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Equatorial Plasma Bubbles (EPBs) are a region of depleted ionospheric densities.
EPBs are known to fluctuate both seasonally and day to day, and have
been linked to changes in solar activity, geomagnetic activity, and seeding
resulting from dynamics occurring at lower altitudes. Here, EPB activity is
investigated over a 15-day period with overlapping coincident ground-based
630 nm oxygen airglow measurements, near-infrared hydroxyl mesospheric
temperature mapper (MTM) measurements, and Rate Of change of Total
Electron Content Index (ROTI) values. The data are compared with the Navy
Global Environmental Model (NAVGEM) reanalysis over the same time period.
It is found that several days with strong EPB activity coincided with the
positive/northward meridional wind phase of the quasi-two-day wave (QTDW)
in the mesosphere. These initial observations indicate correlations of the
QTDW phase and the occurrence rates of EPBs, and suggest a need for
further investigations to assess potential causal relationships that may affect the
variability and prevalence of EPBs.
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1 Introduction

Equatorial plasma bubbles (EPBs) can have significant implications for the state of the
ionosphere as well as ionospheric radio remote sensing and communications (Hysell, 2000;
Sousasantos et al., 2023). While there have been advances over the years in understanding
EPBs, there are still outstanding issues towards understanding both their smaller-scale
mechanisms, global scale modeling, and forecasting (Huba, 2022). EPBs have been known
to vary from day to day (Aa, et al., 2023a), seasonally (Chou et al., 2020; Stolle, et al., 2006),
and with differing geomagnetic activity (Martinis et al., 2005; Abdu, 2012; Carmo et al.,
2023; Amadi et al., 2023). EPB formation occurs most prominently during the hours after
sunset, when a steep gradient in electron density forms contributing to the growth rate of
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the Rayleigh-Taylor (R-T) instability (Sultan, 1996; Huang and
Hairston, 2015; Hudson and Kennel, 1975), ultimately leading to
equatorial spread F (ESF). While the generation of ESF is linked
to this post-sunset time period, the R-T instability is further
triggered by meridional wind gradients in the F-region, which
can change due to a number of factors (Huba and Krall, 2013).
These driving factors that cause EPB seeding include geomagnetic
and solar activity (Adhya and Valladares, 2023; Sori et al., 2021;
Kepkar et al., 2020) and gravity wave (GW) propagation into the
thermosphere and ionosphere (Yokoyama et al., 2019; Chou et al.,
2023; Saha et al., 2022; Takahashi et al., 2009; Fritts et al., 2008;
Singh et al., 1997).

Observations of EPBs and ESF have been made over many
decades via multiple measurement techniques (e.g., Bhattacharyya,
2022, and references therein). Recently, ICON and GOLD satellite
missions have provided insight into EPB variability and generation
(Huba et al., 2021; Karan et al., 2020; Karan et al., 2023; Aa et al.,
2023b; Park et al., 2022). However, EPBs have also been studied with
numerous ground-based instruments (Aa et al., 2019; Haase et al.,
2010; Hysell and Burcham, 1998). The research presented here
uses Rate Of change of Total electron content Index (ROTI) and
630.0 nm oxygen airglow from an all-sky imager to classify the
presence and extent of EPBs. Airglow imaging provides spatial
observations allowing for the 2D study of EPB formation and
evolution (Pautet et al., 2009; Martinis et al., 2009). ROTI has
been used in numerous studies of ESF and EPBs, due to its
correlation with larger-scale plasma irregularities that are associated
with ESF and airglow depletions (Carmo et al., 2023; Lay, 2018;
de Jesus et al., 2020; Rajesh et al., 2022).

The Quasi-Two-Day Wave (QTDW) is a large-scale wave
that is often observed to be westward propagating with a zonal
wavenumber of 3 (Ern et al., 2013; Burks and Leovy, 1986;
Lieberman et al., 2017). The QTDW is caused by the instability
of the summer hemisphere easterly jet, which results in an
amplitude that is most notable in meridional winds in the
mesosphere and lower thermosphere (MLT) region (Singh et al.,
2024). It is typically observed in the summertime hemisphere, and
has been well studied through multiple observations (He et al.,
2021; Craig et al., 1980; Pancheva et al., 2018; Iimura et al., 2021;
Walterscheid et al., 2015; Hecht et al., 2010). The QTDW has
been shown to modulate the ionospheric dynamo and electron
density (Yue et al., 2012; Pancheva et al., 2006; Forbes et al.,
2021). Studies also have demonstrated the implications and
interactions of the QTDW with GW dissipation, generation,
and filtering (Ern et al., 2013; Yasui et al., 2021; Jacobi and
Pogoreltsev, 2006). These findings underscore the multiple possible
pathways through which the QTDW may influence the lower
thermosphere and ionosphere. In the observations presented
in this case study, relationships between EPB appearance and
extent are compared with QTDW phase within the MLT region
using ROTI, hydroxyl mesospheric temperature mapper (MTM)
measurements, and 630 nm airglow images, in conjunction
with the Navy Global Environmental Model (NAVGEM)
output. Additionally, these observations are compared with
GW activity in the stratosphere and mesosphere as measured
by the MTM, the Atmospheric InfraRed Sounder (AIRS) and
NAVGEM. These are reported and discussed in the subsequent
Sections 2, 3.

2 Materials and methods

Observations from multiple instruments were used from the
period over 10–24 January 2015. These measurements demonstrate
fluctuations in ROTI and airglow associated with plasma bubbles.
The ionosphere-thermosphere measurements are combined with
hydroxyl MTM measurements in conjunction with NAVGEM
reanalysis data for comparison of coincident dynamics in the
MLT region.

2.1 ROTI observations over south America

The ionospheric irregularities are based on the ROTI (Pi et al.,
1997), which represents a standard derivation of the rate of change
of TEC (ROT):

ROTI = √⟨ROT2⟩ − ⟨ROT⟩2 (1)

where

ROT =
TECt −TECt−δt

δt
(2)

Here, TEC is calculated based on 30 s phase observations at GPS
L1 and L2 frequencies for each satellite-station pair (Inchin et al.,
2023). For this case study, 88 stations extending throughout Chile
are used. The time window of 5 min is chosen to calculate a
variance in Equation 1, using the ROT calculated in Equation 2.
The ROTI values are calculated using GPS receiver sites in South
America using a 40-degree elevation cut off. Figure 1A shows all
data points included south of geographic latitude 15S. Figure 1B
shows data points of ROTI for geographic latitudes south of 30S.This
plot highlights ionosphere fluctuations occurring at more southern
latitudes and furthermore demonstrates a periodic nature to these
southern increased ROTI values. To highlight regions of increased
ROTI, Figure 1C shows the average ROTI value of datapoints
binned in a 1-h period. Most peaks in ROTI occur between 1-
3UT, which corresponds to post-sunset local times as is expected
for the onset of EPB (Sultan, 1996; Huang, 2018; Panda et al.,
2019). However, there are exceptions to post-sunset formation,
and spikes in ROTI are observed after midnight LT in some
instances. During the observation period, this was the case on 23
January. These post-midnight EPBs may be generated by a different
mechanism, but are still frequently observed (Martinis et al., 2005;
Otsuka, 2018; Yizengaw et al., 2013). In the observations presented,
the largest post-sunset ROTI values were observed on 16, 18, 20,
and 24 January, with mean values at these times ranging from 0.1 to
0.18 TECu/min.The lowest ROTI values were on 13 and 15 January,
withmean values ofmeasured ROTI post-sunset around or less than
0.03 TECu/min.

2.2 Optical ground-based observations

Airglow emissions in the thermosphere at 630 nm have
previously been used to study depletions associated with EPBs
near 250 km in altitude (Martinis et al., 2018; Hickey and Martinis,
2018). Data from an imager at the El Leoncito observatory (31.8S,
69.4W) that belongs to the Boston University network of all-sky
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FIGURE 1
Plot (A) shows the ROTI values at all geographic locations south geographic latitude 15S. Plot (B) is the same as plot (A) but for locations south of 30S.
Plot (C) shows the average of ROTI values binned into 1 h time intervals for locations south of 15S (pink) and 30S (blue).

imagers (Martinis et al., 2018) were used to classify the presence of
ESF associated depletions in 630 nm airglow from 10–24 January.
Each hour was classified with an activity level as either (1) a
depletion extending to magnetic latitude 20S or further, (0.5) north
of magnetic latitude 20S, (−1) clear with no visible depletions, or (0)
no data available. Figure 2A summarizes these observations. From
January 16–24, depletions were observed on all nights. The nights

of January 16, 18, and 24 demonstrate depletions extending farthest
southward beyond −20 MLAT. Examples of significant depletions
are shown in Figures 2D, E for January 16 and 18 respectively.
To determine conditions that may contribute to differing EPB on
each day, geomagnetic and solar conditions were compared to
the observations. The SuperMAG Auroral Electrojet (SME) index
(Gjerloev, 2012; Newell and Gjerloev, 2011a; 2011b) is indicative of
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FIGURE 2
Plot (A) shows depletions observed in the 630 nm airglow with a value of one corresponding to depletions extending further south than −20 MLAT, a
value of 0.5 corresponding to depletions north of −20 MLAT, a value of −1 indicating data but no observed depletions, and a value of 0 indicating no
data. Plot (B) shows the SME index indicating the level of auroral activity. Plot (C) shows the F10.7 value indicating solar activity. Plots (D) and (E) show
significant depletions in the 630 nm airglow on 16 and 18 January 2015.

global auroral power and indicates times of increased geomagnetic
activity. This dataset is plotted in Figure 2B, and while fluctuations
exist, there are no notable differences between days of significant
depletions versus no depletions. Additionally, solar activity is
denoted with the F10.7 index and plotted in Figure 2C.These values
show little variation over the period of observations, indicating that
the fluctuations in EPB activity were not necessarily related to solar
activity in this case.

The MTM located at the nearby Andes Lidar Observatory
(ALO) (30.3S, 70.7W) measures temperatures from hydroxyl (OH)
airglow near 87 km in altitude (PugmireJonathan Rich, 2018).These
measurements provide information regarding middle atmospheric
dynamics with regards to both larger-scale temperature averages,
and GW activity down to horizontal wavelengths of 10 km.
Figure 3A shows nightly temperature averages from theMTMusing
5 × 5 zenith pixel averages from each image over the period of
observations, where an apparent 2-day fluctuation in temperatures
from warm to cooler values is observed. A previous comparison
of the MTM OH rotational temperatures (OH T) with other well-
calibrated instruments (an FTIR spectrometer and sodium lidar) has
shown that nightlymean temperatures, referenced to the 87 km lidar
mean temperatures, are accurate to about +/−5K (Pendleton et al.,
2000; Zhao et al., 2005). Further details of the MTM data reduction
and analysis are given in Taylor et al. (1999; 2001). In the study
presented here, the nightly averages show differences of 20–30K

between consecutive nights from 15–24 January 2015. Warmer
values are observed on and before January 15, and on January 17,
19, 21, and 23. Cooler values are observed on January 16, 18, 20,
22, and 24. These fluctuations in temperature indicate the presence
of a QTDW. The three largest histogram ROTI values are indicated
on nights with red dots. The pink dot indicates the fourth largest
histogram ROTI value, which corresponds to an EPB that was not
observed south of −20 MLAT. These four nights coincide with the
coldest average nightly temperatures measured by the MTM, and
suggest a potential correlation in EPB activity with the colder MLT
temperatures.

The nightly standard deviation (stdev) for each night of OH T
measurements from the MTM is plotted in Figure 3B. This metric
provides insight into GW activity present on a given night. A higher
stdev indicatesmore wave activity. Figure 3C shows a zonal keogram
(one line of data taken from the center of the MTM field of view
along the zonal direction plotted for each mapper image over time)
on a lower stdev night, and Figure 3D shows a zonal keogram on a
more active night, withwaves present that have periods ranging from
several minutes to hours. The largest temperature perturbation on
this day appears to be associated with dynamical changes occurring
on the time scale of several hours, indicating a gravity wave that is
likely much larger (100 s km to >1,000 km) than the field of view of
theMTM. On 22 January, a minimum in temperature was observed.
However, EPBs did not extend beyond −20MLAT and ROTI values
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FIGURE 3
Plot (A) data show the nightly average OH temperatures plotted from the MTM. A 2-day fluctuation is apparent in the data from 15–24 January, with
the three nights of largest ROTI values and 630 nm depletions extending below 20S MLAT denoted with red dots, and the fourth largest night of ROTI
values is denoted in pink. These significant nights of EPB activity fall on the nights of coldest average temperatures. Plot (B) shows the nightly stdev of
temperatures, a metric that denotes GW activity. Plots (C) and (D) show zonal keograms of MTM data for lower stdev (15 January) and higher stdev (18
January) nights, allowing for both long period and short period temperature fluctuations associated with GWs to be observed, especially on the more
active night in (D).

were similar to warm phase nights. On this particular night, a lower
OH T stdev was measured, indicating lower GW activity over the
field of view of the MTM.

3 Results

3.1 QTDW influences

Concurrent dynamics in the mesosphere were further
investigated using NAVGEM reanalysis (Eckermann et al., 2018)
that is extended above 100 km via hydrostatic blending with
HWMwinds andMSIS temperature and composition (Inchin et al.,
2023). We note here that the NAVGEM reanalysis only contains
observations up to 100 km and hydrostatically relaxes to MSIS
and HWM climatology above this altitude. Thus, large scale
influences associated with the QTDW are not reflected above
100 km. Figures 4A, B show global meridional (V), and zonal (U),
winds plotted at 85 km in altitude for 18 January 2015, a day with
significant ROTI values and 630 nm airglow depletions.TheQTDW
is primarily manifested inmeridional winds, has zonal wavenumber
of 3, and maximizes near 85 km in altitude, which is illustrated
in Figure 4A. The QTDW is not readily apparent in zonal winds
shown in Figure 4B, though may still have associated zonal wind
amplitude. The phase over South America at the beginning of
18 January is mainly aligned with positive/northward meridional

wind. The QTDW is present from the equatorial region to near
60S. Figures 4C, D show NAVGEM meridional and zonal winds
averaged from 70-45W and 10-30S. Figure 4E shows the fit to
zonal wavenumber three in meridional winds, demonstrating a
strong presence of the QTDW, which increases in amplitude in
the second half of the study period from ∼50 m/s to ∼80 m/s.
Figure 4F shows the frequency-wavenumber spectrum verifying
the presence of the QTDW. Figure 5 shows the ROTI data from
Figure 1C overplotted with meridional winds from Figure 4C to
demonstrate overlap of EPBs with the QTDW. The ROTI values
show the strongest peaks aligning with the diurnal tidal winds near
200 km, expected for post sunset EPBs. Most notably, the strongest
peaks occurred when the meridional winds associated with the
QTDW are at a positive/northward peak near 85 km. This MLT
trend is not observed in zonal winds, which do not have a strong
QTDW signature (Figure 4D).

While post-sunset spikes in the ROTI and depletions in the
630 nm airglow are present on most days, the largest occurrences
(highest ROTI, furthest southward depletions) coincide with the
positive meridional winds associated with the QTDW in the
mesosphere. Additionally, these stronger instances did not show
a correlation with the solar or geomagnetic activity over the 2-
week case study period. This suggests there may be a lower
atmospheric influence associated with stronger EPBs linked to
the meridional wind in the mesosphere. The MTM demonstrated
that these increased times of EBPs corresponded both to colder
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FIGURE 4
Plots (A) and (B) show NAVGEM meridional and zonal winds on 18 January 2015 at 0UT. The meridional wind clearly shows the QTDW signature (zonal
wavenumber 3) in the southern hemisphere. Plots (C) and (D) show the NAVGEM meridional and zonal winds averaged from 45 to 70W and 10 to 30S,
and plotted over altitude and time, which demonstrate a 2-day wave period in the meridional winds. Plot (E) shows the zonal wavenumber three fit of
meridional winds over the 15 day period. Plot (F) shows a frequency-wavenumber plot demonstrating the presence of a QTDW.

FIGURE 5
NAVGEM meridional winds averaged from 45 to 70W and 10 to 30S, and plotted over altitude and time overlapped with ROTI
histograms from Figure 1C. The strongest ROTI values overlap with times where winds near 85–90 km are most strongly positive.

temperatures in the mesosphere and increased GW activity
associated with higher stdev in the temperature measurements.
These stronger events occurred starting January 16 and were
not observed between January 10–15. Additionally, two nights
where no peaks in ROTI were present, and no depletions were

observed in the 630 nm airglow (13 and 15 January) corresponded
to lower MTM OH T standard deviation (lower GW activity),
higher MTM OH T, and southward meridional wind near 85 km
associated with the QTDW during times of lower QTDW global
amplitudes.
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The coincidence of increased EPB activity during times of
increased GW activity in the mesosphere and northward winds
in the mesosphere implies that some aspects of lower atmosphere
dynamics may influence the presence of EPBs. This has been
well established, for instance, with studies of GW seeding of
EPBs (Yokoyama et al., 2019; Taori et al., 2011; Fritts et al., 2008).
Additionally, the influence of theQTDWon the ionosphere has been
previously demonstrated (e.g., Yue et al., 2012). The observations
presented here suggest that the QTDW itself may play a role in
EPB generation, and/or provides a mechanism or environment
for increased GW activity in a manner that may contribute to
EPB seeding.

3.2 GW and interhemispheric influences

The MTM provides OH T data, from which stdev can be
calculated. The OH T stdev indicates wave activity in a manner
that can be compared over the 2-week period of study. The
strongest wave activity observed in the MTM occurred also on days
that overlapped with the coldest temperatures, and also coincided
with the strongest EPB events and ROTI values observed over
the study period. However, the MTM instrument itself is south
of the magnetic equator, and it is expected that EPB seeding
occurs closer to the equator. To gain more insight into links
between variability in the lower atmosphere and ROTI/depletions
in the ionosphere/thermosphere, the AIRS instrument onboard the
NASA Aqua Satellite was used to determine brightness temperature
perturbation variances in the stratosphere near 40 km in altitude,
and is sensitive to GWs with vertical wavelengths of >10 km
(Hoffmann and Alexander, 2009). The variances are associated
with GW activity and were taken over regions in the northern
hemisphere near the polar vortex and over the southern hemisphere
region near ALO and coincident convection, both of which are
potential sources of GWs that can influence the thermosphere.
Additionally, AIRS brightness temperature perturbation variances
near the equator were also included. Figure 6A shows the MTM
standard deviation values to highlight days with higher GW activity
in the MLT for comparison to AIRS data, and Figure 6B shows the
resulting AIRS brightness temperature variances over the period
from 10–24 January 2015. AIRS temperature perturbation variances
in the northern hemisphere overlapping the polar vortex (40–60N)
demonstrate an increase in GW activity that agrees with the
MTM data from near 87 km and 30 S, and both measurements
demonstrate a peak in activity near 18 January. There were no
notable changes in AIRS brightness temperature variances near the
equator. Some variability was observed in the southern hemisphere
region (20-40 S) during this time period.

The standard deviation of temperatures was used from
NAVGEM over several regions during the same time period to
compare to the MTM and AIRS measurements. To obtain the
temperature standard deviations, a sliding 24-h period of data
over 30–50 km in altitude and a longitude range from 45W-70W
was divided into five latitude regions. The resulting standard
deviations are shown in Figure 6C. The stratospheric temperature
standard deviations in the northern hemisphere sectors peak near
12 January and 18 January, and show a minimum in activity near
14 January. These variations are not observed near the equatorial

region or south of the equator in the stratosphere. Note that the
AIRS satellite observations were not sensitive to the peak in activity
on 12 January shown by NAVGEM, which may be due in part
to AIRS variance calculations being sensitive to longer vertical
wavelength GWs and horizontal GW scales <500 km. In Figure 6D,
the same analysis is performed again from 75-95 km and shows
clear decreases in temperature standard deviation near 14 January
for northern, equatorial, and southern latitudes in this longitudinal
sector, implying a link between northern and southern hemispheric
dynamics at altitudes in the MLT region. Note that the polar
region is not included at these altitudes due to semidiurnal tidal
dominance. From 16 January onward, all latitudinal study regions
show some daily variability in temperature standard deviation, but
no significant decreases in temperature standard deviation over the
time period.

These findings imply that mesospheric temperature and
meridional winds associated with the QTDW as well as GW activity
on a larger scale may be linked to EPB activity. The times of lowest
EPB activity in the first half of the observation period overlap with
both decreased GW variances in the stratosphere in the northern
hemisphere, and decreased temperature standard deviation in
the MLT over the equatorial region and southern hemisphere.
Additionally, the two nights of no EPB activity on 13 and 15 January
correspond to southward meridional winds in the mesosphere
associated with a specific phase of the QTDW. During the second
half of the observation period from 16–24 January, post sunset
EPBs (increased ROTI and observed 630 nm airglow depletions)
were observed on every night, with the four strongest nights
overlapping northward meridional winds and coldest temperatures
in the MLT region.

Strong northwardmeridional winds associated with the QTDW,
which allow for southward GW propagation to higher altitudes in
the thermosphere during this time period would have implications
for GW-induced perturbations in the thermosphere. Additionally,
NAVGEM demonstrated a lower standard deviation of temperature
during periods of lower EPB activity, and higher standard deviation
of temperature during times of increased activity overlapping the
region of the polar vortex (20–60N). Disruptions to the polar vortex
in the northern hemisphere have been shown to influence the
QTDW amplitude both at lower latitudes (Ma et al., 2017) and
in the southern hemisphere (McCormack et al., 2009; Ern et al.,
2013). It is also noted in this longitudinal sector (45–70W), the
magnetic equator is located southward of the geographic equator,
∼10S, placing it well within the region of the QTDW. Thus, this
southward position would allow for GW propagation through the
QTDW wind field before reaching the thermosphere, potentially
providing seed perturbations for EPBs near the geomagnetic
equator via GWs generated at lower latitudes in the northern
hemisphere. Furthermore, the presence of the QTDW itself, and
its structure in the upper-mesospheric and lower thermospheric
temperature and winds, may have implications for EPB
seeding as well.

4 Discussion

Anoscillationwas observed in EBPs (ROTI and 630 nmairglow)
over the Western region of South America during 10–24 January
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FIGURE 6
Plot (A) shows the MTM standard deviation of temperatures. The three nights of largest ROTI values and 630 nm depletions extending below 20S MLAT
denoted with red dots, and the fourth largest night of ROTI values is denoted in pink. Plot (B) shows AIRS 4.3 μm brightness temperature perturbation
variances plotted in the latitude sector from 45W-75W. The data are calculated for regions overlapping the polar vortex in the northern hemisphere
(blue line), regions overlapping the equator (gold line), and regions overlapping the ground-based observations in the southern hemisphere (red line).
Plot (C) shows NAVGEM temperature standard deviation for five latitudinal ranges moving over a 24-h window that includes values from 30 to 50 km in
altitude, and 45W–70W in longitude. The stratospheric data indicate a significant dip in wave activity in the northern hemisphere but not in the
southern hemisphere near 14 January. Plot (D) shows the same as Plot (C) but for altitudes from 75 to 95 km, and indicates a dip in wave activity near
14 January in the northern and southern hemispheres.

2015. The strongest peaks in the oscillation coincided with the
northward meridional wind phase of the QTDW in the mesosphere
region near 85 km in altitude. MTM data demonstrated that the
strongest peaks in EPB activity inferred from the ROTI values
and 630 nm airglow depletions coincided with days where the
coldest temperatures were measured near 87 km by the MTM OH
T. These peaks also coincided with higher standard deviations of
MTM OH T and higher AIRS temperature perturbation variances
in the northern hemisphere (40–60N). Additionally, 2 days with
no observed EPBs corresponded to lower GW activity in the
stratosphere observed by AIRS in the northern hemisphere, lower
MTM and NAVGEM simulated temperature standard deviations
in the MLT region, and southward winds and higher temperatures
associated with the QTDW in the mesosphere. These observations
were made over a time period of relatively quiet solar and
geomagnetic activity.

While the period of study is 2 weeks, it indicates the
possible role that the QTDW and interhemispheric coupling,
both in the neutral atmosphere and the ionosphere, may
play in the occurrence and intensity of EPBs. It is important
to note that multiple factors play a role in the prevalence

of EPBs and their generation and seeding mechanisms.
The data presented here demonstrate one aspect of neutral
atmospheric dynamical correlations with EPBs, which can
arise from multiple sources. Further studies are needed
to understand longer term trends associated with the
QTDW and EPBs.
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