons from heavy ions with δin ≃ 1.

If there was an imposed electric field, E⃗, and no magnetic field,
then the electron distribution function f(v⃗e) would depend only on
the electron speed ve and the angle between the electron velocity
v⃗e and the only preferred direction, that is, the direction E⃗. If one
expands the EDF in the orthogonal polynomialswith respect to cos ϑ
[see, for example, Equation (2.63) in Gurevich (1978)] and applies
this expansion to the electron kinetic equation with the Boltzmann
collision operator, then this will form an infinite chain of coupled
equations for the corresponding terms of expansion, fn.

Based on the smallness of the parameter δen(ve), one
can restrict the entire expansion to the first two Legendre
polynomials, 1 and cos ϑ, that is, to the approximation given
by Equation 22. The kinetic equation with the general electron-
neutral collision operator, (d fe/dt)coll, leads to the two coupled
equations for F0(ve, ⃗r, t) and ⃗f1(ve, ⃗r, t) (Gurevich, 1978; Dimant and
Sudan, 1995a).

∂tF0 +
ve
3
∇ ⋅ ⃗f1 −

e
3mev

2
e

∂
∂ve
(v2e E⃗ ⋅ ⃗f1) = S0, (23a)

∂t ⃗f1 −Ωeb̂× ⃗f1 + ve∇F0 −
eE⃗
me

∂F0
∂ve
= S⃗1, (23b)

where

S0 ≡
1
2
∫
1

−1
(
d fe
dt
)
col
d (cos ϑ) , S⃗1 ≡

3
2
∫
1

−1
(
d fe
dt
)
col

⃗f1
| ⃗f1|

cos ϑd (cos ϑ) (24)

(note that the expressions for S0,1 in Dimant and Sudan
(1995a) missed the correct normalization factors). Bearing in mind
moderately fast wave processes, τ−1rec ≪ ω≪ νe, where τrec is an
effective recombination lifetime at a given altitude, we will ignore
ionization-recombination processes, as we did above for the ions.
The kinetic description of electrons based on Equation 23a differs
dramatically from any kinetic description based on the BGK
collision model.

The theoretical approach leading to Equation 23a, b is explained
in Gurevich (1978), Sect. 2.2.1. Here, we only outline it, starting
from the simplest case of a totally unmagnetized plasma, B⃗ =
0, where, in addition to that, all spatial gradients are directed
parallel to E⃗. In this case, the only preferred direction is parallel
to E⃗ so that the EDF fe at a given location, ⃗r, at a given time,
t depends only on the electron speed ve and the polar angle ϑ
between v⃗e and the preferred direction. Expanding the angular part
of fe(ve,ϑ, ⃗r, t) in the Legendre polynomials Pk(x) as fe(ve,ϑ, ⃗r, t) =
∑∞k=0Pk(cos ϑ) fk(ve, ⃗r, t) [see Equation (2.63) in Gurevich (1978)],
substituting this expansion into the electron kinetic equation
with the Boltzmann collision operator where only the electron-
neutral collision component matters, and using the orthogonality
of the Legendre polynomials Pk(x), one obtains an infinite chain
of coupled equations for fk(ve). Using the conditions discussed
above [and analyzed in more detail in Gurevich (1978)], one can
cut the expansion in Pk(cos ϑ) and the resultant infinite chain of
equations to only the two first terms, f0,1, corresponding to F0 and
| ⃗f1|cos ϑ in our Equation 22.

When the magnetic field B⃗ is present and spatial gradients
are arbitrarily directed, the situation is more complicated because
there is no single preferred direction. However, because electrons
are highly gyrotropic due to the fast Larmor rotation (in the
perpendicular to B⃗ plane) and are prone to fast collisional scattering
(in all directions), their velocity distribution remains mostly
isotropic with only a small directional part. It is natural to assume
that there is always a direction, ⃗f1/| ⃗f1|, around which the small
angular-dependent part of the distribution function is almost axially
symmetric and is proportional to ⃗f1 ⋅ v⃗e. Unlike the unmagnetized
case discussed above, this direction is not necessarily fixed but may
be ve-dependent and vary with ⃗r, t. Restriction of the entire EDF
to the ansatz given by Equation 22 reduces the electron kinetic
equation with the Boltzmann collision operator to Equation (2.74)
in Gurevich (1978), that is, to our Equations 23a, b. The unknown
vector ⃗f1 is determined by solving the vectorial differential equation
given by Equation 23b. Needless to say, the directional part of
the electron velocity distribution ∝ ⃗f1, that is, the second term in
the RHS of Equation 22, always remains scalar.

Fluid equations based on Equations 23a, b, usually implying
a nearly Maxwellian velocity distribution, have been successfully
explored by a number of researchers [see, e.g., Gurevich (1978),
Dimant and Sudan (1995a), and references therein]. However, the
formofmajor fluid equations presented inGurevich (1978), Chapter
5, does not clearly show the basic structure of generic Equations 9
and 14 or similar ions Equations 20 and 21. By this, we mean that
Gurevich’s equations show neither explicit adiabatic heating and
cooling nor frictional heating ∝ V2

e,i. Adiabatic terms proportional
to (γe,i − 1) in Gurevich (1978) Equations (5.3) and (5.4) and the
corresponding terms in the following equations appear to have been
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introduced “by hand” and are actually extraneous. One can verify
that these adiabatic terms have already been implicitly distributed
among other terms of the temperature balance equations within the
corresponding fluxes given by Equations (5.8)–(5.11) in Gurevich
(1978) so that they are accounted for in Gurevich (1978) Equations
(5.3)–(5.4) twice.

The explicit adiabatic terms show up naturally in the kinetic
approaches based on small perturbations of the distribution
function shifted by the average particle drift velocity. These
approaches differ from those based on perturbations of the
non-shifted velocity distribution, as in Equation 22, resulting in
Equations 23a, b. For relatively small drift velocities, however, the
two different approaches should yield the same results. Below,
we demonstrate that the kinetic approach based on Equation 22
and Equations 23a, b reproduces the electron-fluid equations in
a rigorous and natural way with the correct adiabatic heating
and cooling, frictional heating, etc. We will also calculate kinetic
corrections associated with the general velocity dependence of the
electron-neutral collision frequency and non-Maxwellian velocity
distribution. The Supplementary Appendix contains details of these
calculations.

In accord with the low-frequency condition of ω≪ νe ≪Ωe,
we neglect in Equation (23b) the electron inertia term ∂t ⃗f1 and
use a standard approximation S⃗1 ≈ −νe(ve) ⃗f1 (Gurevich, 1978;
Dimant and Sudan, 1995a). The latter follows from the Legendre
polynomial expansion of the Boltzmann operator if we completely
neglect the electron collisional energy losses and take into account
only the angular scattering. This procedure is explained, for
example, in Gurevich (1978), Section 2.2.2. This approximation
allows us to close this set of equations in a simple way. As a
result, we obtain

− eE⃗
me

∂F0
∂ve
−Ωeb̂× ⃗f1 + ve∇F0 = −νe (ve) ⃗f1. (25)

Resolving this vector equation with respect to ⃗f1, we obtain

⃗f1 (ve) = − N(ve) ⋅ K⃗F0, (26)

where the kinetic electron mobility tensor N(v) and the
differential vector operator K⃗ are given by

N(ve) ≈

[[[[[[[[

[

νe (ve)
Ω2

e

1
Ωe

0

− 1
Ωe

νe (ve)
Ω2

e
0

0 0 1
νe (ve)

]]]]]]]]

]

, (27)

K⃗ ≡ ve∇−
eE⃗
me

∂
∂ve
. (28)

Here and elsewhere, we neglect second-order small terms ∼
ν2e compared to Ω2

e and represent all tensors in the matrix form
for the Cartesian system x̂, ŷ, ̂z with the ̂z-axis along B⃗. We can
write Equations 26 and 27 explicitly in terms of the parallel (‖) and
perpendicular (⊥) to B⃗ components as

f1‖ = −
1

νe (ve)
K‖F0, ⃗f1⊥ = −(

νe (v) K⃗⊥
Ω2

e
+ b̂
Ωe
× K⃗⊥)F0, (29)

where b̂ = ̂z is the unit vector along B⃗. The spatial derivatives
in Equation 26 or 29 express the drift-diffusion approximation in

the collisional kinetic theory, while the velocity derivatives describe
electron energy variations caused by the electric field E⃗.

Now, we turn to the term S0 in the RHS of Equation 23a.
When using the approximate form for the term S⃗1, we implied
above that the collisional losses of the electron energy had been
totally neglected. Calculation of the k-th degree term of the
collision operator Sk involves an integration over the angle ϑ with
the integrand proportional to [1− Pk(ϑ)] (Shkarofsky et al., 1966;
Gurevich, 1978). This integration works nicely for all k ≥ 1, but for
S0 (P0(ϑ) = 1), it yields 0. This means that in order to calculate
the term S0, one needs better accuracy by taking into account the
small collisional energy losses. Using proper Taylor expansions, such
calculation yields a Fokker–Planck-like expression (Shkarofsky et al.,
1966; Gurevich, 1978)

S0 =
1
2v2e

∂
∂ve
[v2eδenνe(veF0 +

Tn

me

∂F0
∂ve
)], (30)

where the parameter δen(v) describes the average fraction of energy
lost by an electron with speed v during one electron-neutral
collision. As a result, we obtain (Dimant and Sudan, 1995a)

∂tF0 +
1
3v2e

K⃗ ⋅ (v2e ⃗f1) =
1
2v2e

∂
∂ve
[v2eδenνe(veF0 +

Tn

me

∂F0
∂ve
)]. (31)

Expressing here ⃗f1 in terms of F0 via Equation (26) or (29), we
obtain a closed kinetic equation for the major isotropic distribution
function, F0( ⃗r, t,v). Its solution, with the use of Equation (26) or
(29), provides both parts of the distribution function so that its
scalar and vector moments can be calculated by a straightforward
speed integration. Using the standard expressions for lowest-order
moments of the distribution function, such as the particle density,
mean drift velocity, and temperature (see Equations 2–4) for the
approximate electron velocity distribution given in the neutral frame
of reference by Equation 22, after the integrations over the phase
space angles, d3ve = 2πv2edved(cos ϑ), we obtain

ne ≈ 4π∫
∞

0
F0v

2
edve, V⃗e ≈

4π
3ne
∫
∞

0
⃗f1v

3
edve, Te ≈

4πme

3ne
∫
∞

0
F0v

4
edve. (32)

A direct solution of the kinetic Equation 31 would
be the most accurate and general way of describing the
electron behavior (Dimant and Sudan, 1995a). However, the goal of
this paper is to obtain a set of the lowest-order fluid equations in
order to properly describe E-region plasma processes, even if this
set of equations is not fully closed due to possible deviations of the
EDF fromMaxwellian.

As mentioned above, we start from particle conservation. Using
the definitions of Equation 32 and integrating Equation 31 over ve
with the weighting function 4πv2e , we obtain the standard electron
continuity equation,

∂tne +∇ ⋅ (neV⃗e) = 0. (33)

The conventional way of obtaining the momentum equation
is by integrating the kinetic equation with the weighting function
mpv⃗p, as in obtaining Equation 7. For the light electrons, however,
we have already reduced the original kinetic equation to the
two coupled equations, where the second one, Equation 25, has a
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vectorial form. Integrating it with the weighting function 4πv3e/(3ne)
and applying the integration by parts, we obtain

eE⃗
me
−Ωeb̂× V⃗e +

∇(neTe)
mene
+ 4π
3ne
∫
∞

0
⃗f1νev

3
edve = 0, (34)

This equation describes the momentum balance of the
inertialess electron fluid. Equation 34 includes the Lorentz
force, pressure gradient, and collisional friction. As we show
in the Supplementary Appendix, in the general case of a
velocity-dependent collision frequency, νe(v), the last term in
the LHS of Equation 34, in addition to the collisional friction, may
also include an anisotropic addition to the total pressure gradient.

Taking a scalar product of Equation 34 with meneV⃗e, we obtain
the expression

V⃗e ⋅ [neeE⃗+∇(neTe)] +
4πme

3
V⃗e ⋅∫
∞

0
⃗f1νev

3
edve = 0. (35)

This expression represents the total work done by the electric field
and other forces on the average electron flow. We will use this
expression below.

Now, we derive an equation describing the total energy
balance. Integrating Equation 31 with the weighting function
2πmev

4
e , we obtain

∂t(
3neTe

2
)+

2πme

3
∇ ⋅ ∫
∞

0
⃗f1v

5
edve + neeE⃗ ⋅ V⃗e

= − 2πme∫
∞

0
(veF0 +

Tn

me

dF0
dve
)δenνev3edve. (36)

Using Equation 35, we eliminate from Equation 36 the work
done by the electric field on the average flow, neeE⃗ ⋅ V⃗e, and obtain

∂t(
3neTe

2
)− V⃗e ⋅∇(neTe) +

2πme

3
∇ ⋅ ∫
∞

0
⃗f1v

5
edve

=
4πme

3
V⃗e ⋅ ∫
∞

0
⃗f1νev

3
edve − 2πme∫

∞

0
(veF0 +

Tn

me

dF0
dve
)δenνev

3
edve. (37)

Here, we have rearranged the terms between the two sides of
the equation in such a way that all terms proportional to the
collision frequency remain in the RHS while all other terms are
put in the LHS. After so doing, it may be tempting to interpret
the first term in the RHS of Equation 37 as the electron frictional
heating. In the general case of velocity-dependent νe(v), however,
this interpretation would not be perfectly accurate, as we show in
the Supplementary Appendix and Section 4.3 below.

Equation 37 is not yet the final form of the thermal-balance
equation. It needs to be further transformed into a form similar
to Equation (14) or (21). In Supplementary Appendix, we develop
this recast for the general case of velocity-dependent νe(v). However,
we proceed with the simplest model of constant νe and δen below.
This model is inaccurate for electron-neutral collisions of the lower
ionosphere (Gurevich, 1978; Schunk and Nagy, 2009), but it will
allow us to clarify basic ideas of closing Equation 37.

4.2 Constant collisional parameters

For constant νe and δen, using the definitions of Equation 32 and
integrating the last term of Equation 37 by parts, we obtain

∂t(
3neTe

2
)− V⃗e ⋅∇(neTe) +

2πme

3
∇ ⋅ ∫
∞

0
⃗f1v

5
edve

=meνeneV
2
e +

3
2
δenνene (Tn −Te) , (38)

Using Equation 26, we rewrite the third term in the LHS as

2πme

3
∇ ⋅ ∫
∞

0
⃗f1v

5
edve = −

5
2me
∇ ⋅N ⋅ [∇(λneT2

e) + neTeeE⃗] . (39)

Here, the double-dot product involving a tensor means ∇ ⋅N ⋅
∇…=∑3α,β=1∂xα(Nαβ∂xβ…) (and similarly for ∇ ⋅N ⋅ E⃗), and we have
also introduced a dimensionless parameter of order unity, λ,

λ ≡
4πm2

e

15neT
2
e
∫
∞

0
v6eF0dve =

me∫
∞

0
v6eF0dve

5Te∫
∞

0
v4eF0dve

=
3(∫
∞

0
F0v

2
edve)∫

∞

0
F0v

6
edve

5(∫
∞

0
F0v

4
edve)

2 . (40)

Note that for the Maxwellian isotropic part of the EDF,

F0 = ne(
me

2πTe
)
3/2

exp(−
mev

2
e

2Te
), (41)

we have λ = 1.
Using Equations 32 and 28, we obtain

V⃗e = −
4π
3ne

N ⋅ ∫
∞

0
v3e K⃗F0dve = −N ⋅ [

eE⃗
me
+
∇(neTe)
mene
]. (42)

Multiplying Equation 42 bymeneTe, we can rewrite it as

−N ⋅ (neTeeE⃗) =meneTeV⃗e +N ⋅Te∇(neTe) .

This relation allows us to eliminate the electric field from
Equation 39 so that the latter becomes
2πme

3
∇ ⋅ ∫
∞

0
⃗f1v

5
edve

= 5
2me
∇ ⋅ {N ⋅ [(1− λ)T2

e∇ne − (2λ− 1)neTe∇Te] +meneTeV⃗e} .

(43)

Using Equations 33 and 43, after a simple algebra,

∂t(
3neTe

2
)− V⃗e ⋅∇(neTe) +

5
2
∇ ⋅ (neTeV⃗e)

= ∂t(
3neTe

2
)− V⃗e ⋅∇(neTe) +

5
2
∇ ⋅ (neTeV⃗e)

−
5Te

2
[∂tne +∇ ⋅ (neV⃗e)] =

3ne
2

DeTe

Dt
−Te

Dene
Dt
, (44)

we obtain the sought-for temperature balance equation in a
more standard form,
3ne
2

DeTe

Dt
−Te

Dene
Dt
−∇ ⋅ q⃗e =meνeneV

2
e +

3
2
δenνene (Tn −Te) .

(45)

Here, the electron thermal flux density, q⃗e, is given by

q⃗e =
5Te

2me
N ⋅ [(2λ− 1)ne∇Te + (λ− 1)Te∇ne] = q⃗e‖ + q⃗eP + q⃗eH,

(46)

where its explicit parallel, Pedersen, and Hall components
are given by

q⃗e‖ =
5Te [(2λ− 1)ne∇‖Te + (λ− 1)Te∇‖ne]

2meνe
,

q⃗eP =
5Teνe [(2λ− 1)ne∇⊥Te + (λ− 1)Te∇⊥ne]

2meΩ2
e

,

q⃗eH =
Ωe

νe
(b̂× q⃗eP) =

5Teb̂× [(2λ− 1)ne∇⊥Te + (λ− 1)Te∇⊥ne]
2meΩe

.

(47)
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The two first terms in the LHS of Equation 45, as well as the
similar ones in Equation 14 or (21), describe adiabatic heating
or cooling of the electron fluid, while ∇ ⋅ q⃗e describes the heat
conductivity. Note that the Hall component of q⃗e can contribute to
electron heat conductance only as a quadratically nonlinear effect
because ∇ ⋅ q⃗eH ∝ (∇⊥ne ×∇⊥Te) only if the gradients of ne and Te
are not parallel.

As mentioned above, for Maxwellian F0(ve), we have λ = 1 so
that the term in q⃗e proportional to ∇ne disappears. This fact can
be understood as follows. If the major part of the EDF remains
Maxwellian, then it is determined only by two space-dependent
parameters: the density, ne, and the temperature, Te. If there is
a density gradient but no temperature gradient, then electrons of
all energies will diffuse from denser regions to less dense ones
with no redistribution of the temperature and, hence, with no heat
conductivity.

If the electron velocity distribution deviates from Maxwellian
[this happens, for example, when a low-ionized plasma heated by
strong electric fields is embedded in an abundant cold neutral
atmosphere with a significantly different temperature (Milikh and
Dimant, 2003)], then the situation is more complicated.

The effective electron temperature Te, which is proportional to
the mean electron chaotic energy, can be uniformly distributed,
but the details of the electron energy distribution may differ
significantly in different regions of space. The energy transport is
stronger for electrons with higher energies than it is for lower-
energy electrons. Hence, if there are spatial gradients of high-
energy distribution tails, then more energetic particles provide
stronger energy redistribution. This may make, for example, some
less dense regions to be, on average, more energetic than the denser
regions, even if they initially had equal effective temperatures.
Moreover, it is even possible to imagine a situation when electron
heat is transferred from cooler regions to hotter ones, leading to a
further electron temperature elevation in the latter. This counter-
intuitive but theoretically possible effect should not surprise because
a strongly non-Maxwellian, that is, a strongly non-equilibrium
plasma, cannot be adequately described by conventional equilibrium
thermodynamics.

4.3 Velocity-dependent parameters

In the actual lower ionosphere, the electron-neutral kinetic
collision frequency, νe, and the energy loss fraction, δen, have clearly
pronounced velocity dependencies (Gurevich, 1978; Schunk and
Nagy, 2009). This does not allow νe(ve) and δen(ve) to be factored
out from the integrals in Equations 34–37, making the derivation
of the general momentum and temperature balance equations more
complicated than that described in Section 4.2. Such a derivation is
developed in detail in the Supplementary Appendix, while we only
present the results here. One of the major important outcomes of
these calculations will be simple integral relations for the electron
transport coefficients (see Equations 56–61), assuming not only the
general velocity dependencies of νe but also general non-Maxwellian
isotropic velocity distributions F0(ve).

We note that the velocity dependence of the collisional
frequency, νe(ve), may automatically lead to the non-Maxwellian
shape of the EDF. Indeed, if there is a sufficiently strong electric

field parallel to B⃗, then the EDF becomes a Druyvesteyn kind
(Shkarofsky et al., 1966; Gurevich, 1978). This parallel field should
not necessarily be a DC field, but it can also be, for example, a
turbulent AC field. In particular, such instability-driven turbulent
fields lead to the well-known effect of anomalous electron heating
(AEH) [see, for example, St-Maurice and Goodwin (2021), Zhang
and Varney (2024), and references therein]. When strong AEH
occurs, the EDF inevitably becomes non-Maxwellian, as can be
seen from Figure 1 in Milikh and Dimant (2003). This fact could
also be deduced from comparing the kinetic terms responsible
for the electron differential collisional heating and cooling [see
Equations 18 and 19 in Dimant and Sudan (1995a)]. Electric fields
perpendicular to B⃗ are typically much stronger, but they often
lead to smaller heating and are expected to cause lesser non-
Maxwellian distortions of the EDF. The latter is because the kinetic
heating and cooling terms are both linearly proportional to νe in the
perpendicular direction. If δen has a weak velocity dependence, then
this proportionality partially neutralizes the effect of νe(ve).

When the dominant heating occurs mostly in the direction
parallel to B⃗, it spreads over all angles in the velocity space
due to electron-neutral collisions with strong momentum changes.
These momentum changes are determined by the rate νe, while
the speed changes are determined by the much smaller rate
δenνe. As a result, the EDF becomes close to isotropic, but its
Druyvesteyn-like ve-dependence may deviate significantly from
Maxwellian. Other factors may also cause significant deviations
from a Maxwellian EDF in the E region. These factors include,
for example, some chemical/ionization reactions, photoelectrons,
and electron precipitation. Regarding the latter, we note that even
superthermal particles at a high-energy tail of the EDF can affect
the mean transport coefficients of the entire electron population
(Dimant et al., 2021). Note also that the non-Maxwellian shape of
the EDF has serious implications for the accurate interpretation
of radar measurements, as discussed in Section 2.2 of Milikh and
Dimant (2003).

Now, we proceed with presenting the results. In the general case
of velocity-dependent νe and δen, electron continuity Equation (33)
stays the same.The other twomoment equations have the same basic
structure as Equations (42) and (45), but they contain additional
terms and include many dimensionless factors of order unity listed
in Equations 56–61 below.

The general inertialess expression for the average electron drift
velocity V⃗e is given by

V⃗e = −
1
me

M ⋅ [eE⃗+
∇⊥ (neTe)

ne
+
β‖
α‖

∇‖ (neTe)
ne
], (48)

where

M ≡ 4π
3ne
∫
∞

0

d(v3N (v))
dv

F0dv =

[[[[[[[[

[

αP ⟨νe⟩
Ω2

e

1
Ωe

0

− 1
Ωe

αP ⟨νe⟩
Ω2

e
0

0 0 α‖⟨
1
νe
⟩

]]]]]]]]

]

,

(49)
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FIGURE 1
Fluid model coefficients for the power-law dependent e-n collision frequency, νe(ve) ∝ v2αe .

The tensor N is given by Equation 27, and ⟨⋯⟩e denotes the
velocity average over the major (isotropic) part of the EDF,

⟨⋯⟩e =
4π∫
∞

0
(⋯)F0 (ve)v

2
edve

ne
=
∫
∞

0
(⋯)F0 (ve)v

2
edve

∫
∞

0
F0 (ve)v2edve

. (50)

The electron current density is given by ⃗je = eneV⃗e so that
the electric conductivity tensor is given by σe = (nee2/me)M.
The corresponding diagonal terms represent the Pedersen (∝ αP)
and parallel (∝ α‖), while the antisymmetric off-diagonal terms
(∝ 1/Ωe) represent the Hall conductivity.

The general thermal-balance equation is given by

3ne
2

DeTe

Dt
−Te

Dene
Dt

+ 5
2
(
ρ‖ − β‖
α‖
)neTe∇‖ ⋅ V⃗e‖ +(

5ρ‖ − 3α‖ − 2β‖
2α‖

) V⃗e‖ ⋅∇‖ (neTe) −∇ ⋅ q⃗e

= αP⟨νe⟩emene(V
2
e⊥ +

V2
‖

α‖ξ
)− 2πme∫

∞

0
v3eδenνe(veF0 +

Tn

me

dF0
dve
)dve, (51)

where

q⃗e ≡ q⃗eP + q⃗eH + q⃗e‖ = X ⋅
∇Te

Te
+ (X−Λ) ⋅

∇ne
ne
, (52)

is the thermal-flux density with

X =
5neTe

2me

[[[[[[[[

[

χP ⟨νe⟩

Ω2
e

χH
Ωe

0

−
χH
Ωe

χP ⟨νe⟩
Ω2

e
0

0 0
χ‖
⟨νe⟩

]]]]]]]]

]

, (53a)

Λ =
5neTe

2me

[[[[[[[[

[

μP ⟨νe⟩
Ω2

e

λ
Ωe

0

− λ
Ωe

μP ⟨νe⟩
Ω2

e
0

0 0
μ‖
⟨νe⟩

]]]]]]]]

]

. (53b)

The explicit Pedersen, Hall, and parallel components of q⃗e
are given by

q⃗eP ≡
5Te ⟨νe⟩[χPne∇⊥Te + (χP − μP)Te∇⊥ne]

meΩ2
e

,

q⃗eH ≡
5Teb̂× [χHne∇⊥Te + (χH − λ)Te∇⊥ne]

meΩe
,

q⃗e‖ ≡
5Te [χ‖ne∇‖Te + (χ‖ − μ‖)Te∇‖ne]

me⟨νe⟩e
, (54)

χP ≡ 2μP + αP − βP − ρP, χH ≡ 2λ− 1, χ‖ ≡ 2μ‖ − β‖, (55)

In addition to λ defined by (40), Equations 48–55 include

αP ≡
∫
∞

0

d(v3νe(ve))
dve

F0dve

3∫
∞

0
νe (ve)F0v2edve

, α‖ ≡
∫
∞

0

d(v3e/νe(ve))
dv

F0dve

3∫
∞

0

1
νe(ve)

F0v
2dve
, (56)

ρ‖ ≡
(∫
∞

0

d
dve
( v5e
νe(ve)
)F0dve)(∫

∞

0
v2eF0dve)

5(∫
∞

0
v4eF0dve)(∫

∞

0

v2e
νe(ve)

F0dve)
, (57a)

ρP ≡
(∫
∞

0

d
dve
(νe (ve)v5e)F0dv)(∫

∞

0
v2eF0dve)

5(∫
∞

0
v4eF0dve)(∫

∞

0
νe (ve)v2eF0dve)

, (57b)
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βP ≡
(∫
∞

0
νe (ve)F0v4edve)∫

∞

0
F0v

2
edve

(∫
∞

0
νe (ve)F0v2edve)∫

∞

0
F0v

4
edve
, (58a)

β‖ ≡
(∫
∞

0

F0v
4
e

νe(ve)
dve)∫

∞

0
F0v

2
edve

(∫
∞

0

F0v
2

νe(ve)
dve)∫

∞

0
F0v

4
edve
, (58b)

δP ≡
(∫
∞

0
ν2eF0v

4
edve)(∫

∞

0
F0v

2
edve)

2

(∫
∞

0
νeF0v

2
edve)

2
(∫
∞

0
F0v

4
edve)
, (59)

μP ≡
3(∫
∞

0
νe (ve)F0v6edve)(∫

∞

0
F0v

2
edve)

2

5(∫
∞

0
νe (ve)F0v2edve)(∫

∞

0
F0v

4
edve)

2 , (60a)

μ‖ ≡
3(∫
∞

0

F0v
6

νe(ve)
dve)(∫

∞

0
F0v

2
edve)

2

5(∫
∞

0

F0v
2

νe(ve)
dve)(∫

∞

0
F0v

4
edve)

2 , (60b)

ξ ≡ ⟨ 1
νe
⟩

e
⟨νe⟩e =

(∫
∞

0
νe (ve)F0 (ve)v

2
edve)(∫

∞

0
ν−1e (ve)F0 (ve)v

2
edve)

(∫
∞

0
F0 (ve)v

2
edve)

2 . (61)

For constant νe and arbitrary F0(v), we have αP,‖ = ρP,‖ =
βP,‖ = μ = δP = ξ = 1, μP,‖ = λ, χP,H,‖ = 2λ− 1, and M = N so that
Equations 51–54 reduce to Equations 45–47. If, additionally, F0(v)
is Maxwellian, then we have even simpler parameters: μP,‖ = χP,H,‖ =
λ = 1.

In a broad range of electron energies, Ee ≲ 0.3 eV, which usually
includes the entire electron thermal bulk, the velocity dependence
of νe in the lower ionosphere can be approximated by a simple
power-law dependence, νe ∝ v2αe , with α ≈ 5/6 [(Gurevich, 1978),
Sect. 2.3.1, see Fig. 7 there] or, practically to the same or even better
accuracy, with α = 1 (Dimant and Sudan, 1995a). For the general
power-law dependent νe ∝ v2αe with α in the range between 0 and
1 and Maxwellian F0(ve), Equations 56–61 simplify dramatically,

αP = βP = 1+
2α
3
, α‖ = β‖ = 1−

2α
3
,

ρ‖ = μ‖ =
(3− 2α) (5− 2α)

15
, ρP = μP =

(3+ 2α) (5+ 2α)
15

, (62)

μ = δP =
√πΓ (5/2+ 2α)
3Γ2 (3/2+ α)

, ξ = 1− 4α2

sin π(2α+1)
2

= 4α2 − 1
sin π(2α−1)

2

.

The case of α = 1/2 corresponds to hard-sphere collisions. In this
case, the indeterminate expression for ξ yields 4/π ≈ 1.273. For
α = 5/6 (Gurevich, 1978), we have αP = βP ≈ 1.556, α‖ = β‖ ≈ 0.444,
ρ‖ = μ‖ ≈ 0.296, ρP = μP ≈ 2.074, μ = δP ≈ 3.095, and ξ ≈ 2.053. For
α = 1 (Dimant and Sudan, 1995a), all these factors deviate from
unity even further; for example, α‖ = β‖ ≈ 0.333, μ = δP ≈ 3.889, and
ξ = 3. Thus, the quantitative effect of the velocity dependence of
νe(v) is significant and should not be ignored. Figure 1 shows the
coefficients given by Equation 62 for general values of the power-law
exponent α within the physically realistic range 0 ≤ α ≤ 1.

Comparison of the general energy balance Equation 51
with Equation 45 shows that the velocity dependence of the
collision parameters results not only in the more complicated heat

conductivity, frictional heating, and cooling but also in additional
terms associated with the plasma motion and gradients in the
parallel to B⃗ direction (see the two terms in the LHS of Equation 51
that precede −∇ ⋅ q⃗e). It is important that these seemingly
collisionless terms originate entirely from electron-neutral collisions
due to the velocity distribution of νe(v). Formally, these terms
appear because the collision frequencies νe(v) mutually cancel
each other in some fractions while their velocity dependencies still
play a role. Similar effects in the Hall and Pedersen directions are
absent because there is no such canceling. However, the Hall and
Pedersen components hidden within the heat conductivity flux q⃗e
may play an important role, provided there are sharp gradients in
those directions.

Now, we discuss the last (cooling) term in the RHS of
Equation 51. For general velocity-dependent δen(v), but a
Maxwellian distribution function F0 ∝ exp [−mev

2/(2Te)], we
use Equation (32) to reduce this term to

−2πme∫
∞

0
v3eδenνe(veF0 +

Tn

me

dF0
dve
)dve =

3
2
⟨δenv2eνe⟩ene
⟨v2e⟩e

(Tn −Te) .

(63)

For general F0, but constant δen, we can rewrite the cooling term
in Equation 51 as

−2πme∫
∞

0
v3eδenνe(veF0 +

Tn

me

dF0
dve
)dve =

3
2
δen⟨νe⟩ene (αPTn − βPTe) , (64)

where we integrated by parts and used Equations 56 and 58a.
Equation 64 shows that for general non-Maxwellian F0, the cooling
term is not necessarily proportional to the temperature difference
(Tn −Te). However, for the power-law dependent νe ∝ v2αe and
Maxwellian F0, according to Equation 62, we have βP = αP = 1+
2α/3. In this case, the structure of the cooling term proportional
to αP ⟨νe⟩ne matches that of the frictional heating term for a purely
perpendicular field, αP ⟨νe⟩meneV

2
e⊥, as seen from the first term in

the RHS of Equation 51.

5 Discussion

When applying a fluid model for analytic calculations or
simulations, it is important to have the corresponding equations
with accurate parameters applicable to the relevant physical
conditions.These equations andparameters are usually derived from
the kinetic theory, so their accuracy is determined by the accuracy
of the underlying kinetic approach.

Based on two different kinetic approaches, this article derives
the fluid model equations that describe low-frequency plasma
processes in the highly dissipative E-region ionosphere. The
treatment is restricted to collisions of the plasma particles, ions, or
electrons with the neutral molecules only; no Coulomb collisions
are considered. The neglect of Coulomb collisions at the E-
region ionosphere is usually well justified, although sometimes
electron–electron collisions may play a role, resulting in a more
efficient “Maxwellization” of the electron distribution function
(Dimant and Sudan, 1995a). Such Maxwellization makes the fluid
model (as opposed to the pure kinetic theory) more applicable. For
the plasma particle collisionswith neutrals (elastic or inelastic), here,
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we assume the known cross sections relevant for various elastic and
inelastic collisional processes as functions of the colliding particle
velocities. Assuming these known cross sections, we can always
calculate velocity dependencies of the kinetic collision frequencies,
νp(v⃗p) (p = i,e,n). These velocity dependencies of the collisional
cross-sections can be taken from the literature [e.g., for the dominant
electron-nitrogen collisions, see Itikawa (2006), Song et al. (2023),
and references therein]. The resultant fluid model parameters are
expressed in general integral forms through these known velocity
dependencies. For the most important plasma processes, such
as the small-to medium-scale cross-field plasma instabilities (the
thermal Farley–Buneman and gradient drift instabilities), closed 5-
moment multi-fluid models are usually sufficient for the accurate
fluid description. Given the plasma species p, the 5-moment set of
unknowns includes the particle densities (np), temperatures (Tp),
and the three components of the mean drift velocity, V⃗p.

For the ionospheric ions (p = i), we have employed the well-
known and fairly simple BGK collisional model. For the heavy ions,
the applicability of the BGK collision operator can be justified by
the fact that within the thermal bulk and around, the kinetic ion-
neutral collision frequency νin is approximately constant, that is,
velocity-independent; this approximation corresponds to Maxwell
molecule collisions (Schunk and Nagy, 2009). Additionally, the ion
masses in the E-region ionosphere are fairly close to the neutral-
molecule masses, mi ≃mn. As we demonstrate in Section 3, in the
case of mi =mn, the oversimplified BGK model results even in
quantitatively accurate frictional heating and cooling terms; see
the RHS of Equation 21. We should bear in mind, however, that
for sufficiently strong electric field, E ≳miνivTi/e, that is, when
the mean ion drift speed, eE/(miνi), becomes on the order or
larger than the ion thermal speed vTi, the ion distribution function
can be significantly distorted with an appreciable deviation from
Maxwellian (Koontaweepunya et al., 2024). Although the major ion
fluid terms remain valid in this case, the entire 5-moment model
cannot be easily closed, and hence its validity may be questionable.
The factor of strong electric field is usually of importance for the
high-latitude E region under conditions of severe magnetospheric
perturbations (geomagnetic storms or substorms), while at the
equatorial E region, the electric fields are typically much weaker so
that the closed 5-moment ion-fluid model is usually much more
applicable.

The central part of this paper is the derivation of the 5-
moment fluid equations for electrons. For the light electrons, unlike
the ions, the simple BGK model cannot serve even as a crude
approximation. As we explained in Section 4, the reasons for the
total BGKmodel inapplicability are the twomajor facts: (1) themean
rate of the collisional loss of the electron energy ismuch less than the
corresponding loss of the electron momentum so that the electron
behavior cannot be described by a single collisional parameter;
(2) the kinetic collisional frequency νe has a pronounced electron
velocity dependence. The first fact leads to a strong isotropization
of the electron velocity distribution, while the speed dependence
of the electron velocity distribution is effectively decoupled from
the angular dependence in the velocity space. The second fact
leads to noticeable modifications of the electron-fluid coefficients
and even to the occurrence of additional thermo-diffusion terms.
As a result, in the general case, the fluid model coefficients
acquire numerical multipliers whose values are determined by some

integral relations over the entire electron distribution function,
see Equations 52–61. For the Maxwellian function, and especially
for the power-law dependencies of the νe-speed dependence, these
general integral relations reduce to simple algebraic ones, νe(ve) ∝
v2αe ; see Equation 62 and Figure 1. From that figure, we see that some
numerical multipliers can deviate significantly from unity although
remaining in the same order of magnitude. A better knowledge of
these fluid coefficients is important for accurate calculations and
predictions of the physical characteristics of various wave processes.
As our future knowledge of the speed dependence of the kinetic
collision rates becomesmore precise, using themore general integral
relationships obtained here, one can obtain the improved values of
the corresponding fluid model coefficients.

The kinetic approach employed in this paper is based on
the expansion of the electron velocity distribution in Legendre
polynomials (in the velocity space) and keeping the two first terms
of such expansion, see Equation 22: the dominant isotropic part,
F0( ⃗r, t,ve), and a small directional part, | ⃗f1( ⃗r, t,ve)|cos ϑ, where ϑ
is the angle between ⃗f1 and v⃗e, and ve = |v⃗e| is the electron speed.
This approach is analogous to that employed by Gurevich (1978)
[see also Dimant and Sudan (1995a)], although, as we explained
in Section 4.1, Gurevich’s fluid equations for electrons, Gurevich
(1978), Chapter 5, derived through this kinetic approach, differ
from ours. Gurevich’s equations are written in a form that does
not include explicit adiabatic and frictional heating terms. Purely
mathematically, however, these equations might be equivalent to
ours, except for the “adiabatic” terms proportional to (γe,i − 1)
in Gurevich (1978) Equations (5.3) and (5.4). These terms are
extraneous, and their correct equivalent has already been implicitly
distributed within the other terms in Gurevich (1978) Equation
(5.8)–(5.11) and hence included twice (Gurevich, 1978).

An alternative kinetic approach to electron-fluid description is
based on Grad’s method (Kissack et al., 1995; Kissack et al., 1997;
Kissack et al., 2008a; Kissack et al., 2008b). The latter assumes
that only a finite number of parameters characterize the velocity
distribution and also implies that the electron velocity distribution
is reasonably close to Maxwellian. Our approach is much more
general in terms of the ve-dependence, but it restricts the angular
distribution of the EDF to the simplest linear deviation from
the isotropy. This approximation allows calculating vector fluxes
like neV⃗e or energy fluxes (see below), but higher-order tensor
characteristics like an anisotropic pressure, etc., may require an
accuracy beyond its field of applicability. Note, however, that high-
order tensor characteristics for electrons are not expected to be
significant due to the relatively high rate of EDF isotropization
associated with a small value of δen ∼ (2−−4) × 10−3 within the
low-energy electron energy range, Ee ≡mev

2
e/2 < 2 eV (Gurevich,

1978). Note also that under physical conditions when the two
methods are applicable, both techniques provide reasonably close
quantitative results. At the same time, our kinetic approach provides
much simpler, and hencemuchmore practical, algebraic expressions
applicable to various small- and medium-scale E-region processes.

6 Conclusion

Based on relevant physical conditions, we have derived
improved fluid equations for the E-region ionosphere. In this
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derivation, we have used two different approximate kinetic
approaches for the E-region ions and electrons.

For the ions, we have employed the simple BGK collision
operator (Section 3). This resulted in a full 5-moment set of
the continuity, momentum, and energy-balance equations, see
Equations 19–21. Although these equations look conventional, our
derivation has demonstrated that for the E-region ions with almost
equal masses of the ions and neutrals, the BGK collision operator
leads to quantitatively accurate frictional and cooling rates.

The central part of this paper is the derivation of the electron-
fluid equations. For the electrons, the BGK collisional operator is
inapplicable, and we have employed the kinetic approach based
on the expansion of the electron distribution function, fe(v⃗e),
in Legendre polynomials over the angles in the velocity space.
Physical conditions resulting in efficient isotropization of fe(v⃗e)
allowed us to restrict the treatment to the two highest terms
of the Legendre expansion: the dominant isotropic part, F0(ve)
and a small directional part ⃗f1 ⋅ v⃗e/ve. The former is responsible
for calculating the scalar fluid quantities, such as the electron
density and temperature, while the directional part allows the
calculation of the electron flux (or electric current) density. An
important factor in our derivations is the fact that the electron-
neutral collisional frequencies are strongly velocity-dependent.
Assuming these velocity dependencies to be known, we have
derived the full set of the 5-moment equations: the continuity
equation, the momentum equation, and the thermal balance
equation. Because the E-region electrons in all relevant low-
frequency processes are essentially inertialess, the momentum
equation reduces to an explicit expression for the electron mean
drift velocity given by Equation 48.Themost non-trivial result is the
thermal balance equation given in the general case by Equation 51,
where the parameters are given by Equations 40, 56–55. For
the Maxwellian distribution function and the power-law speed
dependence of the electron-neutral collision frequency, νe(ve) ∝
v2αe , the integral relationships for the fluid model parameters
reduce to simple algebraic expressions given by Equation 62; see
also Figure 1.

Comparison of the general energy balance Equation 51with
the corresponding equation for the velocity-independent electron
collision frequency (see Equation 45) shows that the velocity
dependence of the collision parameters results in more complicated
heat conductivity, frictional heating, and cooling, as well as in
additional terms associated with the plasma motion and gradients
in the parallel to B⃗ direction.These terms look collisionless, but they
originate exclusively from the velocity distribution of νe(v). Similar
effects in the Hall and Pedersen directions are inconsequential and
have been neglected. However, one should not neglect the Hall and
Pedersen components in the heat conductivity because the plasma
temperature and density gradients in those directions can be much
sharper than those in the parallel direction.

In this paper, we discuss only the simple 5-moment sets of fluid
equations, although more sophisticated sets of equations, like the
13-moment transport equations, could be used (Schunk and Nagy,
2009). In the highly collisional E-region ionosphere, however, the
need for such complicated fluid equations is questionable because
the difficulties of implementing them may become comparable to,
or even exceed, the difficulties of implementing the more accurate
and comprehensive full kinetic theory.

The results of this paper could be used for a routine
practical analysis when working with actual data. The improved
equations can also serve as a basis for more accurate plasma fluid
computer simulations. In the general case, the applicability of the
closed 5-moment equations is restricted by reasonably moderate
conditions of the equatorial E region. For the high-latitude E-region
ionosphere, an accurate descriptionmay require using a fully kinetic
treatment.
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