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Intense ionization enhancements in the Earth’s ionosphere, known as sporadic-E
(Es), can degrade and severely disrupt the propagation of radio signals. Although
many previous studies have analyzed the characteristics and morphologies of
sporadic-E, few efforts have attempted to model global Es occurrence rates
(ORs) at high time resolutions. This study develops a global empirical model
of blanketing sporadic-E occurrence rates using a Karhunen–Loéve Expansion
(KLE) of a global OR climatology built with Global Navigation Satellite System
radio occultation (GNSS-RO) and ionosonde observations. Using an fbE ≥
threshold of 3 MHz, the model outputs a blanketing sporadic-E OR for a given
geomagnetic latitude, longitude, day of year, and local solar time. The model
outputs are compared to digisonde observations at four sites with varying
geomagnetic latitudes, resulting in correlation coefficients ranging from 0.5 to
0.9 for monthly averaged observations and an uncertainty of 11%. Furthermore,
the average uncertainty is estimated to be 12%. This Global Empirical Model
of Sporadic-E Occurrence Rates (GEMSOR) is capable of providing blanketing
sporadic-E OR estimates for global radio frequency (RF) operations.

KEYWORDS

ionosphere, sporadic-E, radio occultation, global climatology, Karhunen–Loéve
Expansion

1 Introduction

Elevated metallic ion concentrations in the E-region of the ionosphere, known as
sporadic-E (Es), can significantly impact skywave radio propagation by acting as a
mirror to high-frequency [HF; McNamara (1991)] and, occasionally, very-high-frequency
(VHF) signals, such as amateur radio (Neubeck, 1996) and long-distance shipping
information links (Chartier et al., 2022). These vertically thin layers can also severely
perturb Global Navigation Satellite System (GNSS) signals (Zeng and Sokolovskiy, 2010),
which can cause low-Earth orbit (LEO) position and timing disruptions from Es-
induced scintillation (Kintner et al., 2007; Yue et al., 2016). Furthermore, over-the-
horizon radar (OTHR), which uses HF signals and can provide detection ranges over
thousands of miles, is of special interest to the aviation industry and military applications
(Headrick et al., 2008) but is extremely susceptible to Es impacts (Thayaparan and
MacDougall, 2005; Cameron et al., 2022). For these reasons, estimates of sporadic-E
occurrence can provide valuable information to technological efforts relying on skywave
or trans-ionospheric radio wave propagation.
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Sporadic-E is generally agreed to be caused by persistent
metallic ions in the E-region of the ionosphere, and these ions
are acted upon by forces caused by wind shears, tides, and gravity
waves in mid-latitude regions, electromagnetic field (gradient)
instabilities at equatorial regions, and high-energy particles driven
by convection electric fields at high latitudes and poles (Whitehead,
1989; Mathews, 1998; Haldoupis et al., 2007). These forces result
in the formation of Es layers that can range in size from
kilometers to several hundred kilometers, in distinct layers 6–10 km
apart, at altitudes of 90–120 km, with lifetimes in the order of
hours (Cathey, 1969; Whitehead, 1989; MacDougall et al., 2000;
Chu et al., 2014; Maeda and Heki, 2015).

While many techniques have been used to monitor sporadic-
E, including incoherent scatter radars (ISRs) (Mathews (1998);
Hysell et al. (2009)), Super Dual Auroral Radar Network
(SuperDARN) (Kunduri et al. (2023)), and long-wavelength arrays
(LWAs) (Obenberger et al. (2021)), global Es coverage requires
a large number of observations spread throughout the globe.
Currently, global Es observations are provided by ionosondes
(Smith, 1957; Merriman et al., 2021) or GNSS radio occultation
(RO) (Wu et al. (2005); Chu et al. (2014); Arras andWickert (2018);
Niu et al. (2019); Yu et al. (2020). Ground-based GNSS receivers
have also been used tomonitor Es (Maeda andHeki, 2015; Sun et al.,
2021), but they are limited to intense layers with critical sporadic-E
frequencies, foEs, greater than∼16 MHz, while the unique geometry
of GNSS-RO observations allows for strong perturbations by the
vertically thin Es layers (Wu et al., 2005; Zeng and Sokolovskiy,
2010; Emmons et al., 2022). While ionosondes provide a direct
measurement of sporadic-E layers (Reddy and Mukunda Rao,
1968), the integrated nature of GNSS-RO observations produces
ambiguities in the measurements, which have produced substantial
discrepancies between Es parameter estimates (Emmons et al., 2023)
and occurrence rates (Carmona et al., 2022).

Taking into account these observational challenges, many
studies have largely focused on examining ionosphere climatology
using GNSS-RO and/or ionosonde data, with many focusing on
describing the Es intensity or occurrence rate (OR) (Niu et al., 2019;
Yu et al., 2020; Gooch et al., 2020; Merriman et al., 2021; Ellis et al.,
2024). Several studies have developedmorphologies or climatologies
of sporadic-E ORs, but limited data density generally results in a
trade-off between high spatial or high temporal resolution (Smith,
1957; Arras and Wickert, 2018; Arras et al., 2022a; Hodos et al.,
2022). Recently, global models for determining the intensity of
sporadic-E have been created fromGNSS-ROobservations using the
maximum amplitude scintillation index, S4-max, as a proxy for the
sporadic-E intensity (Yu et al., 2022; Tian et al., 2023).The relatively
large GNSS-ROdata density over space and time allows the intensity
models to perform spatiotemporal fits or training directly on the
RO dataset.

In contrast, for OR models, the overall spatiotemporal data
density is drastically reduced via the requirement to calculate ORs
using a sufficiently large number of data points within a bin.
For example, Hodos et al. (2022) developed OR climatology from
ionosonde and GNSS-RO observations that required at least 25
measurements within a spatiotemporal bin to cap the standard
error at 10%, which limited the final climatology to monthly 5°×
5° latitude–longitude or seasonal 12-min× 5° time-latitude bins.
This reduction in temporal resolution does not allow for direct

fitting or training of spatiotemporal data, as performed for the Es
intensity models. While ionosonde-based OR climatologies have
the potential to investigate shorter temporal scales due to the
regular ∼15-min sounding cadence, the large spatial gaps between
ionosonde sites cause large uncertainties in OR estimates between
sites (Smith, 1957; Merriman et al., 2021).

However, considering the practical implications of blanketing
Es occurrences, there is a clear interest in providing an empirical
model of Es ORs with high spatiotemporal fidelity and confidence,
which is the goal of the proposed Global Empirical Model
of Sporadic-E Occurrence Rates (GEMSOR) model. While the
model developed by Hodos et al. (2022) provided global spatial
and temporal trends of sporadic-E occurrence, the coarse time
resolution makes the dataset impractical as a model. To develop
a practical model with appropriate time resolution, GEMSOR
uses a Karhunen–Loéve Expansion (KLE) of the climatology
developed by Hodos et al. (2022) with interpolation between
monthly OR maps. This interpolation drastically improves the
temporal resolution from monthly to hourly, thereby providing
a global empirical model of blanketing sporadic-E ORs for fbEs
≥ 3.0 MHz as a function of geomagnetic latitude, geographic
longitude, day of year, and local solar time. Details of the model
development are outlined below, along with the results of a
validation effort using ionosonde observations from four sites with
varying geomagnetic latitudes.

2 Materials and methods

2.1 Dataset development

Hodos et al. (2022) created global maps of Es ORs using two
different GNSS-RO techniques and ionosonde soundings from data
covering 2006–2019, resulting in global ORs for fbEs ≥ 3 MHz
and fbEs without an intensity threshold. They produced monthly
global maps of fbEs ORs binned in 5° geomagnetic latitude × 5°
geographic longitude intervals, as well as seasonal maps binned
in 5° geomagnetic latitude × 12-min bins. The current study only
examined the occurrence rates of fbEs ≥ 3.0 MHz (moderate fbEs)
by using the monthly results obtained by Hodos et al. (2022) by
the application of the RO-based Es detection technique developed
by Chu et al. (2014) and further adjusted by Carmona et al.
(2022). Two additional modifications to the analysis conducted
by Hodos et al. (2022) were implemented. First, this study only
sought to model global moderate-fbEs ORs during geomagnetic
quiet conditions, defined as a planetary K (Kp) index ≤ 4 and an
Auroral Electrojet (AE) index < 500 nT, in contrast to 200 nT used
by Hodos et al. (2022). This was found to be in agreement with
the observations of Kamide and Akasofu (1983) and simultaneously
increased the number of usable observations from 4,595,998 to
10,101,710. Second, the temporal binning of the 5°× 12-min data
was increased to 1 h. This increase resulted in the development
of a more manageable model by reducing the temporal space
being modeled as well as increasing the observations in each
spatiotemporal bin on average.

These observations are displayed in Figure 1, and we can
see that the GNSS-RO observations vary more significantly over
geomagnetic latitude than longitude or local solar time. The large
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FIGURE 1
Top left: total observation count for GNSS-RO spatial measurements. Top right: total observation count for GNSS-RO spatiotemporal measurements.
Bottom left: total observation count for digisonde spatial measurements. Bottom right: total observation count for digisonde spatiotemporal
measurements. GPS-RO observations provide greater global coverage with lower data density than digisonde observations that provide higher data
density at the cost of global coverage.

number of digisonde observations is also apparent and results in
pronounced banding in the spatiotemporal data.

The presented model was developed using geomagnetic latitude
and is defined as the dip angle or magnetic field inclination at an
altitude of 100 km, as established by the World Magnetic Model
(WMM). The average inclination from the 2010 WMM epoch was
used for climatology and model development (Maus et al., 2010).

As described by Hodos et al. (2022), the sparsity of the COSMIC
dataset and the requirement of at least 25 observations per bin result
in a spatial resolution limited to 5° latitude × 5° longitude. Bins
that do not satisfy this minimum observation count do not have
a calculated OR and are consequently set to 0. This ensures there
are no gaps in the data prior to model development. This spatial
resolution resulted in global fbEs OR maps for each month of the
calendar year with an average of 85% of spatial bins (∼2296/2701)
having a calculable OR throughout the year. More than half (56%) of
the insufficient-observation bins were located beyond 75°N or 75°S.
Most of the remaining low-observation bins were located between
30°N and 30°S and 0° E and 150° E. These spatially binned monthly
data are called spatial data.

This study chose to integrate data over longitude in order
to increase the temporal resolution, allowing the development of
monthly fbEs OR maps with a spatial resolution of 5° geomagnetic
latitude and a temporal resolution of 1 h. These data are called

spatiotemporal data, with an average of 97% of the spatiotemporal
bins (∼861/888) containing a calculablefbEsOR, with 100% of these
being between 75° N and 75° S.

To reduce the discontinuities resulting from the incorporation
of irregularly spaced ionosonde sites combined with asymmetric
spatial observation densities (Figure 1), both data sets were filtered
using a 2D Gaussian smoothing kernel. This has the added benefit
of adjusting bins that were previously set to 0 due to insufficient
observations to a value dependent on its neighboring bins.
Calculating the average difference between the original climatology
and the Gaussian-filtered climatology on a monthly basis and
averaging over a year yielded an ORmean absolute difference of 2%
for both the spatial and spatiotemporal data.

2.2 Model development

Karhunen–Loéve Expansion (KLE) has many different names,
including principal component analysis (PCA), proper orthogonal
decomposition (POD), and empirical orthogonal functions (EOFs)
(Kirby, 2000; Björnsson andVenegas, 1997).The terminology ofKLE
is used throughout this report because it was used in the primary
reference, Kirby (2000). KLE allows recasting each dataset as a
combination of coefficients andmodes: X = ΨA, where X is anN× P
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FIGURE 2
Left: cumulative sum of the normalized eigenvalues from largest to smallest for both the spatial and spatiotemporal data. Right: value of each
normalized eigenvalue from largest to smallest for both the spatial and spatiotemporal data. Each dataset only requires two modes to explain ∼90% of
the variance.

datamatrix withN discrete data positions and P steps in time (Kirby,
2000). This matrix has also been mean subtracted over time (P). In
the spatial case, X is labeled Xϕθ and consists of 12 column vectors,
one for each month, with each element of the vector representing
the occurrence rate for a distinct spatial bin. The combination of
geomagnetic latitude, ϕ, and geographic longitude, θ, results in
a (37⋅73)× 12 or 2701× 12 matrix. In the spatiotemporal case, X
is labeled Xϕt and consists similarly of 12 column vectors, with
each element pertaining to a discrete spatiotemporal bin, i.e., each
combination of geomagnetic latitude, ϕ, and hourly local solar time
t. In simpler terms, the monthly global maps have been converted
to arrays representing each month and ordered chronologically for
both the spatial and spatiotemporal cases.

Ψ is an N×N matrix of column-wise eigenvectors of the
covariance matrix and will be referred to as the modes. A is an N×
P matrix of expansion coefficients, and both of these matrices are
shown in Figures 3, 4. The eigenvalues, λi, of the spatial covariance
matrix and their corresponding modes are ordered from the largest,
λ1,ψ1, to the smallest, λN,ψN, as larger eigenvectors explain a greater
amount of variance in the data (Björnsson andVenegas, 1997).Using
the sum of all the eigenvalues to produce normalized eigenvalues,
λ̂i, after normalizing, the spatial and spatiotemporal eigenvalues are
quite similar, as shown in Figure 2. Both only require two modes to
explain ∼90% of the variance.

Typically, only the larger eigenvalues and modes more easily
associated with a physically describable phenomenon are used for
further analysis (Björnsson and Venegas, 1997). However, this study
used all 11 nonzero modes for two reasons. First, only the largest
eigenvalues are usually selected to reduce the impact of noise in the
analysis, but this was addressed previously using the Gaussian filter.
Second, limiting the number of modes will increase the uncertainty
in the final outputs. Without the Gaussian filter, the primary modes
associated with the largest eigenvalues retained much of the small-
scale variation, which did not produce a smooth empirical model as
desired. Therefore, the Gaussian filter was applied before KLE, and
all 11 modes were retained to reduce uncertainties.

With the modes, columns of Ψ, and expansion coefficients A
determined, the smoothed data, X, can be recast as an expansion

shown in Equation 1

OR(m,xj) =
r

∑
i=1

αi (m)ψi (xj) , (1)

where OR is the occurrence rate, m is the calendar month, xj is the
discrete spatial, (ϕ,θ), or spatiotemporal, (ϕ, t), position, r is the rank
of X, αi is the ith row vector of A, and ψi is the ith column vector
of Ψ (Kirby, 2000). Each coefficient, α1 through αN, was treated as a
function of time (m), withP discrete steps in time.Thiswas exploited
to generate climatologies for each day.

The three largest coefficients and their corresponding modes
are shown in Figure 3 for the spatial data and in Figure 4
for the spatiotemporal data. The modes were transformed into
their two-dimensional representation prior to plotting. Figures 3,
4 show that mode and coefficient 1 for both the spatial and
spatiotemporal analyses capture the well-documented seasonal
variation that peaks in the boreal summer and winter months
(Whitehead, 1989; Haldoupis et al., 2007). Mode and coefficient 2
highlight seasonal peaks in the spring and fall. Mode and coefficient
3 highlight particularly high-variance regions when analyzing the
spatial domain and particularly high-variance latitude bands and
times of day when analyzing the spatiotemporal domain.

With the data represented in the KL basis, the coefficients, αi(m),
were interpolated over time using a cubic spline interpolation. This
interpolation was performed such that the number of time steps
was increased from 12 to 365, resulting in a daily time resolution
as opposed to the original monthly time resolution. This spline for
each coefficient, shown in Figures 3, 4, results in a new interpolated
data matrix, X̃, that has a column for each day of the year, d. These
columns were then converted back to matrix form. Some results
for the month of June from both the spatial and spatiotemporal
data are shown in Figure 5. Note that since the original data were
summed over an entire month, the spline was performed so that
the original data for each month (i.e., α(d) = α(m)) will appear at
each month’s midpoint. From this, the daily maps over a month
should approximately average out to the original monthly map.This
spatiotemporal interpolation is taken over days of the year, and
the local solar time is provided for a particular day of year by the
interpolated spatiotemporal data (see examples in Figure 5).
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FIGURE 3
Top panel: eigenvectors as determined by the KLE when applied to the spatial data. Bottom panel: coefficients as determined by the KLE when applied
to the spatial data. Regions of larger variance in the Northern and Southern Hemisphere are seen clearly in modes 1 and 2 with the corresponding
seasonal changes seen in coefficients 1 and 2, respectively.

FIGURE 4
Top panel: eigenvectors as determined by the KLE when applied to the spatiotemporal data. Bottom panel: coefficients as determined by the KLE when
applied to the spatiotemporal data. Latitudes and times of day with larger variance are seen with their corresponding changes throughout the year, as
shown in the coefficients.

It is important to note that the daily spatial maps should be
seen as averages for each bin over a day. After generating daily
climatologies, the values were analyzed to determine whether any
were nonsensical (ORi < 0%, ORi > 100%). There were no values
generated greater than 100%, and the largest negative value was

> − 0.5%, with 99.8% of values greater than −1× 10−8%. This
indicates that the majority of the negative values were due to
computer precision, and the interpolation did generate plausible
values. These negative values were set to 0 before the subsequent
combination.
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FIGURE 5
Top panel: results from interpolated coefficients corresponding to 1 June. Middle panel: results from interpolated coefficients corresponding to 15
June. Bottom panel: results from interpolated coefficients corresponding to 29 June. There are subtle but notable changes over time after applying the
interpolated coefficients.

The interpolated global fbEs OR maps for every day of
the year in both the spatial, OR(ϕ,θ,d), and spatiotemporal,
OR(ϕ, t,d), representations can be combined to create a final model,
OR(ϕ,θ,d, t). With the average occurrence rate over a given day in
the spatial data, an appropriate hourly fbEs OR can be calculated
using the spatiotemporal data.

The following requirements were used for this calculation. First,
for an fbEs OR, OR(ϕ,θ,d, t), the outputs must be within the valid
range of 0%–100%. Second, the predicted hourly average fbEs OR,
over a given day for a specific spatial bin, should be equivalent to
the calculated spatial OR for the same bin, as shown in Equation 2.
This is because this model’s temporal fbEs OR output for a given
geomagnetic latitude, longitude, and day should be consistent with
the input spatial fbEs OR for the same location.

23

∑
t=0

OR (ϕ,θ,d, t)

23
= OR (ϕ,θ,d) , (2)

where t has a range of 0–23 h in 1-h increments, resulting in 24-h
fbEs ORs for each day. Third, given that the above two assumptions
are satisfied, the temporal output should relatively follow the input
profile. That is, the local minima and maxima during a day should
remain at the same hourly position.

For clarity, the array consisting of all hourly fbEs ORs for a given
ϕ and d of a spatiotemporal climatology is defined as

O⃗Rt (ϕ,d) = [OR (ϕ, t = 0,d) ,OR (ϕ, t = 1,d) ,…OR (ϕ, t = 23,d)] , (3)

and we use the same convention for an array of final output ORs
for a given day, O⃗Rt(ϕ,θ,d). Note that each value of t indicates
the entire hour period (i.e., t = 6 indicates the local solar time of
0600–0659). Due to the first two conditions, any OR(ϕ,θ,d) = 0
results in O⃗Rt(ϕ,θ,d) = 0⃗. In all other cases, O⃗Rt(ϕ,d) was scaled so
that it had minimum values of 0 and maximum values equal to the
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corresponding OR(ϕ,θ,d). This array is defined as

sO⃗Rt (ϕ,θ,d) =
O⃗Rt (ϕ,d) −min(O⃗Rt (ϕ,d))

max(O⃗Rt (ϕ,d)) −min(O⃗Rt (ϕ,d))
⋅OR (ϕ,θ,d) .

(4)

Defining the mean of this array as β(ϕ,θ,d), the difference needed to
adjust sO⃗Rt(ϕ,θ,d) so that it has an average value equal toOR(ϕ,θ,d)
was determined. This difference is called Δ(ϕ,θ,d) = OR(ϕ,θ,d) −
β(ϕ,θ,d). The final fbEs OR in array notation is then O⃗Rt(ϕ,θ,d) =
sO⃗Rt(ϕ,θ,d) +Δ(ϕ,θ,d). In functional form, this becomes

OR (ϕ,θ,d, t) = sOR (ϕ,θ,d, t) +Δ (ϕ,θ,d) . (5)

Equation 4 maintains the structure of the local solar time profile,
O⃗Rt(ϕ,d), and scales it to the corresponding location daily average,
OR(ϕ,θ,d). Adding Δ(ϕ,θ,d), as shown in Equation 5, ensures that
this local solar time profile averages to the corresponding location’s
daily average, OR(ϕ,θ,d). This process ensures that requirements 2
and 3 are both satisfied. Satisfaction of the first requirement was
verified numerically post hoc.

An example of this combination for throughout the year and
at mid-latitudes is shown in Figure 6. It visually appears to satisfy
all requirements and shows examples of where the scaling resulted
in an increase in the hourly fbEs OR, a decrease in the hourly
fbEs OR, and sometimes both. Figure 6 shows that, in the summer
months, a distinct semidiurnal trend was apparent with peaks in the
morning and afternoon, which is in agreementwith the observations
of Whitehead (1989) and Smith (1957). There was no significant
increase in the model fbEs OR peak in the summer months due
to the relatively small increase in the calculated spatial OR at this
particular location during summer, as shown by the dotted red line.
While the spatiotemporal data show larger peaks, they are integrated
over longitude and may include other regions with substantially
larger variation than the longitude of interest. The scaling method
forced the hourly fbEs OR to average to this value over a day. Since
the underlying data did not support a large average increase in the
fbEs OR at this location, the model could not support it as well.

3 Results

Videos showing the final GEMSOR predictions on a global map
with a time resolution of 3 h are given in Supplementary Material,
and the model can be downloaded from GEMSOR-OSF. Instead of
analyzing a subset of global ORmaps here, we focus on uncertainties
and validation.

3.1 Error analysis

Considering that each calculated fbEs OR was treated as
a distribution of binary events, each bin follows a Bernoulli
distribution and has a standard deviation, σB,i shown in Equation 6

σB,i = √ORi (ORi − 1), (6)

where ORi is the calculated fbEs OR for the ith spatial or
spatiotemporal bin, as performed by Hodos et al. (2022). Therefore,

each bin has a sampling distribution with a standard error of σi =
σB,i/√ni, where ni is the total number of observations in the ith bin.

Before performing the Gaussian filter, with the exception of
bins that had insufficient observations for calculation, ni < 25, each
spatial and spatiotemporal fbEs OR has an associated standard
deviation, σϕθi or σϕti . These uncertainties are propagated through
Equation 5, using the formula for the propagation of error for two
variables (Ku et al., 1966). The application of the Gaussian filter
resulted in a mean absolute error of σϕθ ≈ 2.3% and σϕt ≈ 2.0%
throughout the year. This was treated as a baseline error that will be
added to the propagated bin uncertainty. Since all 11 nonzeromodes
and coefficients were used during the KLE for both data bins, this
study assumes that no error was introduced during the KLE.

The propagated uncertainties were averaged over both month
and hour for the entire year, and uncertainties for some months
are shown in Figure 7, and the uncertainties for some selected
hours are shown in Figure 8. Larger uncertainties were observed
when examining the model on a monthly basis compared to an
hourly basis. This was likely due to the fact that there is more
variance in the fbEs OR over a month at a given location than
during a given hour over a year. This is supported by the clear
increase in uncertainty during seasonal peaks and local solar time
peaks, as shown in Figures 7, 8. When analyzing the entire globe
on a monthly basis, the uncertainty only occasionally approached
20% and was location-dependent. During the boreal spring and
fall months, the uncertainty rarely exceeded 10%. Peak uncertainty
is shown at (Figure 8) approximately 1600 L, with the minimum
uncertainty in the late-evening and early-morning hours. However,
at all times of the day, the average uncertainty remains below 10%.

Since the total observation threshold was kept at 25, as outlined
in Hodos et al. (2022), bins that did not have at least 25 observations
had no calculated uncertainty, and their fbEs OR was set to 0%
unless the Gaussian filter resulted in a weighted OR in that bin. As
mentioned above, this largely affected high latitudes, in particular
75°S and below. Although this limits the use of theword global, these
regions of the world are particularly impacted by auroral-E, which
can be difficult to differentiate from sporadic-E (Roberts, 2024).
Therefore, it may be more appropriate to develop a separate model
that specifically accounts for auroral-E at these high latitudes.

Since the KLE resulted in 365 global maps of fbEs ORs and there
were only measurement uncertainty values for each month, initial
monthly uncertainties were used for all calculations for eachmonth.
Taking the average of all determined uncertainties results in a mean
uncertainty, σ = 5%. Furthermore, Carmona et al. (2022) found that
the technique used by Chu et al. (2014) had a mean absolute error
of 3% relative to ionosonde observations. This will be taken as an
average global measurement error and added to the above errors,
resulting in a final average error of 12%.

While this error analysis considers the impacts of GNSS-
RO sampling, smoothing, and combining ORs, it does not
account for any uncertainty in ionosonde measurements. This
analysis assumes that there are no errors associated with the
ionosonde measurements, in particular, ionograms automatically
scaled by ARTIST-5. Although ionosonde soundings were taken as
“ground truth,” Stankov et al. (2023) showed automatically scaled
foEs errors to range from [−0.80,0.35]MHz compared to manually
scaled ionograms. It is unclear how this foEs uncertainty relates to an
fbEs OR uncertainty as presented here, and the authors are unaware

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2024.1434367
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Parsch et al. 10.3389/fspas.2024.1434367

FIGURE 6
Results of scaling the interpolated climatologies at mid-latitudes. Blue indicates the final result, red indicates the interpolated spatial data, and yellow
indicates the interpolated spatiotemporal data. The imposed requirements are seen to produce results that are sensible and consistent between
datasets. Each subplot depicts a different calendar day (day of year) at the given location.

of anEsORerror study for automatically scaled ionograms. For these
reasons, it is assumed that the ionosonde Es measurements have no
error as quantifying any such error would be largely arbitrary.

3.2 Validation

Validation was performed by comparing the model’s outputs
to corresponding observations collected by the Global Ionosphere
Radio Observatory at four different locations: El Arenosillo,
Spain (37.1°N, 6.7°W); Fortaleza, Brazil (3.9°S, 38.4°W); Gakona,
Alaska (62.38°N, 145.0°W); and Hermanus, South Africa (34.42°S,
19.22°E). Note that geographic coordinates are given above. These
locations were selected to sample a variety of geomagnetic latitudes
and at times will be referred to by their International Union
of Radio Science (URSI) station codes: EA036, FZA0M, GA762,
and HE13N, respectively. El Arenosillo was chosen to evaluate
the performance in the Northern Hemisphere at geomagnetic
mid-latitudes. Hermanus was chosen for Southern Hemisphere
mid-latitudes, Gakona, for high latitudes, and Fortaleza, for
low latitudes. Data from 2020–2022 were used, totaling 512,031
observations, and the average geomagnetic inclination fromWMM
2020 at each location over the 3-year period was used as the
geomagnetic latitude (Chulliat et al., 2020).

Two types of comparison are performed: an hour-to-hour
comparison and a monthly averaged comparison. Hours that had
total ionosonde observations of nt < 1 were not used for the
hourly comparison, resulting in 14%, 10%, 3%, and 19% of hour
intervals being discarded for the sites EA036, FZA0M, GA762,
and HE13N, respectively. The monthly average comparison had

a stricter threshold, requiring that over the course of the month,
the number of observations for that hour must average at least
four per hour, or nt ≥ 4. This threshold was selected to match a
typical ionosonde sounding schedule of every 15 min. Hermanus
had the highest percentage (∼50%) of hours with inadequate
observations by a large margin for the summer months and the
highest percentage of months (∼50− 90% of early-morning hours)
with inadequate observations. El Arenosillo was behind Hermanus
in both categories, with a much higher percentage of usable data.
As seen before, Gakona had the most consistent and reliable
observations for comparison. The most reliable observations for
comparisons are during local summer hours from 06:00 to 18:00 as
this time frame is present across all sites.

Figure 9 shows that the model visually appears to perform well
for El Arenosillo and Fortaleza and consistently overpredicts for
Gakona and Hermanus. However, it is important to note the scale
of these figures. On average, over a given month, the model tends to
overpredict by approximately 10% OR for these two locations.

The typical seasonal trends were observed for El Arenosillo
and Hermanus. These mid-latitude locations also appear to have
followed the expected semidiurnal trend of morning and afternoon
peaks, as indicated by the triangles and squares in Figure 9. For
Hermanus andGakona, themodel was overly cautious as it generally
predicted higher probabilities of fbEs than actually occurred. The
correlation coefficients, r, are also shown, and it is interesting to
note that while El Arenosillo had observations and predictions
over the greatest range (0%–40% OR), it also had the highest r
value of 0.85 and the highest coefficient of determination, R2, of
0.70. Gakona had the weakest correlation with r = 0.51 and R2 =
− 0.81, but as mentioned before, most of the model outputs were
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FIGURE 7
Average calculated uncertainty for selected months. Locations with insufficient observations are indicated by white. There is increased uncertainty at
locations and times of year with higher ORs.

within 10% OR of the observed OR. Although not desirable, an
R2 < 0 simply indicates that the model performed worse than a
hypothetical model that only predicts the mean value. In other
words, a negative R2 indicates a bias in the model. This is evident
with the prevalence of observed 0% ORs, whereas the model
generally always outputs a nonzero OR, resulting in a large relative
difference between averages of the observed and predicted ORs.
While Hermanus and Gakona produced negative R2 values from
slight positive biases, model predictions from both sites showed
moderate correlations with ionosonde observations, indicating that
general data trends are similar. It should be noted that the R2 value
reported here corresponds to model predictions compared against
a validation dataset where the error is the distance to the one:one
line (red dashed line in Figure 9). This R2 is not the same as the
coefficient of determination provided for a linear regression between
datasets (see Nakagawa and Schielzeth (2013) for a discussion of
various R2 interpretations).

Although Figure 9 provides a clear view of themonthly averaged
model performance, it does not show the diurnal variations.

Figure 10 shows the monthly averaged profiles as a function of local
solar time compared to averaged ionosonde observations. Figure 10
also highlights the scales thatmust be consideredwhen analyzing the
accuracy of the model. There is considerably more variance in the
fbEs OR for El Arenosillo and Fortaleza, and the model appears to
generally match the observed trends. Specifically, for El Arenosillo,
the model appears to underestimate peaks and overestimate the
valleys but retains the trend and the overall increase that occurs in
the summer. For Fortaleza, the model, on average, underestimates
the OR, as shown in Figure 9. The consistent overestimation for
Gakona and Hermanus was also apparent, but the errors were
rarely greater than 10%, which makes them rather small on an
absolute scale.

The error was examined in several different ways. First, themean
absolute error (MAE) over different dimensions for each digisonde
site was examined (Figure 11). When examining the monthly error,
El Arenosillo and Fortaleza clearly show a higher average error, and
this was especially true in the summer for El Arenosillo. Fortaleza
appears to have a lower average error in the summer than in the
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FIGURE 8
Average calculated uncertainty for selected hours. Note the change in scale from Figure 7. Locations with insufficient observations are indicated in
white. There is increased uncertainty at times of day with higher ORs.

winter. Gakona follows a pattern similar to that of El Arenosillo
but has much lower average error values. Hermanus has the lowest
average error values by month and by hour, with slightly higher
errors during the daytime hours. This is shown in Figure 10 and
is due to a consistent overestimation of the OR values. Gakona
has a higher average error during the late-night hours, while the
remaining two stations have a significantly higher error during the
daytime hours, particularly in the late afternoon. Fortaleza stands
out with the highest average error.

The second way in which the error was examined was by
comparing error distributions. Figure 12 displays a histogram of
the error when comparing the hourly model predictions with the
observations for all four sites. Note that only the hours meeting the
observation threshold are displayed, and the percentage removed is
shown in the legend. This discussion assumes that the unobserved
hours follow the same distribution. The standard deviation of the
hour-to-hour comparison is 11%. We can see that ∼94% of the
errors are less than 20% and ∼80% are less than 10%. This matches
what was visually observed in Figure 9. We can also see that on an

hour-to-hour basis, the model is more likely to overestimate, but
very large errors tend to be drastic underestimates. Only ∼1/20
predictions are drastic underestimates, and they are likely the result
of applying the Gaussian filter to the original data.

Looking at the errors from monthly averaged comparisons
shows that they are much more tightly distributed than would be
expected considering how the model was developed. However, this
comparison also excludes much more data, as seen by the increase
in the percentage of hours in which the observation threshold was
not met (∼40% increase). Even if all the unobserved time periods
result in an absolute error of 20% ormore, nearly 85% of predictions
would be within 20% OR and 80% within 10% OR.

Given the initial calculated average uncertainty of 12%, 95% of
predictions are expected to have an error of less than 24% (∼2σ).This
approximately matches the error histogram for the hour-to-hour
standard deviation of 11%, as well as the initial set standard error
of 10%. Considering the agreement between these three determined
uncertainty values (12%, 11%, and 10%), it can be safely stated
that the model generally has an uncertainty of 12% for specific
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FIGURE 9
Monthly average of hourly (HHMM) fbEs ORs observed at each site plotted against the monthly average of hourly fbEs ORs predicted for each site.
Pearson’s correlation coefficient, r, and coefficient of determination, R2, are displayed in each plot. p-values are < 10−2 for r at each site. The model
shows good agreement at El Arenosillo and Fortaleza and consistently overestimates at Gakona and Hermanus but on a small absolute scale.

predictions. In other words, 95% of the outputs will be within 24%.
If one is seeking to understand more general or average behavior on
a timescale of a month, the model is more accurate.

4 Discussion

The overarching goal of increasing the monthly climatological
OR temporal resolution outlined by Hodos et al. (2022) was
accomplished through an interpolation of the monthly KLE
eigenvalues (Figures 3, 4). This process maintains the OR values
for each month while providing estimates between the known
periods. Gaussian smoothing of the original datasets helps reduce
discontinuities typically found over ionosonde locations where the
ionosonde-derived ORs did not match the surrounding GNSS-RO-
derived ORs. Finally, the self-consistent combination of temporal
and spatial results outlined in Equations 2–5 ensures that the local
solar time structures are maintained, while the daily averages
match the input spatial maps. In this respect, GEMSOR successfully
provides fbEs ≥ 3-MHz ORs with hourly time resolution that are
consistent with the results obtained by Hodos et al. (2022), thereby
extending the dataset for practical use as a model.

A minimum total observation threshold was used to limit the
standard error to 10%, as outlined in Hodos et al. (2022), and
this appears to have been effective. Propagation of the standard

deviation of the individual bins through the combination algorithm
and addition of the mean error of the Gaussian filter resulted in
an estimated uncertainty of ∼9%. Comparing the predictions to
digisonde observations from a time period not utilized by themodel
resulted in a monthly averaged standard deviation of 5% and an
hourly standard deviation of 11%. All of these values were in relative
agreement and indicate that only 1 in 20 predictions should have an
error of more than 21%. The monthly averaged standard deviation
indicates that if predictions weremade for a given hour on every day
of the month, the mean of the predictions will be within 10% of the
actual mean 95% of the time.

Hermanus and Gakona not only had lower correlation
coefficients compared to the other sites when analyzing the monthly
averaged data but also a lower MAE when averaging over a month
or over an hour. For Hermanus, this is likely due to the rather
depressed fbEs in this region due to the proximity of the South
Atlantic Anomaly (Arras et al., 2008). The model performed
well at the mid-latitude location El Arenosillo, where it generally
followed the observed semidiurnal behavior throughout the year.
This location also had the highest correlation coefficient but also
some of the higher MAEs, particularly in the summer. This error
averaged to approximately 15% during its peak in the summer and
notmuchmore than 10%when examined hourly. Overall, themodel
showed strong performance in the mid-latitude region where Es is
known to form more frequently.

Frontiers in Astronomy and Space Sciences 11 frontiersin.org

https://doi.org/10.3389/fspas.2024.1434367
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Parsch et al. 10.3389/fspas.2024.1434367

FIGURE 10
Monthly local solar time occurrence rates at each digisonde site, as observed by the digisonde and predicted by the model. Note the change in scale
on the y-axis throughout, and hours that did not satisfy nt ≥ 4 are removed from the digisonde plots to illustrate gaps in the observational data. The
model generally captures trends but consistently underestimates peak ORs while generally overestimating ORs at non-peak times of the day.

FIGURE 11
Mean absolute error of model outputs over different dimensions at each digisonde location. Left: MAE for each month. Right: MAE for each hour.
Increases in MAE generally correspond to seasonal or daily OR peaks for each location.
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FIGURE 12
Histograms of the residual error. Left: hour-to-hour error (predicted vs. observed) over the entire year. Right: error when comparing the hourly
occurrence rates when each hour is averaged over each month. Errors are generally overestimates, but large errors are large underestimates.

In the low-latitude or equatorial region, Fortaleza had the
second highest correlation coefficient when averaged over a month.
The model generally captured the semidiurnal trends but not as
closely as for El Arenosillo. The monthly averaged correlation
coefficient was lower, as was the MAE over the entire year.
The highest hourly average errors were for Fortaleza, peaking at
15%. It must be noted that while the wind shear mechanism
used to describe blanketing Es formation is maximized with the
horizontal magnetic field at the geomagnetic equator (Whitehead,
1989), the magnetized electrons at E-region altitudes (Schunk
and Nagy, 2009) are constrained to follow the field lines, which
limits blanketing Es formation in this region. However, equatorial
ionosondes frequently measure q-type sporadic-E (Piggott and
Rawer, 1972), which is caused by the scattering of HF signals
from equatorial electrojet irregularities (Resende et al., 2017; 2018)
produced by mechanisms such as the gradient drift instability
(Seif and Panda, 2024). While these q-type layers are commonly
measured by ionosondes, they do not cause significant impacts to
GNSS-RO observations (see Arras et al., 2022b). As the GEMSOR
model produced here is tailored to blanketing Es through a
combination of RO and ionosonde observations, comparisons
with only ionosonde sporadic-E measurements as the ground
truth can be biased in the equatorial region due to these q-
type observations, especially with the reliance on automatically
scaled ionograms. This may be the cause of the relatively high
observed ORs (above the one:one line) for Fortaleza, displayed
in the upper-right quadrant of Figure 9. Similarly, there may
also be instances where the automatically scaled ionograms from
Gakona are falsely attributed to auroral-E as blanketing Es
(Roberts, 2024).

Although the model showed modest success, there are some
very important limitations that need to be understood prior to
its application. Some locations, particularly geomagnetic latitudes
south of 75°S, had an inadequate number of total observations to
calculate an OR. The model only predicts 0% OR at these locations,
and the uncertainty will not be reported. Due to the fact that
the original calculated ORs are the result of extensive averaging

over time and positions, this model will also likely fail to predict
short temporal-scale anomalous behavior. Although this anomalous
behavior may have existed somewhere in the data, the subsequent
averaging probably suppressed its appearance and, as a result, will
not be seen in the model. This has already been highlighted by
the fact that hour-to-hour comparisons indicated that ∼5% of
predictions had an error greater than 20%, but monthly average
comparisons reduced this to less than ∼0.5% of predictions. The
model also assumed geomagnetic quiet conditions and defined this
as an AE index below 500 nT and a Kp ≤ 4. ORs during geomagnetic
storms are unlikely to be reliably predicted by this model, although
the impact of minor geomagnetic activity on sporadic-E appears to
be relatively weak at mid-latitudes (Yu et al., 2021). GEMSOR also
ignores solar cycle variation, which has been shown to impact Es
formation at high and low latitudes (Whitehead, 1970; Fontes et al.,
2024). However, the overall importance of solar and geomagnetic
activity on sporadic-E activity is less significant than the location,
local time, and day of year [see Figure 3 in the study by Tian et al.
(2023)]. While the validation results are encouraging, these four
locations hardly cover all possible conditions over the entirety of
the globe.

The less number of years in the validation (2019–2022) also
limited the number of comparisons that could be made, particularly
during local night. Sporadic-E forms primarily during the day with
latitude-dependent peaks in either the late morning or early evening
(Wu et al., 2005; Chu et al., 2014; Yu et al., 2022). Formation at night,
especially during the early-morning hours, is minimal but nonzero
with a general increase in mid- and high latitudes during local
summer (Luo et al., 2021; Hodos et al., 2022). This behavior is also
present in the ionosonde validation dataset displayed in Figure 10.
However, many of the nighttime OR calculations for the
digisonde sites contained relatively low numbers of observations,
which increases the uncertainty in the validation rates
at night.

In relation to other empirical Es models derived from RO
observations, GEMSOR shows many similarities while providing a
unique output of occurrence rates instead of intensities. For example,
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Yu et al. (2022) provided an empirical model of Es intensity based
on the maximum L1 amplitude scintillation index, S4-max, which
shows the same general spatial, diurnal, and seasonal trends, as
predicted by GEMSOR. The inputs to this empirical S4-max model
are the same as those input to GEMSOR, with an additional
parameter: altitude. While altitude is important to understanding
Es morphology, it is not considered in GEMSOR as the intention
is to provide a probabilistic estimate of the impact of Es on HF
operations and not to characterize the intensity or altitude of
the layer, as performed by Yu et al. (2022). Similarly, the deep
learning Sporadic-E Layer Forecast usingArtificial Neural Networks
(SELF-ANN) model presented by Tian et al. (2023) provides Es
intensity and altitude predictions with a larger, more sophisticated
set of inputs that include neutral wind, tropospheric temperature,
and solar and geomagnetic activity. The importance of these
additional parameters was not studied by Hodos et al. (2022) and
is, therefore, not included in GEMSOR. However, including altitude
and other input parametersmay help improvemodel performance in
future versions.

For future research, the primary challenge is to improve RO
techniques for estimating the existence and strength of sporadic-
E layers. Although this is a challenging task due to the integrated
nature of the observations, recent studies (Emmons et al., 2023;
Ellis et al., 2024) have shown a significant improvement over
the baseline techniques compared by Carmona et al. (2022) and
applied by Hodos et al. (2022). Implementing these improved
RO techniques will improve the OR estimates that form the
foundation of the empirical model. Additionally, expanding the
validation to more digisonde locations over a greater period will
provide further insight into the model’s strengths and weaknesses.
Enhancing the spatial resolution would also be beneficial as the
current bin size is rather large, especially in the equatorial regions
(∼3× 105 km2). This could be achieved by performing a spatial
interpolation on the present model, a spatial interpolation on the
data prior to the KLE, or, with more data available, the calculation
of fbEs at a higher spatial resolution. The increasing supply of
COSMIC II and Spire RO data may soon make the latter option a
possibility.

5 Conclusion

This study outlines the development of a GEMSOR
through significant enhancements in time resolution from the
dataset used by Hodos et al. (2022), which was derived from
GNSS-RO and ionosonde observations with an fbEs threshold
of 3 MHz. GEMSOR predicts the blanketing sporadic-E OR as a
function of geomagnetic latitude, longitude, day of year, and local
solar time at a resolution of 5°, 5°, day, and hour, respectively.
The results of the model were compared to observations from
four digisonde sites, and a general uncertainty of the model was
developed. The purpose of this research was to provide a new
tool that allows operators of HF equipment to better understand
ionospheric conditions for a more effective application of the
equipment.

Overall, this study sought to develop an empirical model of
global fbEs ≥ 3-MHz ORs as a function of position and time,
which was achieved at a spatial resolution of 5° geomagnetic latitude

× 5° geographic longitude with an hourly time resolution for
each day of year. The uncertainty calculation suggested an average
uncertainty of 12%, with unique values reported for each output.
This was well correlated with the determined average error from
validation (11%) and the standard error of 10% established via the
observation threshold. Given the satisfactory performance of this
global empirical model of blanketing sporadic-E, we recommend
that HF operators utilize this model to inform their operations.
Considering the importance of HF applications in communication
and surveillance technologies, the development and refinement
of such models will continue to be worthwhile for scientific and
commercial investment.
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