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The mesosphere and lower thermosphere (MLT) are transitional regions
between the lower and upper atmosphere. The MLT dynamics can be
investigated using wind measurements conducted with meteor radars.
Predicting MLT winds could help forecast ionospheric parameters, which has
many implications for global communications and geo-location applications.
Several literature sources have developed and compared predictive models
for wind speed estimation. However, in recent years, hybrid models have
been developed that significantly improve the accuracy of the estimates.
These integrate time series decomposition and machine learning techniques
to achieve more accurate short-term predictions. This research evaluates a
hybrid model that is capable of making a short-term prediction of the horizontal
winds between 80 and 95 km altitudes on the coast of Peru at two locations:
Lima (12°S, 77°W) and Piura (5°S, 80°W). The model takes a window of 56
data points as input (corresponding to 7 days) and predicts 16 data points as
output (corresponding to 2 days). First, the missing data problem was analyzed
using the Expectation Maximization algorithm (EM). Then, variational mode
decomposition (VMD) separates the components that dominate the winds. Each
resulting component is processed separately in a Long short-term memory
(LSTM) neural network whose hyperparameters were optimized using the
Optuna tool. Then, the final prediction is the sum of the predicted components.
The efficiency of the hybrid model is evaluated at different altitudes using the
root mean square error (RMSE) and Spearman’s correlation (r). The hybrid model
performed better compared to two other models: the persistence model and
the dominant harmonics model. The RMSE ranged from 10.79 to 27.04 ms−1,
and the correlation ranged from 0.55 to 0.94. In addition, it is observed that the
prediction quality decreases as the prediction time increases. The RMSE at the
first step reached 6.04 ms−1 with a correlation of 0.99, while at the sixteenth
step, the RMSE increased up to 30.84 ms−1 with a correlation of 0.5.
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1 Introduction

The mesosphere and lower thermosphere (MLT) is the region
of coupling between the lower and upper atmosphere. It is a region
of complex chemical processes and dynamics (Liu et al., 2021).
Understanding of this region is still in progress and it is of interest
in atmospheric science and space traffic management.

The MLT dynamics is characterized by waves of different scales
generated by other sources. For instance, on planetary scales, it is
characterized by solar tides and planetary waves. The solar tides
present periods of subharmonics of solar days and are generated
mainly by the solar radiation absorption of tropospheric water vapor
and stratospheric ozone (Forbes, 1995). On the other hand, the
planetary waves have periods of days, e.g., the quasi-two-day waves
with periods of 2 days generated in situ by baroclinic instabilities
(McCormack et al., 2014). Moreover, the mesoscale gravity waves
have periods ofminutes to hours and can be generated by orographic
sources and deep convection (Piani et al., 2000).

The MLT dynamics has usually been investigated using
global circulation models (e.g., Liu et al., 2018), rockets (e.g.,
Staszak et al., 2021), satellites (e.g., Gasperini et al., 2023), lidars
(e.g., Emmert et al., 2021), and radars (e.g., Chau et al., 2021). On
the central and northern coast of Peru, twomulti-staticmeteor radar
networks, SIMONe Jicamarca (12°S, 77°W) in Lima and SIMONe
Piura (5°S, 80°W) in Piura, allow us to measure winds between 75
and 105 km altitude since 2019 and 2021, respectively (Chau et al.,
2021). Recently, diverse investigations have been conducted in the
low-latitude Peruvian sector. For example, Suclupe et al. (2023)
studied the climatology of large-scale dynamics, and Conte et al.
(2024) studied the mesoscale dynamics.

The MLT region at low latitudes is significant for studying
the effect of the lower atmospheric forces on the ionosphere
(Immel et al., 2006; Vincent, 2015), a region with important
implications for global communications and geo-location
applications.

From another point of view, Yang et al. (2023)mention that near
space (between 20 and 100 km altitude) is frequented by various
aerospace vehicles. Like other research, they describe that there are
complex dynamic processes, but emphasize that neutral atmospheric
wind is a critical atmospheric parameter that influences the design
and construction of aerospace vehicles. They argue that accurate
wind prediction at these altitudes is essential for aerospace research.
Similarly, Dhadly et al. (2023) mention that the upper atmosphere
(between 85 and 500 km altitude) has complex dynamics and
that the behavior of the climate in this region directly impacts
communication and navigation technologies that are important to
humanity. They add that, due to our increasing dependence on
these space technologies, predicting the dynamics in the upper
atmosphere will become increasingly important.

In wind predictive models, several investigations have been
carried out mainly at the tropospheric level (e.g., Hussin et al.,
2021; Hanifi et al., 2022). These investigations usually use two
types of models: statistical and machine learning models.
Hussin et al. (2021) mention that there are statistical models such
as autoregressive (AR), moving average (MA), autoregressive
moving average (ARMA), autoregressive IntegratedMovingAverage
(ARIMA), generalized autoregressive conditional heteroskedasticity
(GARCH), and ARIMA-GARCH. However, statistical models

require the assumption of constant variance, and the original
wind speed data do not meet this assumption. Hanifi et al. (2022)
highlight that machine learning models are more appropriate
methods for this data and that their success depends on an adequate
selection of hyperparameters. They argue that the integrated use
of Long Short-Term Memory (LSTM) neural networks and the
hyperparameter optimizer Optuna accelerates the optimal choice of
hyperparameters and gives more accurate estimates.

Recently, a time series decomposition technique called
variational mode decomposition (VMD) has been introduced.
This technique is applied before statistical modeling or modeling
with machine learning and helps to deal with the problem of
high variability. Ali et al. (2018) evaluate the application of this
techniquewith twomodels for 1-step, 5-step, and 10-step forecasting
horizons. In the first method, they use VMD with the ARIMA
model. The second method uses VMD with artificial neural
networks (ANN). These prediction methods are compared with
other hybrid models such as empirical mode decomposition
(EMD) with ARIMA, EMD with ANN, ensemble empirical mode
decomposition (EEMD) with ARIMA, EEMD with ANN, complete
ensemble empirical mode decomposition with Adaptive Noise
(CEEMDAN) with ARIMA, and CEEMDAN with ANN. They
conclude that the integration of VMD with ARIMA and VMD
with ANN significantly outperforms existing hybrid models, for all
prediction horizons.

In the prediction of wind speeds in the MLT region, Yang et al.
(2023) also propose to use VMD before inputting the data into
the prediction model. They used the hybrid VMD- PSO-LSTM
model, which can decompose the wind time series formore accurate
predictions. To do this, they used the VMD technique, which
decomposes the original time series into principal components
that dominate the signal. Then, each component is fed into the
LSTM neural network, which finds the best hyperparameter values
with the help of the particle swarm optimization (PSO) algorithm.
This methodology is compared with the seasonal auto-regressive
integrated moving average (SARIMA) statistical model and the
hybridmodels EMD-PSO-LSTM, EEMD-PSO-LSTM,CEEMDAN-
PSO-LSTM and VMD-PSO-LSTM. Time horizons of 1 step, 3 steps,
and 5 steps are predicted. They conclude that the proposed method
has better efficiency and stability inwind speed prediction in all their
comparisons.

This research studies the predictability of the mesospheric and
lower thermospheric winds. In Peru, this prediction analysis has
already been developed by Mauricio et al. (2023), whose model is
based on themethodology used byYang et al. (2023).The techniques
used are missing data imputation, time series decomposition, and
deep learning.These can identify themain components of the winds
and then performbetter predictions.Mauricio et al. (2023)modified
the methodology of Yang et al. (2023). They added a missing data
imputation analysis and used the Optuna hyperparameter optimizer
in the modeling because it offers a better way to analyze the
model quality.

The present research is a continuation of the work
carried out by Mauricio et al. (2023). A new decomposition of the
time series and a new hyperparameter search with Optuna have
been performed. The main objective is to compare the efficiency of
the hybridmodel with amodel of dominant harmonics based on the
MLT climatology over Peru.The intention is to demonstrate that the
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TABLE 1 Original data set.

Lima Piura

Description Wind speeds in two components: zonal and meridional

Heights 80.5, 85.5, 90.5 and 95.5 km

Development of the model September 2020 -November 2021 number of rows in
the dataset: 21,888

October 2021 -December 2022 number of rows in the
dataset: 21,888

Analysis 2023 Data of 2023 number of rows in the dataset: 17,519

hybridmodel givesmore accurate predictions.This will be evaluated
with the root mean square error (RMSE) and nonparametric
Spearman correlation (r).

2 Materials and methods

2.1 Original data set

The zonal and meridional winds were estimated using the
homogeneous method (e.g., Chau et al., 2021) recorded by
SIMONe (Spread-spectrum Interferometric Multistatic meteor
radar Observing Network) radars in Lima (12°S, 77°W) and
Piura (5°S, 80°W). These systems have a horizontal coverage
of approximately 400 km in diameter (Chau et al., 2021). The
horizontal winds have a resolution of 1-h, and 2-km and were
estimated every 30-min and 1-km (sampling) at heights of 80.5 km,
85.5 km, 90.5 km, and 95.5 km.

The available data for the Lima and Piura stations is described on
Table 1.The period is different because the stations started operating
in different years. The data sets are divided into two parts. The
first part is used for model development, covering the training,
validation and testing stages. In the case of Lima, the period runs
from September 2020 to November 2021. In the case of Piura, the
period runs from October 2021 to December 2022. In both cases,
those periods were chosen since they have the same amount of
records so that the modeling would be similar, although they differ
on the amount of missing data (Figure 1).

In the second part, the performance of the proposed model is
evaluated in both stations using data from the year 2023. In this
section, the number of records and the period coincide, but they
differ on the amount of missing data (Figure 2).

2.2 Missing data imputation

Missing data imputation was performed using the
Expectation–maximization (EM) algorithm, which applies to data
following a Gaussian distribution.This algorithm is used to estimate
the parameters of a probability distribution from incomplete
data by iteratively maximizing the likelihood of the available
data. In the context of multivariate Gaussian data, the probability
distribution can be characterized by the vector of means and the
variance-covariance matrix (Schneider, 2001).

The EM algorithm has two stages: the E-step, which assumes
the population mean and variance are known, and the M-
step, which uses these values to estimate the population mean
and covariance matrix. This iteration process continues until the
parameter estimates of interest no longer change significantly.
Maximum likelihood methods for incomplete multivariate data,
particularly in the case of normally distributed data, focus on
estimating the observed data parameters, such as the vector ofmeans
and the variance-covariance matrix. If the data follow a multivariate
normal distribution, one can apply known properties to estimate
those unknown parameters (Pigott, 2001).

The imputation analysis consisted of two parts. First, the
imputation procedure described by Mauricio et al. (2023) was
replicated. Additionally, the descriptive statistical indicators were
presented to comprehend the process better. The second part
involved exclusively imputing data from the year 2023, because
these were obtained at a later point in time. Figure 2 shows the
percentages of missing data for the year 2023, for the Lima and
Piura stations. The absence of data was mainly due to two reasons.
First, during the first months of the year, the equipment was
affected by the presence of heavy rains in the region, caused by
cyclone Yaku and the El Niño Costero phenomenon. Secondly,
during the year, there were some radar hardware failures. These
unexpected situations forced the radars to be inoperative at
certain intervals.

In case of high percentages of missing data, the time series
is partitioned in such a way as to omit the time intervals with
accumulated absences. The maximum percentage limit allowed in
each subseries is 6%, which is an approximate value of that detected
in the article of Mauricio et al. (2023). Then, for each subseries,
the percentage is reanalyzed. If the percentage is less than 6%,
we proceed with the estimation of the missing data. Otherwise,
the time subseries are further separated until their percentages are
lower than 6%.

2.3 Data preprocessing

Once the missing data are imputed, they are averaged every 3 h.
Data not belonging to the year 2023 are divided chronologically
into train (70%), validation (10%) and test (20%). Training and
validation data are used for the building and optimization of
the model, while the test data is used specifically for the metric
evaluation. The intention is that the test data is not involved in the
modeling and optimization, to avoid overfitting (Mauricio et al.,
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FIGURE 1
Missing data at the model development stage. (A) shows the percentage of missing data in Lima. (B) shows the percentage of missing data in Piura.

FIGURE 2
Missing data in the year 2023. (A) presents the percentage of missing data in Lima. (B) shows the percentage of missing data in Piura.

2023). Finally, each data block is normalized based on
the training data, before moving on to the time series
decomposition stage.

2.4 Time serie decomposition

Variational mode decomposition (VMD) is a method used
in signal processing. This method was proposed in 2014 to
overcome the limitations of techniques such as wavelet analysis
and Empirical Mode Decomposition (EMD). The VMD technique
decomposes a sequence, such as wind time series, into multiple sub-
sequences known as intrinsic modal function (IMF) components.
The importance of VMD is its ability to optimally adapt the
center frequency and bandwidth of each IMF according to the
signal characteristics, which makes it effective in dealing with non-
smoothness in data series, such as wind speed data (Yang et al.,
2023). The VMD algorithm has as input a signal or time series
x(t), which is decomposed into subseries called modes or harmonic

signals uk(t), where k is the number of total modes.

x(t) =
K

∑
k=1

uk(t)

uk = Ak(t)cos (ϕk(t))

Each mode has an instantaneous amplitude Ak(t), an
instantaneous phase ϕk(t), a limited spectral bandwidth B(uk(t))
and an instantaneous center frequency ωk (Ali, Khan, and Rehman,
2018), where it is assumed that each mode varies slower than
the phase and is non-negative (Gan et al., 2021). The complete
mathematical process that follows this decomposition and
bandwidth estimation can be found in the article of Dragomiretskiy
and Zosso (2014).

The VMD algorithm package in Python was obtained from the
code developed by Carvalho et al. (2020).The choice of components
is determined under two complementary rules.The first rule follows
the methodology of Yang et al. (2023) which involves observing
center frequencies. It starts by decomposing the original time series
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TABLE 2 Evaluation of the optimal number of components, with center frequencies.

K IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8 IMF 9 IMF 10 IMF 11 IMF 12

1 0.0027

2 0.0031 0.1944

3 0.0030 0.1271 0.2665

4 0.0030 0.1247 0.2430 0.3674

5 0.0030 0.1231 0.1721 0.2520 0.3707

6 0.0026 0.0596 0.1261 0.2079 0.2747 0.3748

7 0.0025 0.0585 0.1250 0.1758 0.2491 0.3620 0.4436

8 0.0025 0.0582 0.1247 0.1727 0.2455 0.3058 0.3718 0.4506

9 0.0025 0.0570 0.1236 0.1501 0.1943 0.2496 0.3101 0.3732 0.4526

10 0.0025 0.0560 0.1230 0.1419 0.1853 0.2467 0.3023 0.3636 0.4061 0.4621

11 0.0016 0.0261 0.0690 0.1244 0.1533 0.1970 0.2499 0.3069 0.3669 0.4093 0.4634

12 0.0016 0.0242 0.0659 0.1238 0.1440 0.1780 0.2185 0.2588 0.3123 0.3685 0.4108 0.4641

FIGURE 3
Correlations were calculated between the actual data and the sum of
the components of zonal wind at Lima at 80.5 km height. When k = 11,
the correlation appears to be constant.

with different values of k, where each component has an associated
central frequency. The optimal number of components is then
obtained when the central frequency values are approximate.

Table 2 shows the decomposition of the normalized time series
of the zonal wind at Lima at 80.5 km height, and the central
frequencies are obtained for different values of k. It is observed that
when the series are decomposed in k = 10, k = 11 and k = 12, the last
central frequencies are approximately 0.4621, 0.4634, and 0.4641,
respectively. Then, it can be deduced that the time series can be
optimally decomposed into 12 components.

A second complementary way of determining the optimal
number of components is proposed by evaluating the correlation
between the initial series data and the sum of the IMF components.
Being an additive decomposition, the sum of the components results

in the estimate of the initial data. Figure 3 shows the correlation
between the normalized data of the zonal wind at Lima at 80.5 km
height and the sumof its IMF components, for different values of k. It
is observed that when the series is decomposed from 11 components
tomore, the correlation values are approximate and almost constant.
In this instance, both rules give similar results.Then it is determined
that the number of components for this series is 12. Figure 4 shows
the 12 components.

2.5 Long short-term memory neural
network

Long short-term memory neural network (LSTM) is an
enhancement of the recurrent neural network (RNN), which has
limitations such as gradient bursting and fading, lack of retention
of historical information over time; and not distinguish between
information that should be further processed and information that
should be deleted. The LSTM network uses control gates that help
solve the above problems. Within the LSTM block, there is a ring
buffer and three gates named: input, forget, and output. Like RNNs,
the LSTM network also has a hidden layer that processes the flow of
information (Son and Jung, 2020).

Figure 5 shows the basic structure of the LSTMnetwork. Itsmain
features are the hidden layer ht, the memory cell ct and the control
gates (represented by the letters inside the circles).Thefirst gate is the
forgetting gate (letter f), which evaluates the elements to be purged
from the cell state ct−1 and outputs a resultant vector ft. Then the cell
state ̃c is partially updated, processing the input xt and the previous
hidden state ht−1. The second gate is the input gate (letter i) which
has a resultant vector it. This gate has the task of evaluating which
information from the partial cell state ̃ct serves to fully update the
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FIGURE 4
Components of the zonal wind at Lima at 80.5 km altitude. (A–L) show the 12 time series into which the original time series was decomposed.

current time cell state ct. Finally, there is the output gate (letter o)
that controls the sending of the information from the current cell
state ct to the new hidden state ht (Kratzert et al., 2018).

LSTM neural networks can be implemented using the function
of the same name from the TensorFlow library in Python. Like the
methodology proposed by Yang et al. (2023) a model with LSTM
was performed for each IMF of each time series. For example, if a
time series is determined to have 12 modal components, then 12
models with LSTM should be performed.

Before inputting the data to the neural network, the dimensions
of the input and output data must be specified. In this case,

we have experimented with a window of 56 consecutive data,
corresponding to a period of 1 week. While the output data are 16
steps in the future, corresponding to 2-day records. Subsequently,
hyperparameters such as dropout, number of layers and neurons,
Adam optimizer, learning rate, and batch size were added
(Mauricio et al., 2023).

Additionally, the Ridge regularization was introduced, which
is a penalty applied to the loss function of the proposed model.
This regularization was also used in the paper by Rosa et al. (2020),
who performed a similar analysis with VMD and LSTM for the
Piura River flow time series in Peru.
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FIGURE 5
Neural network operation.

2.6 Optuna

Akiba et al. (2019) presented Optuna, a framework designed for
hyperparameter optimization in the context of machine learning
and deep learning. Optuna is based on a sequential optimization
approach that uses the adaptive search tree-based optimization
(TPE) algorithm to efficiently explore the hyperparameter space.
Optuna is characterized by its ability to dynamically adapt to
the hyperparameter space, allowing it to converge more quickly
to optimal solutions. This is achieved by systematically exploring
hyperparameter combinations, where decisions are based on
previous observations to steer the search towards promising regions
of the search space. The framework offers a simple user interface
and seamless integration with machine learning and deep learning
libraries, facilitating its use in a variety of applications. In addition,
Optuna provides advanced tools such as experiment management
and result visualization to facilitate the organization and analysis of
optimization results. Optuna’s scalability stands out, as it is designed
to handle large datasets and complex search spaces efficiently.
This makes it suitable for both small-scale applications and large-
scale research projects requiring complex model optimization.
In summary, Optuna represents a significant breakthrough in
automated hyperparameter optimization, offering a powerful and
efficient solution for improving model performance. Its ability to
dynamically adapt to the hyperparameter space and its seamless
integration with popular libraries make it a valuable tool for
researchers and practitioners in the field of machine learning.

Table 3 shows the set of hyperparameters used in this study.
During optimization, Optuna provides tools that help to plot the
loss curve that allows to evaluation of the learning performance of
the models. Figure 6 shows the loss curves for the 12 components
of the Piura zonal wind at 80.5 km altitude. Optuna has by default
that the X-axis represents the number of epochs and the Y-axis
represents the mean square error (MSE). However, since the data
are normalized, the MSE values have no units of measurement.

2.7 Hybrid model

In summary of what has been explained in the previous
paragraphs, the hybrid model applied in combines the VMD, LSTM

TABLE 3 Hyperparameter options.

Hyperparameters

Layers 1

Neurons in layer Values between 1 and 100

Dropout Values between 0.0 and 0.5

Learning rate Values between 0.00001 and 0.1

Epoch 100,120,140,160,180 years 200

Batch size 16, 24, 32, 40, 48, 56, 64

Lambda (regularizer L2) Values between 0.001 and 0.01

and Optuna techniques (Figure 7). First, time series of normalized
and complete data are obtained, which are then decomposed
into their optimal components using the VMD algorithm. These
components are reorganized into windows of 56 data, equivalent
to 7 days. Each of these blocks is fed into an individual LSTM
neural network, where the hyperparameters are optimized with
Optuna. The output of each LSTM provides windows of 16
steps, corresponding to 2 days. Finally, the final prediction is the
denormalization of the sum of the estimates calculated for each
component.

2.8 Persistence model

Mauricio et al. (2023) used a persistence model that consists of
the wind speed values of two previous days being repeated in the
following 2 days. Through this model, a time series is reconstructed
and compared with the hybrid model estimates. The intention is to
demonstrate that the hybrid model is superior to the simplicity of
the persistence model.

2.9 Model of dominant harmonics

The model of dominant harmonics was built from a sum of
sinusoidal series with specified periods. In this model, the mean
winds (an average ofmeridional wind and an average of zonal wind),
as well as the amplitudes and phases of specific waves, were fitted
using the least squares method, with a 7-day window. The selected
periods correspond to the dominant wave periods obtained by the
MLT climatology over the Peruvian sector (see Suclupe et al., 2023
for more details), which are 48, 24, 12, 8, and 6 h. Finally, the model
was interpolated in a window of 2 days to compare it with the
proposed hybrid model.

2.10 Evaluation of the hybrid model

Mauricio et al. (2023) reconstructed the time series by making
predictions with a 16-step horizon. This approach involved the
generation of sequential predictions of consecutive blocks of
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FIGURE 6
Training and validation loss curves for each component of the Piura zonal wind at 80.5 km altitude. (A–L) show that the training loss and validation loss
curves decrease similarly in all cases.

16 steps within the time series. Specifically, predictions were
initially applied to steps 1 through 16. Then, the process was
repeated for steps 17 through 32, and so on, ensuring progressive
coverage of the entire time series in 16-step intervals. This
method allowed the evaluation of the predictive capability of the
proposed model versus a 2-day persistence model, for multiple
segments (training, validation, testing and February 2023 data),
ensuring a complete evaluation of its performance over time.
The metric used was RMSE and the proposed model was shown
to be better.

In this paper, the RMSE was again used and the nonparametric
Spearman correlation metric (r) was added. This coefficient is used
to measure the strength and direction of the association between
two variables, regardless of the distribution of the data. Assuming
that the results show a mostly positive correlation, a correlation is
considered to be very weak if its value is between 0.00 and 0.20,
weak between 0.21 and 0.40,moderate between 0.41 and 0.60, strong
between 0.61 and 0.80, and very strong between 0.81 and 1.00.

It was decided to evaluate the hybrid model in three stages.
The first stage is related to evaluating that the estimates of the
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FIGURE 7
Diagram of the hybrid model.

proposed model do not present overfitting and that it is superior
to a simple model such as the persistence model. Similar to the
analysis performed by Mauricio et al. (2023), the entire time series
is estimated using 16-step predictions.That is, the 16-step blocks are
joined and form a complete time series. It is confirmed that there
is no overfitting when the calculated metrics of the hybrid model
are similar in the training, validation and test data sets. On the
other hand, it is confirmed that the hybrid model is better than the
persistence model when the metrics of the hybrid model are better
than those of the persistence model, using the same data sets.

The second stage was the step-by-step analysis. This method
involves generating multiple predictions using continuous input
windows. Predictions are made using the first 56 input steps, then
the input window is shifted one position and new predictions are
made using the next 56 steps, and so on.This process is repeated until
the entire time series is covered. This approach facilitates obtaining
vectors of estimates of all 1-steps, all 2-steps and so on up to the
vector of 16-steps.This analysis was only performed on the test data,
evaluating the predictive model performance at each time step.

In the third stage, the original data for the year 2023 (January
to December) are available. The objective is to evaluate whether the
hybridmodel is better than themodel of dominant harmonic for the
year 2023. As in the first stage, a time series is reconstructed through
the estimated consecutive blocks of 16 steps. It is evaluated which
model is better, observing which one has better metrics.

3 Results

3.1 Data imputation

Table 4 shows the comparison of the descriptive statistics values
before and after imputation for data previous to 2023. This was
mentioned by Mauricio et al. (2023), but the values were not
shown there.

In the second stage, the 2023 data were analyzed and a summary
of the information on the amount of missing data was obtained.
The result shows that the percentages were in the range between
8% and 15% (Table 5). As these percentages of missing data are
higher than 6%, the time series was subdivided into blocks with
lower percentages and the imputation process was replicated.

3.2 VMD decomposition

The VMD decomposition analysis to determine the number of
components of each time series is shown in Table 6.The values show
convergence between 11 and 12 components. Above these values, the
method is not optimal.

3.3 Evaluation of the hybrid model

3.3.1 Comparison with persistence model
The metrics in Tables 7, 8 are analyzed with the training,

validation and test data sets for the Lima and Piura locations,
respectively. The metrics show that the hybrid model is better than
the persistence model in both locations.

In the case of Lima, the hybrid model has RMSE values that
vary between 12.38 ms−1 and 22.5 ms−1, while the correlation values
vary between 0.81 and 0.94. In comparison, the persistence model
has higher RMSE with values that vary between 26.36 ms−1 and
47.52 ms−1, while the correlation values are lower and vary between
0.24 and 0.64.

In the case of Piura, the RMSE values vary between 10.79 ms−1

and 27.04 ms−1, while the correlation values vary between 0.67 and
0.93. In comparison, the persistence model has higher RMSE with
values that vary between 29.01 ms−1 and 43.78 ms−1, while the
correlation values are lower than 0.48.

In addition, the values of the hybrid model metrics in the
three data sets (training, validation and test), do not have large
differences. This is an indicator that the model does not have
overfitting.

3.3.2 Step analysis
As noted in the methodology, this analysis was only performed

on the test data set.Themetrics calculated for each time step show an
increase in RMSE (Figure 8) and a decrease in correlation (Figure 9).
This indicates that within the windows of 16 prediction steps, the
first steps fit better than the last steps.

In the case of Lima, the RMSE values increase from 6.46 ms−1

to 30.84 ms−1, while the correlation values decrease from
0.99 to 0.66. For example, the meridional wind at 85.5 km of
altitude, has the best 1-step with an RMSE of 6.46 ms−1 and a
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TABLE 4 Comparison of descriptive statistics before and after imputation.

Before data imputation After data imputation

Height 80.5 km 85.5 km 90.5 km 95.5 km 80.5 km 85.5 km 90.5 km 95.5 km

Zonal wind over
Lima

Mean 1.44 −0.48 −5.10 −7.47 1.45 −0.48 −5.00 −8.30

Standard deviation 31.09 33.36 37.98 40.62 31.11 33.35 38.00 40.85

Min −109.97 −146.21 −134.82 −149.52 −109.97 −146.21 −134.82 −149.52

Q1 −21.00 −23.85 −31.07 −34.92 −20.97 −23.85 −31.00 −36.02

Median 2.33 −0.10 −4.16 −7.37 2.28 −0.12 −4.11 −8.06

Q3 25.12 23.03 21.44 19.79 25.09 22.99 21.56 19.15

Max 87.58 107.67 145.81 145.40 102.64 123.87 145.81 145.40

Skewness −0.16 −0.07 −0.09 0.01 −0.15 −0.07 −0.09 0.01

Kurtosis −0.48 −0.20 −0.26 −0.01 −0.47 −0.20 −0.26 −0.01

Meridional wind
over Lima

Mean −2.97 −4.22 −4.46 −1.73 −2.99 −4.22 −4.43 −1.31

Standard deviation 31.65 39.33 45.22 49.21 31.67 39.37 45.27 49.16

Min −105.98 −124.41 −129.33 −139.68 −113.33 −166.54 −150.39 −174.41

Q1 −25.72 −33.56 −37.46 −38.43 −25.72 −33.56 −37.41 −37.62

Median −3.27 −5.43 −4.03 −1.13 −3.29 −5.40 −3.90 −0.58

Q3 19.45 24.00 28.17 33.67 19.40 23.99 28.18 33.93

Max 112.53 120.89 139.03 149.94 112.53 120.89 139.03 195.99

Skewness 0.05 0.16 0.00 0.06 0.05 0.15 0.00 0.06

Kurtosis −0.36 −0.39 −0.50 −0.52 −0.35 −0.37 −0.49 −0.48

Zonal wind over
Piura

Mean −2.99 −6.22 −9.32 −11.83 −2.97 −6.20 −9.25 −11.73

Standard deviation 27.84 30.44 34.19 38.77 27.96 30.52 34.20 38.79

Min −130.96 −132.43 −145.58 −146.29 −130.96 −145.27 −145.58 −146.29

Q1 −21.04 −26.76 −32.01 −38.80 −21.08 −26.76 −31.97 −38.66

Median −2.33 −5.47 −8.31 −10.60 −2.30 −5.46 −8.27 −10.58

Q3 15.41 14.20 13.85 15.75 15.48 14.28 13.91 15.82

Max 147.98 143.47 138.13 137.72 147.98 143.47 138.13 137.72

Skewness −0.04 −0.07 −0.11 −0.10 −0.05 −0.07 −0.11 −0.09

Kurtosis 0.38 −0.06 −0.10 −0.19 0.38 −0.03 −0.10 −0.19

(Continued on the following page)
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TABLE 4 (Continued) Comparison of descriptive statistics before and after imputation.

Before data imputation After data imputation

Height 80.5 km 85.5 km 90.5 km 95.5 km 80.5 km 85.5 km 90.5 km 95.5 km

Meridional wind
over Piura

Mean −2.69 −2.77 −4.53 −5.25 −2.60 −2.71 −4.59 −5.31

Standard deviation 31.36 34.00 36.41 41.20 31.41 34.02 36.47 41.28

Min −149.54 −142.49 −144.62 −148.40 −149.54 −142.49 −149.39 −148.40

Q1 −23.94 −26.94 −30.37 −34.36 −23.90 −26.83 −30.41 −34.45

Median −3.45 −4.05 −5.08 −5.44 −3.30 −3.93 −5.21 −5.56

Q3 17.76 20.32 20.21 22.58 17.89 20.41 20.20 22.55

Max 149.34 123.16 135.49 148.12 149.34 123.16 135.49 148.12

Skewness 0.14 0.14 0.13 0.08 0.13 0.13 0.12 0.08

Kurtosis 0.12 −0.16 −0.16 −0.20 0.12 −0.15 −0.14 −0.19

TABLE 5 Missing data in 2023.

Height(km) Lima Piura

Zonal Wind Meridional Wind Zonal Wind Meridional Wind

Amount Percentage Amount Percentage Amount Percentage Amount Percentage

80.5 2084 11.90 2084 11.90 2,689 15.30 2,689 15.30

85.5 1,572 8.97 1,572 8.97 2,241 12.80 2,241 12.80

90.5 1,574 8.98 1,574 8.98 2,216 12.60 2,216 12.60

95.5 2,262 12.90 2,262 12.90 2,539 14.50 2,539 14.50

TABLE 6 Number of IMF for each time series.

Height(km) Lima Piura

Zonal Wind Meridional Wind Zonal Wind Meridional Wind

80.5 12 12 12 11

85.5 11 12 12 12

90.5 12 11 12 12

95.5 12 12 12 12

correlation of 0.99, while the 16-step has an RMSE of 23.05 and a
correlation of 0.8.

In the case of Piura, the RMSE values increase from 6.04 ms−1 to
30.41 ms−1, while the correlation values decrease from 0.99 to 0.5.
For example, the zonal wind at 85.5 km of altitude, has the best 1-
step with an RMSE of 6.04 ms−1 and a correlation of 0.98, while the
16-step has an RMSE of 17.42 ms−1 and a correlation of 0.79.

3.3.3 Comparison with the model of dominant
harmonics

The comparison of metrics between the hybrid model and the
model of dominant harmonics with data from 2023 is shown in
Table 9 for Lima and Table 10 for Piura.

In the case of Lima, the hybrid model has RMSE values
ranging from 14.92 ms−1 to 26.95 ms−1, while the correlation values
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TABLE 7 Evaluation of the hybrid model for Lima data.

Zonal Wind Meridional Wind

Real vs Hybrid model Real vs Persistence Real vs Hybrid model Real vs Persistence

Height Data set RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r

80.5 km

Train 12.38 0.91 26.36 0.61 13.30 0.90 29.90 0.49

Validation 13.42 0.82 28.39 0.25 14.39 0.84 30.32 0.38

Test 16.84 0.83 35.69 0.30 14.37 0.88 30.51 0.51

85.5 km

Train 20.92 0.92 32.16 0.44 13.60 0.94 34.52 0.54

Validation 22.06 0.92 37.13 0.33 18.58 0.88 38.81 0.46

Test 21.64 0.92 40.99 0.24 15.92 0.91 33.41 0.64

90.5 km

Train 14.22 0.91 36.95 0.40 19.07 0.91 38.76 0.58

Validation 15.40 0.91 43.38 0.27 21.87 0.88 43.75 0.52

Test 14.73 0.93 42.99 0.39 21.63 0.85 39.76 0.54

95.5 km

Train 19.31 0.84 41.09 0.34 19.33 0.91 42.06 0.56

Validation 20.84 0.81 44.30 0.24 22.37 0.87 45.09 0.49

Test 22.50 0.84 47.52 0.34 19.07 0.91 43.68 0.53

TABLE 8 Evaluation of the hybrid model for Piura data.

Zonal Wind Meridional Wind

Real vs Hybrid
model

Real vs Persistence Real vs Hybrid
model

Real vs Persistence

Height Data set RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r

80.5 km

Train 11.93 0.89 29.01 0.38 14.59 0.85 30.18 0.41

Validation 11.92 0.86 33.71 −0.03 20.09 0.77 36.55 0.34

Test 11.98 0.88 30.40 0.30 18.48 0.78 33.63 0.40

85.5 km

Train 10.79 0.93 32.49 0.36 15.13 0.87 32.30 0.44

Validation 12.87 0.92 38.92 0.08 16.88 0.87 35.66 0.43

Test 12.01 0.90 35.63 0.21 18.11 0.83 35.16 0.41

90.5 km

Train 13.90 0.90 36.38 0.34 18.07 0.84 35.27 0.44

Validation 15.63 0.91 39.95 0.39 27.04 0.67 38.45 0.37

Test 15.50 0.87 39.18 0.22 21.33 0.77 38.82 0.30

95.5 km

Train 17.91 0.87 40.58 0.34 16.97 0.90 40.31 0.43

Validation 22.80 0.84 43.09 0.48 17.95 0.88 42.32 0.38

Test 17.03 0.89 42.57 0.26 20.29 0.80 43.78 0.22
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FIGURE 8
RMSE values for each time step in Lima. (A) shows the RMSE values for the zonal wind. (B) shows the RMSE values for the meridional wind.

FIGURE 9
Correlation values for each time step in Piura. (A) shows the correlation values for the zonal wind. (B) shows the correlation values for the
meridional wind.

TABLE 9 Comparison metrics between the hybrid model and interpolation in 2023 (Lima).

Zonal Wind Meridional Wind

Real vs Hybrid model Real vs Dominant
harmonics model

Real vs Hybrid model Real vs Dominant
harmonics model

Height RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r

80.5 15.53 0.83 23.68 0.63 14.92 0.80 26.23 0.44

85.5 21.85 0.69 27.01 0.51 15.28 0.86 31.24 0.51

90.5 23.40 0.71 31.55 0.41 23.21 0.81 37.76 0.51

95.5 26.95 0.70 36.03 0.43 23.99 0.84 41.21 0.58

range from 0.69 to 0.86. The model of dominant harmonics has
RMSE values ranging between 23.68 ms−1 and 41.21 ms−1, while
correlation values vary between 0.41 and 0.63. Figure 10 shows the
time series predictions of the zonal wind in Lima at 80.5 km altitude,
made by both models, with their respective scatter diagrams. The
hybrid model has an RMSE of 15.53 ms−1 and a correlation of 0.83,
while themodel of dominant harmonics has an RMSE of 23.68 ms−1

and a correlation of 0.63. It is observed that the hybrid model has a
lower RMSE value and a higher correlation value. Additionally, in
the scatter plot, the predictions of the hybrid model are better fitted
to the data in Lima.

In the case of Piura, the hybrid model has RMSE values
ranging from 15.47 ms−1 to 26.80 ms−1, while the correlation
values range from 0.55 to 0.80. The model of dominant
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TABLE 10 Comparison metrics between the hybrid model and interpolation in 2023 (Piura).

Zonal Wind Meridional Wind

Real vs Hybrid model Real vs Dominant
harmonics model

Real vs Hybrid model Real vs Dominant
harmonics model

Height RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r RMSE (ms−1) r

80.5 15.47 0.75 21.87 0.50 16.31 0.68 25.39 0.34

85.5 15.80 0.75 24.99 0.43 16.78 0.73 29.97 0.26

90.5 26.80 0.55 28.90 0.34 21.40 0.74 37.50 0.28

95.5 25.20 0.62 32.89 0.35 19.34 0.80 41.57 0.40

FIGURE 10
Comparison between the hybrid and dominant harmonics model estimates for the zonal wind at 80.5 km height in Lima in the year 2023. (A) shows
the 2023 time series versus the hybrid model estimates. (B) shows the scatter plot of the 2023 data versus the hybrid model estimates. (C) shows the
2023 time series versus the model of dominant harmonic estimates. (D) shows the scatter plot of the 2023 data versus the model of dominant
harmonic estimates.

harmonics has RMSE values ranging between 21.87 ms−1

and 41.57 ms−1, while correlation values vary between
0.26 and 0.5. Figure 11 shows the time series predictions
of the meridional wind in Piura at 95.5 km altitude, made
by both models, with their respective scatter diagrams. The
hybrid model has an RMSE of 19.34 ms−1 and a correlation
of 0.80, while the model of dominant harmonics has an
RMSE of 41.57 ms−1 and a correlation of 0.40. Similar to the
results for Lima, the hybrid model is found to have a lower
RMSE, a higher correlation, and less dispersion with respect
to the model of dominant harmonics. Also, their scatter plot
indicates that the predictions of the hybrid model better fit
the 2023 data collected in Piura.

4 Discussion and conclusions

The imputation of missing data for 2023 was performed under
the assumption that the percentage limit of missing data is 6%.
However, it is necessary to have sufficient data to allow this analysis
to be carried out. If there are only a few data points available, the
distribution may not be symmetrical because of certain values that
dominate that period. In addition, it is essential to have at least 72
continuous data to be able tomake predictions and calculate metrics
(56 input data points and 16 output data points).

In determining the number of components of the time
series, convergence is observed between the values of 11 and 12
components. Exceeding these values can lead to poor estimates

Frontiers in Astronomy and Space Sciences 14 frontiersin.org

https://doi.org/10.3389/fspas.2024.1442315
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Mauricio et al. 10.3389/fspas.2024.1442315

FIGURE 11
Comparison between the estimates made by the hybrid model and the model of dominant harmonics, for the meridional wind at 95.5 km height in
Piura in the year 2023. (A) shows the 2023 time series versus the hybrid model estimates. (B) shows the scatter plot of the 2023 data versus the hybrid
model estimates. (C) shows the 2023 time series versus the model of dominant harmonic estimates. (D) shows the scatter plot of the 2023 data versus
the model of dominant harmonic estimates.

of the original series. Having these limits defined helps to avoid
making unnecessary models of the components, avoiding execution
times and the use of computational resources. Additionally, for
future research, associations between these components and other
meteorological time measurements could be evaluated.

During the modeling phase, the inclusion of the regularizer
(L2) resulted in a marked improvement in the visualization of
the loss curves for both the training and validation sets, which
helped to avoid overfitting the models. As for Optuna, only 30
search iterations per component were performed. Although a more
exhaustive search could provide even more accurate estimates, the
complexity of the model, with 11 or 12 components, implies lengthy
processing and higher consumption of computational resources.
Similarly, increasing the number of epochs and the number of
layers could improve the search, but the processing would be
much longer.

On the other hand, the amount of data used in the modeling
corresponds to a period of approximately 1 year. Since the SIMONe
radars are still active, this amount of data could increase. This
would allow a better recognition of temporal patterns tomake better
estimates.

As for the input and output data, there is also a possibility for
improvement. Two paths can be followed. First, keep the same input
data window to predict fewer output steps. For example, one can
predict 8 steps corresponding to 1 day of records. Second, one can
increase the size of the input window to 112, corresponding to
2 weeks of records, while keeping the 16 output steps.

Detailed analysis of the predictions reveals a significant
deterioration in themetrics towards the final steps.This observation

justifies the exploration of predictions with a shorter time horizon
than the 16 steps, keeping the same input window. When
reconstructing the time series using blocks of 16 estimates, it was
observed that certain parts of these series did not correctly match
the actual data. This mismatch was mainly attributed to the low
precision of the estimates for the last steps. Despite the challenges,
the proposed hybrid model has shown better performance than the
model of dominant harmonics when comparing the predictions to
the actual 2023 data using RMSE and correlation metrics. In other
words, the hybrid model more accurately matched the actual data.
Possibly, the hybrid model can capture other significant waves of
planetary scale and mesoscale. This speculation will be evaluated in
future works.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

CM: Writing–original draft, Writing–review and editing.
JS: Writing–original draft, Writing–review and editing. MM:
Writing–review and editing. CL: Writing–review and editing. KK:
Writing–review and editing. DS: Writing–review and editing. RR:
Writing–review and editing.

Frontiers in Astronomy and Space Sciences 15 frontiersin.org

https://doi.org/10.3389/fspas.2024.1442315
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Mauricio et al. 10.3389/fspas.2024.1442315

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported and financed by PROCIENCIA (Peru), under
contract No 075-2021-FONDECYT.

Acknowledgments

Wealsowish to thank theLeibniz Institute ofAtmosphericPhysics
forprovidingMLTwindsfromSIMONeradarnetworks.Wealsothank
Jorge Chau for his suggestions that contributed to the development
of this work. Additionally, we acknowledge the collaboration of the
Estación Ramón Mujica of the Universidad of Piura and the Radio
Observatorio de Jicamarca of the Instituto Geofísico del Perú for
providing support in the operation of the SIMONe radar system.
Finally, we extend our gratitude to the Pontificia Universidad Católica

del Perú y la Universidad Nacional Agraria LaMolina for guiding the
methodology of data processing.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). “Optuna: a
next-generation hyperparameter optimization framework,” in In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Association for Computing Machinery), 2623–2631.

Ali, M., Khan, A., and Rehman, N. (2018). Hybrid multiscale wind speed forecasting
based on variational mode decomposition. Int. Trans. Electr. Energy Syst. 28 (1), e2466.
doi:10.1002/etep.2466

Carvalho, V. R., Moraes, M. F. D., Braga, A. P., and Mendes, E. M. A. M.
(2020). Evaluating five different adaptive decomposition methods for EEG signal
seizure detection and classification. Biomed. Signal Process. Control 62, 102073.
doi:10.1016/j.bspc.2020.102073

Chau, J. L., Urco, J. M., Vierinen, J., Harding, B. J., Clahsen, M., Pfeffer, N., et al.
(2021). Multistatic specular meteor radar network in Peru: system description and
initial results. Earth Space Sci. 8 (1), 1–22. doi:10.1029/2020EA001293

Conte, J. F., Chau, J. L., Yiǧit, E., Suclupe, J., and Rodríguez, R. (2024). Investigation
of mesosphere and lower thermosphere dynamics over central and northern Peru using
SIMONe systems. J. Atmos. Sci. 81 (1), 93–104. doi:10.1175/JAS-D-23-0030.1

Dhadly, M., Sassi, F., Emmert, J., Drob, D., Conde, M., Wu, Q., et al. (2023). Neutral
winds from mesosphere to thermosphere—past, present, and future outlook. Front.
Astronomy Space Sci. 9. doi:10.3389/fspas.2022.1050586

Dragomiretskiy, K., and Zosso, D. (2014). Variational mode decomposition. IEEE
Trans. Signal Process. 62 (3), 531–544. doi:10.1109/TSP.2013.2288675

Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M., Mlynczak, M. G.,
et al. (2021). NRLMSIS 2.0: a whole-atmosphere empirical model of temperature and
neutral species densities. Earth Space Sci. 8 (3). doi:10.1029/2020EA001321

Forbes, J. M. (1995). Tidal and planetary waves’. In. Geophysical monograph series,
edited by R. M. Johnson, and T. L. Killeen, 67–87. Washington, D. C.: American
Geophysical Union. doi:10.1029/GM087p0067

Gan, M., Pan, H., Chen, Y., and Pan, S. (2021). Application of the variational mode
decomposition (VMD) method to river tides. Estuar. Coast. Shelf Sci. 261, 107570.
doi:10.1016/j.ecss.2021.107570

Gasperini, F., Jones,M.A.,Harding, B. J., and Immel, T. J. (2023). Direct observational
evidence of altered mesosphere lower thermosphere mean circulation from a major
sudden stratospheric warming. Geophys. Res. Lett. 50 (7). doi:10.1029/2022GL102579

Hanifi, S., Lotfian, S., Zare-Behtash, H., and Cammarano, A. (2022). Offshore wind
power forecasting—a new hyperparameter optimisation algorithm for deep learning
models. Energies 15 (19), 6919. doi:10.3390/en15196919

Hussin, N. H., Yusof, F., Jamaludin, A. R., and Norrulashikin, S. M. (2021).
Forecastingwind speed in peninsularMalaysia: an application of arima and arima-garch
models. Pertanika J. Sci. Technol. 29 (1), 31–58. doi:10.47836/pjst.29.1.02

Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S.
B., et al. (2006). Control of equatorial ionospheric morphology by atmospheric tides.
Geophys. Res. Lett. 33 (15). doi:10.1029/2006GL026161

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M. (2018). Rainfall-
runoff modelling using Long short-term memory (LSTM) networks. Hydrology Earth
Syst. Sci. 22 (11), 6005–6022. doi:10.5194/hess-22-6005-2018

Liu, H., Yamazaki, Y., and Lei, J. (2021). Day-to-Day variability of the thermosphere
and ionosphere. Geophys. Monogr. Ser., 275–300. doi:10.1002/9781119815631.ch15

Liu, H.Li, Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., et al. (2018).
Development and validation of the whole atmosphere community climate model with
thermosphere and ionosphere extension (WACCM-X 2.0). J. Adv. Model. Earth Syst. 10
(2), 381–402. doi:10.1002/2017MS001232

Mauricio, C., Suclupe, J., Milla, M., López de Castilla, C., Karim, K., Rodriguez,
R., et al. (2023). “Short-term prediction of wind speed in the mesosphere and
lower thermosphere over Peru’s coastal north and central,” in 2023 IEEE CHILEAN
Conference on Electrical, Electronics Engineering, Information and Communication
Technologies (CHILECON), Valdivia, Chile, 05-07 December 2023 (IEEE), 1–6.

McCormack, J. P., Coy, L., and Singer, W. (2014). Intraseasonal and interannual
variability of the quasi 2 Day wave in the northern hemisphere summer mesosphere.
J. Geophys. Res. Atmos. 119 (6), 2928–2946. doi:10.1002/2013JD020199

Piani, C., Durran, D., Alexander, M. J., and Holton, J. R. (2000). A numerical study
of three-dimensional gravity waves triggered by deep tropical convection and their
role in the dynamics of the QBO. J. Atmos. Sci. 57 (22), 3689–3702. doi:10.1175/1520-
0469(2000)057<3689:ANSOTD>2.0.CO;2

Pigott, T. D. (2001). A review of methods for missing data. Educ. Res. Eval. 7 (4),
353–383. doi:10.1076/edre.7.4.353.8937

Rosa, L., La, G., and Sanchez, I. (2020). “Hybrid models based on mode
decomposition and recurrent neural networks for streamflow forecasting in the chira
river in Peru,” in Proceedings of the 2020 IEEE Engineering International Research
Conference, EIRCON 2020, Lima, Peru, 21-23 October 2020 (Institute of Electrical and
Electronics Engineers Inc).

Schneider, T. (2001). Analysis of incomplete climate data: estimation of mean values
and covariance matrices and imputation of missing values. J. Clim. 14 (5), 853–871.
doi:10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2

Son, N., and Jung, M. (2020). Analysis of meteorological factor multivariate
models for medium- and long-term photovoltaic solar power forecasting
using Long short-term memory. Appl. Sci. 11 (1), 316. doi:10.3390/
app11010316

Staszak, T., Strelnikov, B., Latteck, R., Renkwitz, T., Friedrich, M., Baumgarten,
G., et al. (2021). Turbulence generated small-scale structures as PMWE formation
mechanism: results from a rocket campaign. J. Atmos. Solar-Terrestrial Phys. 217,
105559. doi:10.1016/j.jastp.2021.105559

Suclupe, J., Chau, J. L., Federico Conte, J., Milla, M., Pedatella, N. M., and
Kuyeng, K. (2023). Climatology of mesosphere and lower thermosphere diurnal
tides over Jicamarca (12^ºS, 77 ^ºW): observations and simulations. Earth, Planets
Space. Springer Sci. Bus. Media Deutschl. GmbH 75, 186. doi:10.1186/s40623-023-
01935-z

Vincent, R. A. (2015). The dynamics of the mesosphere and lower thermosphere:
a brief review. Prog. Earth Planet. Sci. 2 (1), 4. doi:10.1186/s40645-015-
0035-8

Yang, S., Yang, H., Li, N., and Ding, Z. (2023). Short-term prediction of 80–88
Km wind speed in near space based on VMD–PSO–LSTM. Atmosphere 14 (2), 315.
doi:10.3390/atmos14020315

Frontiers in Astronomy and Space Sciences 16 frontiersin.org

https://doi.org/10.3389/fspas.2024.1442315
https://doi.org/10.1002/etep.2466
https://doi.org/10.1016/j.bspc.2020.102073
https://doi.org/10.1029/2020EA001293
https://doi.org/10.1175/JAS-D-23-0030.1
https://doi.org/10.3389/fspas.2022.1050586
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1029/2020EA001321
https://doi.org/10.1029/GM087p0067
https://doi.org/10.1016/j.ecss.2021.107570
https://doi.org/10.1029/2022GL102579
https://doi.org/10.3390/en15196919
https://doi.org/10.47836/pjst.29.1.02
https://doi.org/10.1029/2006GL026161
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1002/9781119815631.ch15
https://doi.org/10.1002/2017MS001232
https://doi.org/10.1002/2013JD020199
https://doi.org/10.1175/1520-0469(2000)057<3689:ANSOTD>2.0.CO;2
https://doi.org/10.1175/1520-0469(2000)057<3689:ANSOTD>2.0.CO;2
https://doi.org/10.1076/edre.7.4.353.8937
https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
https://doi.org/10.3390/app11010316
https://doi.org/10.3390/app11010316
https://doi.org/10.1016/j.jastp.2021.105559
https://doi.org/10.1186/s40623-023-01935-z
https://doi.org/10.1186/s40623-023-01935-z
https://doi.org/10.1186/s40645-015-0035-8
https://doi.org/10.1186/s40645-015-0035-8
https://doi.org/10.3390/atmos14020315
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Original data set
	2.2 Missing data imputation
	2.3 Data preprocessing
	2.4 Time serie decomposition
	2.5 Long short-term memory neural network
	2.6 Optuna
	2.7 Hybrid model
	2.8 Persistence model
	2.9 Model of dominant harmonics
	2.10 Evaluation of the hybrid model

	3 Results
	3.1 Data imputation
	3.2 VMD decomposition
	3.3 Evaluation of the hybrid model
	3.3.1 Comparison with persistence model
	3.3.2 Step analysis
	3.3.3 Comparison with the model of dominant harmonics


	4 Discussion and conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

