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Phosphorus availability from
olivine for biospheres

Josh Abbatiello1, John E. Henson1 and Matthew Pasek1,2*
1School of Geoscience, University of South Florida, Tampa, FL, United States, 2Department of Earth
and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States

Phosphorus plays a multifaceted role for all known life and hence understanding
its sources on the early Earth provides constraints on how life developed to
incorporate this element into its biochemistry. Currently, the major phosphorus
mineral group on the surface of the Earth are the apatites, which are poorly
soluble calcium phosphates and hence may not have been a good source of
phosphorus on the early Earth. An alternative source of phosphorus may be the
mineral olivine. Given that olivine makes up a large part of the upper mantle
of Earth and presumably other rocky planets and moons, it stands to reason
that olivine may be a potential phosphorus reservoir for prebiotic chemical
environments. Here we examine the phosphorus content of 10 olivine samples
from different terrestrial localities to determine their P content and P speciation.
We find that extracts of the samples contain varying amounts of phosphate, and
some contain pyrophosphate. Olivinemay have served as a source of phosphate
on the early Earth and possibly elsewhere in the solar system, and its dissolution
could have supplied this nutrient to a nascent biosphere.
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1 Introduction

Phosphorus is an element central to many aspects of modern biochemistry. The
phosphate moiety is important to several classes of biomolecules such as phospholipids that
make up cell membranes, metabolic molecules such as adenosine triphosphate (ATP), and
as part of the backbone of DNA (with deoxyribose) allowing for its polymeric structure. In
contrast to the other biogenically critical elements [carbon, hydrogen, oxygen, nitrogen, and
sulfur (C, H, O, N, and S or CHONS)], phosphorus does not possess a significant volatile
phase and does not participate in redox reactions over a large range of conditions commonly
present on the Earth’s surface. In life, organisms extract phosphorus from mineral sources
or remove it from water or recycle it from existing biomolecules. However, this presents
a major hurdle for understanding how biologically important phosphorus molecules
developed prior to the formation of life on rocky planets. The apatite mineral group
[including hydroxyapatite (Ca5(PO4)3OH) and fluorapatite (Ca5(PO4)3F)] is considered to
have been the source of phosphate on the surface of the early Earth and likely elsewhere,
but the apatite mineral group is by and large unreactive and insoluble in water, which
may have prevented phosphorus from being bioavailable on a large scale (Gulick, 1955).
Given the importance of phosphorus to the development of terrestrial life, phosphorus’s
abundance and its availability may serve as important indicator of the habitability of
a planet or moon, such as Mars (Adcock et al., 2013) and Enceladus (Hao et al., 2022;
Postberg et al., 2023).
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If apatite was the primary source of phosphate on the early
Earth this leads to what is known as the “phosphate problem”
in the origin of life community (Fernández-García et al., 2017).
Apatite’s poor solubility and low reactivity make it a rather difficult
material from which to make the key organics of life (Pasek,
2008). Typical concentrations of phosphate in the environment are
on the order of 10–6 M and below (Tyrrell, 1999) whereas many
phosphorylation experiments use levels much higher than that, on
the order of 0.1–1 M (Xu et al., 2019; Cheng et al., 2002; Reimann
and Zubay, 1999). However, some environments may provide
elevated phosphate. Recently, Last Chance Lake and Goodenough
Lake in Canada were demonstrated to contain up to 37 mM of
phosphate, the highest natural levels recorded thus far (Haas et al.,
2024), though the source of this phosphate still ultimately was
mineral dissolution during weathering. Other hypotheses have been
put forth to describe how the environment may have afforded an
increased phosphate reactivity including alternative solvents that
are not pure water to promote dehydration, using condensing
agents to promote water loss, heating phosphates with organic
compounds, and the possibility that reduced phosphorus sources
that oxidize to produce reactive phosphates (Lago, 2021; Schoffstall,
1976; Pasek et al., 2007; Lohrmann and Orgel, 1968).

In addition to the apatite group, the mineral olivine
((Mg,Fe)2SiO4) also bears phosphorus, and may have been a
major source of phosphate on the early Earth by virtue of its
ubiquity (Walton et al., 2021a). Olivine is a mineral that is a primary
component of the Earth’s upper mantle and is the first to crystallize
out of magma. Olivine is also common to many meteorites
(Bridges and Warren, 2006). Olivine has two compositional end
members, forsterite (Mg2SiO4) and fayalite (Fe2SiO4), and natural
occurrences are generally a solid solution of these two, usually
with more forsterite (Fo) than fayalite (Fa) in the ultramafic
rock peridotite (Elias and Alderton, 2020). Peridotite is a major
component of the Earth’s upper mantle believed to be formed
by partial melting of the mantle with the rising molten portion
of mantle (Elias and Alderton, 2020). Olivine is initially more
forsteritic when it crystallizes out of magma, potentially allowing
for phosphorus incorporation due to lattice mismatching (see
below) (Welsch et al., 2013). Recently, olivine has been shown to
incorporate phosphorus at a higher rate than previously thought
due to a number of factors (Agrell et al., 1962; Bekker et al., 2021;
Boesenberg and Hewins, 2010; Li et al., 2017; Lynn et al., 2017;
McKibbin et al., 2019; Shea et al., 2019; Shea et al., 2015; Walton,
2022; Welsch et al., 2014; Walton et al., 2021b).

Phosphoran olivine is a variety of olivine that bears a P2O5
content greater than 1weight%.Most olivine is not phosphoran, and
has a largely variable phosphorus content ranging from a lower end
of 0.07–0.15 weight % (Brunet and Chazot, 2001) to an upper range
of 0.3–0.6 weight % (Welsch et al., 2013). Under normal olivine
crystal growth rate, phosphorus is an incompatible element in the
olivine lattice, meaning due to the ionic radius and valence of
phosphorus it will preferentially partition into the melt (Lynn et al.,
2020). Phosphorus will slowly diffuse into the olivine crystal and
only in these very small amounts (Baziotis et al., 2017). During rapid
formation (growth rate of 10–6 m/s) of an olivine crystal, branch
misorientations and lattice mismatching may occur potentially
allowing for a higher percentage of phosphorus incorporation into
the crystal structure (Welsch et al., 2014). Due to a similarity in

atomic size, phosphorus (P5+) likely replaces silicon (Si4+) in the
structure of olivine during this rapid growth (Welsch et al., 2013).
Further, a less-stiff crystal lattice during rapid growth may be the
explanation for phosphorus incorporation (Shea et al., 2019). The
composition of the melt and the crystallization process of olivine
seem to be the main controls on the incorporation of phosphorus
into the olivine lattice (Ersoy et al., 2019).

The generally accepted substitution mechanism for most olivine
is phosphorus (P5+) replaces silicon (Si4+) in the tetrahedral site
(Equation 1) (Milman-Barris et al., 2008). However, Boesenberg
and Hewins (2010) demonstrated a vacancy (denoted “□”) in the
octahedral site with phosphorus substitution correlated to a cation
deficiency (Equation 2) in phosphoran olivine. They also concluded
that phosphoran olivine is metastable and forms from a phosphorus
rich melt, with the maximum amount of P2O5 being around 27
weight %. Phosphorus substitution in the octahedral site could also
be from the phosphite (P3+) ion balancing out the deficit of charge if
P2O5 (P5+) and P2O3 (P3+) were both present in the olivine grain
(Equation 3). Fourthly, aluminum is a common ion found zoned
in olivine displaying similar patterns to phosphorus [(Welsch et al.,
2013; Shea et al., 2019; Baziotis et al., 2017; Ersoy et al., 2019;
Milman-Barris et al., 2008)]. Milman-Barris et al. (2008) examined
olivine that exhibited increasing aluminum and chromium (both 3+
cations) content as phosphorus increased. It is plausible that some
of the charge balancing occurring is phosphite (also 3+) substitution
into the olivine structure (Equation 4).

5Si4+ = 4P5+ +□ (1)

4VIM+2 + 2IVSi4+↔ 3VIM+2 + 2IVP5+ + VI□ (2)

2Si4+ = P3+ + P5+ (3)

M2+ + Si4+ = P3+ +M3+ (4)

To this end, we investigated 10 olivine samples from around the
world to check for the presence of alternative P redox states (e.g.,
Equations 3, 4), and to better constrain the amount of P released
from olivine during extraction with a chelating agent. These data
may then better constrain the role of extremely abundant olivine as
a source of P on the early Earth and on other rocky planets.

2 Methods

The ten olivine sample localities are provided in Table 1, along
with the median composition (in terms of Fo%, or percentage
Mg vs. Mg + Fe). Samples were examined by XRD to verify
they were only olivine (Feng et al., 2024). Between 0.5 and
0.6 g of olivine crystals were crushed to a fine powder using a
mortar and pestle, placed in glass vials with 1.5 mL of sodium
ethylenediaminetetraacetic acid (Na4EDTA) (Sigma Aldrich) which
was brought up to a pH of 13 using sodium hydroxide (Alfa Aesar)
and placed onto a magnetic stir plate for 1 week. After extraction,
the liquid was filtered using 0.22 μm filter tips (Biomed Scientific)
fixed to a 1 mL syringe and placed on watch glasses to dry for
2 days. Once dried, 500 μL of D2O (Sigma Aldrich) was added
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TABLE 1 Locations of olivine samples analyzed and corresponding forsterite range.

Location County or sublocation Composition

North Carolina, United States of America Jackson County Fo80-94 (Feiss et al., 1991)

New Jersey, United States of America Gloucester County Fo57-70 (Gorring and Naslund, 1995)

Hawaii, United States of America Papakōlea beach Fo80-90 (Garcia, 1996)

Norway Vanylven municipality Fo92-93 (Osland, 1997)

Pakistan Sapat Gali (Kohistan) Fo78-92 (Jan et al., 1993)

Spain Almeria Province Fo89-92 (Trommsdorff et al., 1998)

New Mexico, United States of America Taos Fo49-83 (Aoki, 1967)

Mexico Popocatépetl Fo88-90 (Roberge et al., 2007)

Arizona, United States of America San Carlos Fo90-91 (Abramson et al., 1997)

Italy Terragnolo Fo87-88 (Renna and Tribuzio, 2011)

to each watch glass, mixed, and using a pipet the solutions were
placed into Eppendorf tubes for centrifugation to separate the
solution from any remaining solid. The supernatants were placed
in Wilmad Nuclear Magnetic Resonance (NMR) tubes (Sigma
Aldrich) and were analyzed via Bruker Neo 600 MHzNMR running
for 6,000 scans, for H-decoupled 31P NMR (242.8609732 MHz)
at the University of South Florida (USF) Interdisciplinary
NMR Facility. All spectra were analyzed using Mnova version
14.3.3 package.

100 mg of phosphonoacetic acid (C2H5O5P) (98%, Sigma
Aldrich) was added into 1 mL of Milli-Q 18 mOhm deionized
water purified in house using a Barnstead (Dubuque, IA)
Nanopure Diamond Analytical combined reverse osmosis-
deionization system. This resulted in a phosphonoacetic acid
solution of 0.7 M. 20 μL of the phosphonoacetic acid solution
was added to each NMR tube and analyzed at the same USF
NMR facility.

The analysis for total Pwas performedon aPerkin-ElmerNexion
2000 Quadrupole Inductively Coupled Plasma–Mass Spectrometer
(ICP-MS). The same EDTA process was employed again to prepare
the samples. 400 μL was diluted to 10 mL using the same deionized
water. In between each sample analysis a blank of deionized water
with a solution of 15% ethanol (C₂H₆O) was ran through all parts
of the system followed by a 5% solution of trace metal grade nitric
acid (HNO3). The solutions were used to clean the lines and the
internal components of the ICP to prevent build-up of organic
residue. A calibration curve was made using a solution of P (High
Purity Standards, 1,000 ppmwith serial dilutions to 1 ppm). A blank
of EDTA was also measured to ensure no cross contamination
was occurring from that source. The measurement of the EDTA
measured at less than 10 ppb. A nine-point calibration curve was
used to create a linear equation which was then manually applied
to each sample after analysis was complete. The relative standard
deviation (RSD) of the samples averaged out to be less than 3%
throughout the entire run.

3 Results

The phosphorus speciation of 10 olivine samples was examined
using 31P NMR (Figure 1). Phosphate of varying quantities was
detected in each of the 10 samples. Pyrophosphate was clearly
detected in the samples from Hawaii and Pakistan.

Three methods were employed to determine the total phosphate
concentration extracted for each sample (Table 2; Figure 2).
In the first method, a known concentration and quantity of
phosphonoacetic acidwas added to each olivine extract.The samples
were then run, and spectra analyzed by taking the integrations
of phosphonoacetic acid and phosphate peak. The mass of P
extracted was then determined using the integrated ratio and
amount of initial olivine sample. In the second method, the
phosphate NMR “signal” was compared at its highest intensity
to three times the standard deviation of the “noise” ranges. The
signal value was divided by the average noise and squared to obtain
a concentration as per Pasek et al. (2007). These methods were
contrasted to the concentration determined by ICP-MS.

4 Discussion

The mineral apatite is usually considered to be the de facto
source of prebiotic phosphorus by prebiotic geochemists as it
comprises 80% of the modern phosphorus reservoir, and apatite
is soluble in mantle melts and common in the continental crustal
(Walton et al., 2021a). The potential of olivine to be a major source
of phosphorus on the early Earth has received comparatively little
consideration (Walton et al., 2021a).

Pasek et al. (2022), in a study of serpentinites and phosphorus,
hypothesized that in the presence of iron (II), the reduction of
phosphate to phosphite could occur in the olivine itself, and that
serpentinization merely releases this phosphorus as phosphite. In
this study, we find no evidence of phosphite in 10 terrestrial olivine
samples from different localities, suggesting that P in olivine is

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2024.1441187
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Abbatiello et al. 10.3389/fspas.2024.1441187

FIGURE 1
NMR spectra showing phosphate (PO4

3-) peaks at roughly 2.7 ppm. The Hawaiian and Pakistani olivine samples show pyrophosphate (P2O4
7-) peaks in

circles. The samples from Spain and new Jersey may also have a peak corresponding to pyrophosphate.

TABLE 2 Phosphorus content extracted and relative quantities of
phosphate (Pi) and pyrophosphate (PPi).

Location P (ppm) Pi: (%) PPi

North Carolina, United States of America 149 100 ND

New Jersey, United States of America 4.8 100 ND

Hawaii, United States of America 34.4 63 37%

Norway 21 100 ND

Pakistan 6.3 65 35%

Spain 8.3 100 ND

New Mexico, United States of America 3.5 100 ND

Mexico 5.3 100 ND

Arizona, United States of America 3.3 100 ND

Italy 3.2 100 ND

present only as P5+. Therefore, the serpentinization process likely
leads to phosphate reduction to phosphite.

Pyrophosphate was in olivine samples from Hawaii and
Pakistan, and possibly in the samples from Spain and New Jersey.

Phosphate has been shown at high temperatures (∼1,000 K) in the
presence of silicate glass to be polymerized into pyrophosphate
at a large percentage (Mysen, 1996). At such temperatures, the
phosphate begins to exchange oxygens with the silicate species,
resulting in a more polymerized phosphorus and less polymerized
silicate (Mysen, 2011). The relative quantity of phosphate to
pyrophosphate (as measured through peak integration) in the
Hawaiian olivine is 63% phosphate and 37% pyrophosphate and
65% phosphate and 35% pyrophosphate in the Pakistani olivine,
suggesting some polymerization of phosphate to pyrophosphate
during crystallization, or perhaps some other process is effecting
this change. Given the absence of pyrophosphate in most
samples, the formation of pyrophosphate may be a mineralogic
or petrologic process, as opposed to being an artifact of our
sample preparation procedure. Notably pyrophosphate may have
been relevant to the development of life on the earth, based on
the presence of pyrophosphatase enzymes (Baltscheffsky et al.,
1966), where pyrophosphate serves as an energy molecule akin
to ATP. However, some of these enzymes are not widespread
across all domains of life (Segami et al., 2018) hence natural
pyrophosphate may have had a mixed effect on early biosystems:
it may have been useful as a biologic energy molecule but
may have also not been easy for early organisms to use as a
P source.

The presence of phosphorus in olivine provides a broader
context for other planets. For example, Chassingnite meteorites
from Mars (as part of the SNC Martian meteorites) are
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FIGURE 2
Scatter plot showing trend of NMR signal to noise ratio (“x”) compared to samples spiked with phosphonoacetic acid (circles), both compared to results
from ICPMS.

dunites [composed of ∼90% olivine (Mason, 1981)]. The
Chassigny meteorite has 0.018 wt% P within it (Banin et al.,
1992; Maciá et al., 1997). It is plausible that dunites on Mars
could have served as P sources, given their possible wide-
spread occurrence. Olivine located on the Martian surface
have been postulated as indicative of primitive mantle magmas
(McSween et al., 2006) and various olivine cumulate outcrops
have been identified, in some cases composing up to 65% of
the rock material present (Liu et al., 2022; Mustard et al., 2005;
Hamilton and Christensen, 2005).

For these reasons, olivine could have been a source of
phosphorus on Mars to a nascent, early biosphere. Although
extractions ofMars dunites like the extractions performed above are
too costly given the scarcity of thismaterial, wewould also anticipate
Mars olivine to be a source of pyrophosphate, though at a lower scale
than of phosphate.

Europa and Enceladus are both of particular interest when
exploring the potential of olivine as a source of phosphorus on other
worlds where life may have developed. Due to the subsurface oceans
likely present on both moons (Carr et al., 1998; Pappalardo et al.,
1999; Roberts and Nimmo, 2008; Thomas et al., 2016), water-rock
interactions between olivine and the ocean may have liberated
phosphate into water. Olivine present in the mantle boundary
interacting with the ocean could lead to the release of phosphorus
from the olivine as phosphate, as well as through the process
of serpentinization (Pasek et al., 2022). The crust and mantles of
both Europa and Enceladus have been theorized to be composed
of olivine similar to that of Earth’s mantle (Schubert et al., 2009;
Hsu et al., 2015). Hao et al. (2022) argued for the efficient release
of phosphate by binding of divalent cations with carbonate from
CO2 and by enhancing dissolution with lower pH (Hao et al.,
2022). Evidence for higher phosphate at Saturn’s moon Enceladus is

further supported by analyses by the Cassini Cosmic Dust Analyzer,
which suggested that sodium phosphates were a component of
some of the icy particles of Saturn’s e-ring (Postberg et al., 2023),
the source of which appears to be Enceladus. This suggests
the subsurface water at Enceladus may bear more phosphate
than previously envisioned (Carr et al., 1998), with olivine as a
potential source.

In comparison to the measured P contents of olivine
(Welsch et al., 2013; Agrell et al., 1962; Bekker et al., 2021;
Boesenberg and Hewins, 2010; Li et al., 2017; Lynn et al., 2017;
Brunet and Chazot, 2001; Baziotis et al., 2017; Ersoy et al., 2019;
Buseck and Clark, 1984), the average phosphorus content we
extractedwas between 3 and 150 ppm.TheEDTAextractionmethod
has been shown to work with other samples to establish phosphorus
speciation including soils (Bowman and Moir, 1993; Turner et al.,
2003), fulgurites (Pasek and Block, 2009), and serpentinites
(Pasek et al., 2022). The amount of P extracted by this method
is typically 50–90+% (Turner et al., 2003). We chose to use a soil
science P extraction procedure given these prior successes, and the
fact that the EDTA solution does not appear to alter phosphorus
speciation. In contrast, a more aggressive extraction procedure
(using a strong acid such as HCl or HF) would likely have caused
the hydrolysis of P species including pyrophosphate and possibly
caused oxidation of any reduced P compounds. That said, the
relatively low extraction using this method contrasts with these
prior measurements and suggests that the phases extracted with
EDTA are likely easier to extract when linked to chelatable ions
(such as Ca and Fe). The phosphate in these samples is likely
bound to Mg and substitutes for Si. For this reason, we posit that
the likelihood of olivine serving as a P-supplying material on the
early Earth and other planets is instead limited to the dissolution
of olivine.
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4.1 Olivine as a model
phosphorus-supplying material

We investigate two scenarios to constrain the release of P
from olivine dissolution in the environment. The first scenario
(Equation 5) considers the low release from a global, perfectly
spherical shell/crust of olivine dissolving in a global ocean. The
second (Equation 6) considers a localized regionwhere small olivine
grains dissolve to release P, modeled after the green sand Papokolea
Beach, Hawaii. Note that each of these cases explores the initial,
linear dissolution of olivine (which is usually given in length over
time). As dissolution proceeds, the rate of dissolution slows due to
increasing concentrations of ions, among other factors (Hausrath
and Brantley, 2010). As such, they represent maxima and will likely
decrease to a steady-state system where P is released at the same
rate it is removed (for instance, by crystallization of phosphates or
through adsorption).

In the minimal scenario, we consider the release of P from
olivine within the whole Earth’s crust, assuming the crust is a sphere.

PEarth = (SAEarth × kOli) ×%oliUp ×%Poli (5)

In this calculation SAEarth is the surface area of the Earth or 5.1×
108 km2, kOli is the dissolution rate of olivine in water or 7× 10−14

mol/cm2/s at 298K and 1 atm of pressure (Pokrovsky and Schott,
2000), %oliUp is the percentage of olivine in the upper mantle or
55% (Langmuir and Broecker, 2012), and %Poli is the percentage
range of phosphorus estimated to be in terrestrial olivine samples or
0.07–0.6 weight % (Bekker et al., 2021; Brunet and Chazot, 2001).
From these data, the total potential phosphorus released globally
through the dissolution of olivine ranged from 6× 108 − 5 .7× 109

kg/year. This corresponds to a molarity of 2.1× 10−13 − 4.2× 10−12

phosphorus present in the ocean released each year.
In the olivine sand beach environment, the P released can be

much higher locally. We determine this through:

PBeach = (SATotGrains × kOli) ×%Poli (6)

where SATotGrains is the estimated surface area of the total grains
of olivine sand on Papokolea Beach or 7.7× 1013 m2 (see SI), kOli
is the dissolution rate of olivine in water or 7× 10−14 mol/cm2/s,
and %Poli is the percentage range of phosphorus estimated to be in
terrestrial olivine samples or 0.07–0.6 weight%. From these data, the
total potential phosphorus released locally through the dissolution
of olivine ranged from 2× 102 − 2× 103 kg P/year. This corresponds
to amolarity of 0.5 to 4 Mphosphorus present in the estimatedwater
surrounding the beach, which would certainly be supersaturated
with respect to phosphate mineral precipitation. This number hence
represents an ideal case without precipitation, and it is much more
likely that the concentration of phosphate would be limited by the
decreasing dissolution of olivine and onset of precipitation of other
minerals, such as serpentinite minerals. Fuhr et al. (2022) present
data arguing a maximum olivine dissolution of ∼1 mM, at which
point other minerals begin to precipitate (Fuhr et al., 2022). Note
that in both this case (Equation 6) and the minimal calculation
(Equation 5), dissolution would compete with reaction of olivine
with water to form serpentinite minerals. Which process would
dominate would be a function of local pressure, temperature, and
other conditions (Olsen et al., 2015).

PApatite = (%ApCrust ×MCrust ×%Phos) ×Kapatite (7)

We compare these olivine dissolution values to the potential
phosphorus released via apatite on a global scale using Equation 7
where MCrust is 1.40× 1020 kg (Walton et al., 2021a), %ApCrust
is the percentage of the crust being composed of apatite
(Jahnke, 1992), %Phos is the percentage of phosphate in the
bulk Earth (crust) or 0.15%, and Kapatite is the dissolution
rate of apatite in water or 8.16× 10−10-3× 10−7 mol m−2 s−1

(Adcock et al., 2013). From these data, the total potential
phosphorus released globally through the dissolution of apatite
ranges from 1× 108 and 5× 1010 kgP/year. This range fits well
with previously modeled ocean apatite values (1.4× 109 kg/yr-1

and 4.2× 1010 kg/yr (Jusino-Maldonado et al., 2022; Paytan
and McLaughlin, 2007). This corresponds to a molarity
range of 1.19× 10−13 − 3.98× 10−11 of phosphorus present
in the ocean.

It is apparent from these models that olivine dissolution
may exceed phosphate release from the dissolution of apatite,
especially in localized environments. It is unclear though what
occurs following this release. The phosphorus could immediately
crystallize into apatite, via reaction with Ca2+. It is possible that
the phosphorus may react with iron and reduce to phosphite
(Herschy et al., 2018). It may also adsorb onto silica gel and
create microenvironments for production of prebiotically relevant
molecules (Westall et al., 2018). Nonetheless, the release of
phosphate from olivine dissolutionmay have provided an additional
source of bioavailable phosphate, through the slow dissolution of
abundant olivine.

5 Conclusion

Phosphorus as phosphate was present in all 10 terrestrial olivine
samples from different localities. Phosphorus was mainly present as
phosphate, but some amounts of pyrophosphate were in at least two
samples. The phosphate in the samples ranged from 3.2–149 ppm
released during these extractions. Pyrophosphate was the only other
P species observed released from olivine. The potential for olivine to
be a viable source of phosphorus on the early Earth seems promising.
The range of phosphorus in olivine on a global scale is equal to
and in some cases greater than that of apatite. This holds true on
a local environment scale as well such as the one modeled for
Papokolea beach, Hawaii. Although olivine beaches are uncommon
today, they may have been more prevalent on an early Earth where
island arc accretion would have helped form the early crustal rocks
[e.g. (Korsch et al., 2011)].
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