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The presence of nucleus-shaped anomalous regions in the power spectrum
image of the electric field VLF frequency band has been discovered in previous
studies. To detect and analyze these nucleus-shaped abnormal areas and
improve the recognition rate of nucleus-shaped abnormal areas, this paper
proposes a new nucleus-shaped abnormal area detection model ODM_Unet
(Omni-dimensional Dynamic Mobile U-net) based on U-net network. Firstly,
the power spectrum image data used for training is created and labeled to
form a dataset of nucleus-shaped anomalous regions; Secondly, the ODConv
(Omni-dimensional Dynamic Convolution) module with embedded attention
mechanism was introduced to improve the encoder, extracting nucleus-shaped
anomaly region information from four dimensions and focusing on the features
of different input data; An SDI (Semantics and Detail Infusion) module is
introduced between the encoder and decoder to solve the problem of detail
semantic loss in high-level images caused by the reduction of downsampling
image size; In the decoder stage, the SCSE (Spatial and Channel Squeeze-and-
Excitation) attentionmodule is introduced tomore finely adjust the featuremaps
output through the SDI module. The experimental results show that compared
with the current popular semantic segmentation algorithms, the ODM_Unet
model has the best detection performance in nucleus-shaped anomaly areas.
Using this model to detect data from November 2021 to October 2022, it was
found that the frequency of nucleus-shaped anomaly areas is mostly between 0
and 12.5KHz, with geographic spatial distribution ranging from 40° to 70° south
and north latitudes, and magnetic latitude spatial distribution ranging from 58°
to 80° south and north latitudes. This method has reference significance for
detecting other types of spatial electromagnetic field disturbances.

KEYWORDS

CSES-01, semantic segmentation algorithm, power spectrum, ODM_Unet, ionospheric
anomalous disturbance

1 Introduction

The CSES (China Seismo Electromagnetic Satellite), China’s first space-based
platform for three-dimensional seismic observation and geophysical field exploration
satellite, was successfully launched at the Jiuquan Satellite Launch Center on 2
February 2018. Its main scientific objective is to obtain global electromagnetic field,
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plasma, and high-energy particle observation data. In addition, it
can also provide scientific data services for earthquake monitoring
and prediction, research on geophysical fields in Earth’s space, and
research on abnormal disturbances of electromagnetic fields in
the space ionosphere (Shen et al., 2018). The electric field detector
onboard the CSES satellite serves as one of the critical payloads
for investigating abnormal disturbances in the electromagnetic field
of the space ionosphere, with its observation frequency bands
covering 0–3 MHz, specifically encompassing ultra-low frequency,
extremely low frequency, very low frequency, and high frequency
(Ma et al., 2018). There are many types of anomalous disturbances
in the electromagnetic field of the space ionosphere, which can
be detected using different methods in different frequency bands.
Good research results have been achieved in the study of anomalous
disturbances caused by earthquakes and non-earthquakes. In the
field of research on anomalous disturbances of spatial ionospheric
electromagnetic fields caused by earthquakes, researchers have used
empirical mode decomposition and sample entropy to analyze
the anomalous characteristics of the pre-earthquake ultra-low
frequency band. They found that the signal-to-noise ratio and
ionospheric height decrease simultaneously within 15–10 days
before the earthquake, and recover after the earthquake (Yang et al.,
2023); In the extremely low-frequency band, researchers have
used the C-value method and the normalized improved θ-value
method to compare the θ-values before and after earthquakes in
the earthquake-prone area, and found the pattern of θ-values before
and after earthquakes (JianPing et al., 2020; Zhang et al., 2023); In
the very low-frequency band, researchers have used the signal-
to-noise ratio method to discuss the characteristics of changes
before and after earthquakes, and the results show that there is a
strong correlation between earthquakes of magnitude 6.0 and above
and spatial very low-frequency electric field anomalies (Li et al.,
2023). In the field of studying non-seismic space ionospheric
electromagnetic field anomalies, different types of anomalies exhibit
distinct shape characteristics on time-frequency plots and power
spectrum images, such as electromagnetic ion cyclotron waves,
lightning-induced whistler waves, plasmaspheric hiss, and chorus
waves (Cao et al., 2009). The research focus has primarily been
on detecting horizontally oriented electromagnetic wave anomalies
using traditional visual methods, edge detection techniques,
and Kmean++ algorithms (Yuan et al., 2021a; Yuan et al., 2021b;
Yu et al., 2022; Yuan et al., 2022), as well as detecting the L-
dispersion shape of lightning whistler wave anomalies through
techniques such as object detection, intelligent audio analysis, and
pattern recognition (Zhou B. et al., 2018; Han et al., 2022; Han et al.,
2023a; Han et al., 2023b; Han et al., 2023c). In comparison, the
development of the image-based research area for non-seismic space
ionospheric electromagnetic field anomalies has been relatively slow.

When studying the power spectrum image of the electric field
detector in the very low-frequency band, we discovered anomaly
region shaped like an atomic nucleus (Li et al., 2024). The center
of this region has a higher energy value and a darker color. As
the distance from the center increases, the energy value gradually
decreases and the color becomes lighter (hereinafter referred to
as the nucleus-shaped anomalous region), as shown in Figure 1.
To better detect areas with nucleus-shaped anomalies, the author
used semantic segmentation techniques to detect these areas.
With the popularization of deep learning technology in various

fields of research, breakthroughs have been made in the field
of computer vision with convolutional neural networks as the
core, among which the most famous are object detection and
semantic segmentation technologies. Semantic segmentation is to
classify images at the pixel level according to the needs of the
task, assign reasonable labels to each pixel, and determine the
objects present in the image. Representative algorithms include FCN
(Long et al., 2015), U-net (Ronneberger et al., 2015), DeepLabV3
(Chen et al., 2017), PSPNet (Zhao et al., 2017), LinkNet (Chaurasia
and Culurciello, 2017), FPN (Kirillov et al., 2017), DeepLabV3+
(Chen et al., 2018), Unet++ (Zhou Z. et al., 2018), PAN (Li et al.,
2018), Manet (Fan et al., 2020), and so on.

The current common semantic segmentation networks have
certain limitations in detecting nucleus-shaped anomaly areas,
which can lead to low segmentation accuracy, high computational
complexity, and poor fusion of multi-scale feature maps. The author
proposes a new semantic segmentation model to address these
issues. Compared with other advancedmodels, this model improves
the segmentation accuracy of nucleus-shaped anomaly regionswhile
maintaining lower computational complexity, and better integrates
feature maps of different sizes. The author fused and improved the
network with modules that can handle different problems, and after
experimental verification, finally proposed an ODM_Unet (Omni-
dimensional Dynamic Mobile U-net) with good performance.

In order to better detect nucleus-shaped abnormal areas and
analyze their spatial distribution, the author uses traditional
edge detection methods and common semantic segmentation
methods to detect nucleus-shaped abnormal areas. It was found
that traditional edge detection methods cannot detect nucleus-
shaped abnormal areas, and common semantic segmentation
algorithms have shortcomings in extracting power spectrum images
of nucleus-shaped abnormal areas, which require further research
and improvement.

2 Data sources and preprocessing

To study the detection problem of nucleus-shaped anomalies
in space electric fields, the dataset required for the experiment is
from the China Earthquake Electromagnetic Satellite (Zhangheng-
1 satellite), with a total of 1115 power spectrum images of electric
field detectors in the very low-frequency band. In order to create
a sample set of power spectral images, based on the H5 files
collected by the satellite, the logarithm of the power spectral density
data in the very low-frequency band is first taken to solve the
problem of large dynamic range of data caused by crossing multiple
orders of magnitude. Then, the two-dimensional power spectral
density data is rotated counterclockwise by 90° to make the power
spectral density image appear more intuitive. Observing the power
spectrum images, it was found that in the power spectrum images
of X, Y, and Z components, the nucleus-shaped anomaly area
of the Z component is more obvious compared to the X and
Y components. Therefore, the power spectrum images of the Z
component were selected as the research object. For pixel-level
label production, the author used the LabelImg annotation tool
(Pande et al., 2022) to label the nucleus-shaped abnormal areas in
the power spectrum image. When processing the labeled data, the
pixel mapping classification of the nucleus-shaped abnormal areas
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FIGURE 1
Nucleus-shaped anomaly area in power spectrum image. Subimages (A), (B), and (C) represent the power spectrum images of the X, Y, and Z
components, respectively.

FIGURE 2
Example of dataset images. Subfigures (A) and (B) show areas with nucleus-shaped anomalies, while (C) show areas without nucleus-shaped anomalies.

was 1, and the pixel mapping classification of the non-nucleus-
shaped abnormal areas was 0. The processed label results are shown
in Figure 2.

In the data preprocessing stage, the Albumentations
(Buslaev et al., 2020) data augmentation library is used to enhance
the power spectrum image of the nucleus-shaped anomaly area.
In order to avoid overfitting the model and imbalanced samples,
the author enhanced the power spectrum image from various
aspects, such as scale translation and rotation, adding random
noise following a Gaussian distribution, translation, scaling, and
rotation operations. In addition, some other data augmentation
methods were also used, as shown in Table 1 (Dai and Wu,
2008; Rahmani et al., 2010; Yinyu and Kim, 2011; Setiawan et al.,
2013; Wang and Yuan, 2014; Yabusaki et al., 2014; Bozas and

Izquierdo, 2015; Xu et al., 2017; Khan and Bekkouch, 2022;
Wu et al., 2023; Szulga, 2024).

3 Detection method for
nucleus-shaped anomaly areas

To achieve the detection task of nucleus-shaped anomaly areas
in power spectrum images, the author constructed an ODM_Unet
model. This model has a symmetrical encoder (downsampling
path) and decoder (upsampling path) structure, and a module
that integrates semantic information and detail information to
enhance feature maps is added in the intermediate skip connection
section. This model has been improved based on the U-net network,
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TABLE 1 Data enhancement methods.

Enhanced mode Enhanced probability Enhancement effect

Resize 1 resize the image

HorizontalFlip 0.4 flip the image horizontally

ShiftScaleRotate 0.4 scale translation and rotation of images

GaussNoise 0.2 adding gaussian noise interference to images

CLAHE 0.5 perform histogram equalization on images

RandomBrightnessContrast 0.7 randomly apply brightness contrast to images

RandomGamma 0.7 perform random gamma affine transformation on images

Sharpen 0.7 sharpen the image

Blur 0.7 randomly blur the image

MotionBlur 0.7 apply motion blur to images

HueSaturationValue 0.7 randomly change the hue and saturation values of an image

making it more suitable for the detection task of nucleus-shaped
anomaly areas.

3.1 MobileNetV3

MobileNetV3 (Howard et al., 2019) is a well-known lightweight
convolutional neural network designed by the Google team in 2019
to further improve the performance of lightweight models in image
classification and object detection tasks. The design concept of
this model is mainly reflected in two aspects: depthwise separable
convolution and inverted residual structure with the introduction of
a lightweight SE attention mechanism.

Depthwise separable convolutions are divided into depthwise
convolutions and pointwise convolutions. Depth convolution
performs a convolution operation on each input channel. For
a feature map with n input channels, depth convolution uses
n convolution kernels to perform convolution operations on
the corresponding channels. Point-by-point convolution uses
a 1 × 1 convolution kernel to perform convolution operations
between channels and linearly combines the results of depth
convolution. This convolution reduces the number of parameters
and computational complexity of the model while ensuring
performance. Its inverted residual structure is similar to the residual
structure of ResNet but with differences. Firstly, a 1 × 1 convolution
kernel is used for dimensionality enhancement, adjusting the
number of input channels to increase the feature dimension. Next, a
depthwise separable convolution with a convolution kernel size of 3
× 3 is used to efficiently extract features while reducing the number
of parameters and computational complexity. Then, a lightweight
SE attention mechanism is used to learn the importance weights
between feature channels and dynamically adjust the channel
features of the feature map. Finally, use a 1 × 1 convolution kernel
for dimensionality reduction, adjusting the number of channels to

the number of output channels to reduce the feature dimension.
In addition, skip connections add input and output features,
fully utilizing the information in input features and providing
a direct propagation path for gradients, which is beneficial for
deeper network structure training. The inverted residual structure
is shown in Figure 3.

The nucleus-shaped anomaly region detection model uses
MobileNetV3 as the encoder (downsampling module) to extract
feature maps of different sizes from images, and the model
improvement in the downsampling part is based on MobileNetV3.

3.2 U-net network

The U-net network (Ronneberger et al., 2015) model is a classic
fully convolutional neural network designed byOlaf Ronneberger in
2015 for biomedical image segmentation tasks, particularly cell and
tissue segmentation tasks. Due to the similarity between nucleus-
shaped abnormal regions and biomedical images, U-net network
models are more suitable for detecting nucleus-shaped abnormal
regions, such as irregular boundaries and sizes in the segmentation
region, and low contrast, making it difficult to distinguish the
boundaries between the segmentation target and the background,
noise, artifacts, and shadows that interfere with the clarity of the
boundaries in the segmentation region.

The U-net network model is composed of a symmetric
encoding and decoding structure shaped like a “U”. The encoder
(downsampling) part is usually composed of classification networks
with pre-trained weight parameters, such as the VGG (Visual
Geometry Group) series and MobileNet series. Its function is to
extract features of different sizes from input images and condense
their semantic information. The main function of the decoder
(upsampling) part is to restore the feature maps of different sizes
obtained by the encoder downsampling to the original image size
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FIGURE 3
MobileNetV3 inverted residual structure.

FIGURE 4
U-net network structure.

and obtain the predicted image. In order to obtain more accurate
segmentation region position information, the U-net network
model also uses same-layer skip connections. In the decoder stage,
the featuremaps of different sizes obtained by the same layer encoder
are concatenated with the feature maps obtained by the previous
layer decoder in the channel dimension, and then convolution
operations are used to adjust the channels. The fusion of feature
maps of the same size in the same layer enables the network to
retain as much positional information on segmentation regions at
different scales as possible.The structure of theU-net networkmodel
is shown in Figure 4.

3.3 Improved U-net network

The author has made improvements on the U-net network
model and proposed a new ODM_Unet network model. In the
backbone classification network of the encoder stage, the ODConv
(Omni-dimensional Dynamic Convolution) module is introduced.
Unlike traditional convolution modules, the ODConv module is
a full-dimensional dynamic convolution module. Its function is

to extract image feature information from four aspects: spatial
kernel size, input channel number, output channel number, and
convolution kernel number. Then, an SDI (Semantics and Detail
Infusion) module was added between the encoder and decoder,
whose function is to enable the model to better understand
the contextual information in the image, minimize the loss of
detail features due to the decrease in input image size during
downsampling, and preserve the semantic information of the
original image. Finally, the SCSE (Spatial andChannel Squeeze-and-
Excitation) attention mechanism module was added to the decoder
to enhance the weight of nucleus-shaped abnormal regions in the
fusion results.

3.3.1 ODConv module
The traditional convolution module uses static convolution

kernels to process all samples from one dimension of the number of
convolution kernels for feature extraction and capture information
in the input image. This limits the model’s ability to adapt to
different input features, resulting in insufficient feature extraction.
The ODConv module (i.e., full dimensional dynamic convolution
module) fully solves this problem (Li et al., 2022). The ODConv
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FIGURE 5
ODConv Network Structure. The subgraphs (A), (B), (C), and (D) represent the processing process of four dimensions: spatial size, number of input
channels, number of output channels, and number of convolution kernels, respectively.

module consists of a multi-dimensional attention mechanism
and convolution operations. It learns different attention weights
in parallel from four dimensions: spatial size, number of input
channels, number of output channels, and number of convolution
kernels. Through the attention mechanism, it better captures rich
contextual clues, thereby improving the quality and accuracy
of feature learning. In terms of computational efficiency, while
maintaining model accuracy, it can also effectively control model
size, significantly reducing the number of additional parameters, and
achieving a good balance between model size and computational
efficiency.

The four-dimensional processing structure of the ODConv
module is shown in Figure 5. The subgraphs (a), (b), (c), and (d)
represent the processing process of four dimensions: spatial size,
number of input channels, number of output channels, and number
of convolution kernels.

3.3.2 SDI module
When dealing with nucleus-shaped abnormal images with

complex structures and subtle features, the reduction of image
size in the downsampling stage of the encoder will result in the
loss of detailed semantic information in high-level images. To
address this issue, the author introduced an SDI module in the
encoding and decoding of the U-net network model (Peng et al.,
2024). This module can integrate semantic information from
high-level features into low-level features while refining more
details from high-level features through Hadamard product
(i.e., element-wise multiplication). Then, through new skip
connections, the detailed semantic information from high-
level features and the fine details from low-level features

FIGURE 6
SDI structure.

are integrated into each layer of the feature map generated
by the encoder.

The SDI module first applies spatial and channel attention
mechanisms to each level of the feature map generated by the
encoder, integrating local spatial information and global channel
information of each layer’s features.Then, a 1 × 1 convolution kernel
is used to adjust the number of channels in each layer’s feature
map to c, where c is a hyperparameter. Then, with the third layer
(l = 3) as the target reference, the resolution of the feature maps
output by each decoder layer is adjusted to have the same resolution
as the feature maps of the third layer. Then, a 3 × 3 convolution
smoothing is used to process each adjusted resolution size feature
map. Finally, a Hadamard product is used element by element to
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FIGURE 7
SCSE attention mechanism structure.

FIGURE 8
ODM_Unet network structure.

TABLE 2 Confusion matrix.

Predicted as
positive

Predicted as
negative

Actual positive class True Positive False Negative

Actual negative class False Positive True Negative

enhance all resized feature maps to the features of the third layer
(l = 3) level, in order to obtain more semantic information and
finer details.

The network structure of the SDI module is shown in Figure 6.

3.3.3 SCSE attention module
To make more precise adjustments to the feature maps output

by the SDI module during the decoder stage and improve the
accuracy of image segmentation, the author added the SCSE
attention mechanism module (Roy et al., 2018) in the decoder
upsampling module, enabling the model to capture more rich
and detailed image features. The traditional SE attention module
mainly focuses on recalibration of channel dimension information,
while the SCSE attention module can independently compress

TABLE 3 Parameter settings.

Parameter Parameter values

classes 2

epoch 1200

batch_size 16/16

optimizer Adam

learning_rate 0.001

and excite the feature maps output by each decoder through the
SDI module from both spatial and channel dimensions, allowing
the network to more flexibly adjust and strengthen the features
of nucleus-shaped anomaly areas while suppressing unimportant
features. The structure of the SCSE attention mechanism module
is shown in Figure 7.

The design of the SCSE attention mechanism module structure
is a parallel structure. In the spatial dimension, the spatial size of the
feature map is first compressed through global average pooling. For
each channel in the feature map, global average pooling calculates
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FIGURE 9
Canny edge detection of nucleus-shaped anomaly areas. Subfigure (A) shows the power spectrum of the nucleus-shaped anomaly region, and (B)
shows the Canny edge detection nucleus-shaped anomaly region.

TABLE 4 Comparison results of image segmentation algorithms.

Model mIoU mPA

ODM_Unet 0.775455 0.998963

U-net 0.741681 0.998994

DeepLabv3 0.718519 0.998905

PSPNet 0.685374 0.998711

LinkNet 0.716289 0.998867

FPN 0.708899 0.998785

DeepLabv3+ 0.720010 0.998965

Unet++ 0.700127 0.998845

PAN 0.707727 0.998922

MAnet 0.716172 0.998954

the average value of all spatial positions in that channel, thereby
generating a vector with a length of the number of channels. This
vector captures global spatial information but ignores local spatial
details.Then, the dependency relationship between spatial positions
is learned through fully connected layers and activation functions,
and a spatial excitation vector is generated to adjust each spatial
position of the original feature map. In terms of channel dimension,
the global average pooling operation is first used to compress the
channel dimension of the feature map. For each spatial position,
the average value of all channels is calculated, and a vector with a
length of 1 is generated for each spatial position to generate a channel
descriptor. Then, the dependency relationship between channels is
learned through a fully connected layer and an activation function,
and a channel excitation vector is generated to adjust each channel of
the original feature map. Finally, the spatial excitation and channel
excitation vectors are combined and applied to the original feature
map through element-wise multiplication.

3.4 ODM_Unet network

The author uses MobileNetV3 as the encoder for the U-
net network model and improves it to propose a new ODM_
Unet network model. To extract image features of nucleus-shaped
anomaly regions from multiple dimensions, the model introduces
an ODConv convolution module in the encoder stage, achieving
convolution operations from four dimensions: spatial kernel size,
input channel number, output channel number, and convolution
kernel number. At the same time, to reduce the loss of detailed
semantic information due to the reduction of downsampling feature
map size, an SDI module is introduced between the encoder and
decoder, integrating the detailed semantic information from high-
level features and low-level features in the downsampling process
into the feature maps generated by the encoder for each layer.
Finally, to better integrate the semantic information in the feature
maps processed by the SDI module, the SCSE attention mechanism
module was used in the decoder stage to flexibly adjust and
strengthen the features of the nucleus-shaped abnormal areas.

The overall framework structure of the ODM_Unet network
model proposed by the author is shown in Figure 8.

3.5 Joint loss function

In the training process of the nucleus-shaped anomaly detection
model, to improve the performance and generalization ability of the
model, and better measure the difference between the true value and
the predicted value, the author combined the DiceLoss loss function
with the CrossEntropy Loss loss function in the design of the loss
function, and designed a joint loss function. DiceLoss can measure
segmentation accuracy, while CrossEntropy Loss can help themodel
better classify pixels. The specific formulas are shown in 1–4:

Dice =
2|X∩Y|
|X| + |Y|

(1)

DiceLoss = 1−Dice (2)

CrossEntropyLoss = −∑n
i=1

p(xi)logq(xi) (3)
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FIGURE 10
Visualization of Comparison Results. Subimages (A–F) represent the original power spectrum image, label image, and predicted images of ODM_Unet,
MAnet, PSPNet, and Unet++, respectively.

FIGURE 11
Spatial distribution of global nucleus-shaped anomaly regions from
November 2021 to February 2022.

Loss = CrossEntropyLoss− log(DiceLoss) (4)

Among them, |X∩Y| represents the number of intersections
between the predicted value and the true value, |X| represents
the number of elements in the predicted label, |Y| represents
the number of elements in the true label, p(xi) is the probability
distribution vector of the true label, q(xi) is the probability
distribution vector predicted by the model, ∑ represents
the sum of all categories, and log represents the natural
logarithm.

4 Experimental verification and
analysis

In order to verify the effectiveness of the ODM_Unet
network in detecting nucleus-shaped anomaly areas, the author
conducted comparative experiments on various models on
the nucleus-shaped anomaly area dataset, including U-net,
Unet++, DeepLabV3, DeepLabV3+, LinkNet, PSPNet, FPN,
PAN, and MAnet. In addition, comparative experimental
analysis was conducted with traditional unsupervised edge
detection methods to verify the necessity of supervised deep
learning methods.

4.1 Experimental environment

The server hardware configuration used in the training process
of the nucleus-shaped anomaly area detection task is NVIDIA
Tesla V100, with a running memory of 64 GB, a graphics card of
GeForce RTX3090, and 24 GB of graphics memory. The software
environment adopts the Ubuntu 18.04 operating system. To utilize
the efficient computing power of NVIDIA GPU and execute
multiple threads simultaneously, the experiment used NVIDIA’s
parallel computing platform and programming model CUDA
11.2.1. Then, CUDNN 8.2.1 was used to provide high-performance
GPU acceleration for deep learning frameworks. Finally, Pytorch
1.9.1 was used to construct and train a deep neural network model
framework.
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FIGURE 12
Geospatial distribution of global nucleus-shaped anomaly regions from November 2021 to October 2022.

FIGURE 13
Line chart of the distribution of global nucleus-shaped anomaly regions from November 2021 to February 2022.

4.2 Evaluating indicator

To quantify the performance of the model, optimize the model,
and make effective model selection and interpretation, the author
uses two evaluation metrics based on the confusion matrix: mean
Intersection over Union (mIoU) and mean Pixel Accuracy (mPA).
The confusion matrix is shown in Table 2.

The average intersection union ratio is obtained by calculating
the intersection union ratio of each category and then taking the

average. For each category, the intersection union ratio compares the
predicted results of the model pixel by pixel with the real labels and
then calculates the ratio between the intersection and union of the
predicted and real regions.The confusionmatrix calculationmethod
for IoU is to calculate the true class (TP), false positive class (FP),
and false negative class (FN) for each category, and then calculate
TP/(TP + FP + FN) to obtain.The average pixel accuracy is obtained
by calculating the classification accuracy of each pixel and taking
the average. Pixel accuracy is the percentage of correctly classified
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FIGURE 14
Statistical histogram of magnetic latitude distribution in global
nucleus-shaped anomaly regions from November 2021 to
October 2022.

pixels calculated by comparing the predicted classification results
with the actual labels pixel by pixel after each pixel is classified into a
certain category. The confusion matrix calculation method of mPA
is to calculate the true class (TP) and false positive class (FP) for each
category, and then calculate TP/(TP + FP). The calculation formulas
formIoU andmPA (Michieli and Zanuttigh, 2019) are shown in 5, 6:

mIoU = 1
k+ 1
∑k

I=0

pii
∑k

J=0
pij +∑

k
j=0

pji − pii
(5)

mPA =
∑k

i=0
pii

k

∑
i=0
∑k

j=0
pij

(6)

Where k represents the number of target categories,
(k+1) represents the total number of categories after adding
background categories, i represents the actual pixel value,
and j represents the pixel value predicted by the model. pij
represents the value of predicting i as j, pji represents the value
of predicting j as i, and pii represents the correctly predicted
value of predicting i as i, that is, the pixel value is equal to the
true value.

4.3 Parameter settings

To optimize the performance of the model and achieve
better detection results for nucleus-shaped anomaly areas, it is
necessary to optimize the parameters of the model’s training and
prediction. After multiple experiments of cross-validation and
adjustment, the parameter settings of the ODM_Unet network
model are listed in Table 3.

The optimizer for model training uses Adam (AdaptiveMoment
Estimation), which combines adaptive learning rate adjustment and
momentummethods. Its update rule is based on first-ordermoment
estimation of gradients (i.e., themean of past gradients) and second-
order moment estimation (i.e., the variance of past gradients) to
dynamically adjust the learning rate.The training set has a batch size
of 16 data, and the test set has a batch size of 16. The entire training
dataset is fully propagated through the model through a forward

and backward propagation process, with an epoch of 1200 and an
initial learning rate of 0.001. The weight attenuation strategy adopts
the cosine annealing hot restart method. When the epoch reaches
20, the learning rate is reset to 0.001, and then the learning rate is
dynamically adjusted based on the convergence result until mIoU
or mPA reaches the maximum value, or the epoch reaches the set
value. The training ends.

4.4 Comparative experiment

In addition to using supervised deep learning techniques, the
author also conducted comparative experimental analysis with
traditional edge detection methods for nucleus-shaped anomaly
detection tasks. There are many common edge detection operators,
such as the Roberts operator, the Sobel operator, the Prewitt
operator, and the Canny operator. After comparative analysis, the
author chose the Canny operator for comparative experiments. The
results obtained through edge detection using the Canny operator
are shown in subgraph (b) of Figure 9, but the detection effect
is not very good, as the nucleus-shaped abnormal areas were not
detected. Therefore, it can be concluded that it is necessary to
use supervised deep-learning semantic segmentation techniques for
detecting nucleus-shaped anomaly regions.

In order to evaluate and compare the effectiveness and
performance differences among different algorithms, and to verify
the performance of the ODM_Unet algorithm in the detection task
of nucleus-shaped abnormal areas, the experiment used the nucleus-
shaped abnormal area dataset made in Section 2 above to compare
the segmentation effect of the ODM_Unet algorithm with nine
classic semantic segmentation algorithms. The evaluation indicators
of each algorithm are shown in Table 4.

The visual comparison effect of the results after segmentation
by different algorithms is shown in Figure 10. From the visual
comparison of the results, it can be seen that the ODM_
Unet algorithm proposed by the author has a more obvious effect,
fully demonstrating the superiority of the ODM_Unet algorithm in
detecting nucleus-shaped anomaly areas.

5 Discussion

In order to further explore the frequency distribution range,
geographic spatial distribution, and magnetic latitude spatial
distribution of nucleus-shaped anomaly areas, the author analyzed
data from November 2021 to October 2022 for a total of 1 year and
found 453 nucleus-shaped anomaly areas distributed on 402 orbits,
including ascending and descending orbits.

5.1 Frequency distribution range

An analysis of the frequency distribution range of nucleus-
shaped anomaly areas throughout the year revealed that the vast
majority of the 453 nucleus-shaped anomaly areas were distributed
between 0 and 12.5 KHz, with the majority located above and below
6.2 KHz, and only one case located at a frequency above 12.5 KHz.
The frequency distribution line chart of the nucleus-shaped anomaly
area is shown in Figure 11.
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FIGURE 15
Distribution of magnetic latitudes in global nucleus-shaped anomaly regions from November 2021 to October 2022.

5.2 Global geospatial distribution

An analysis was conducted on the geographical spatial
distribution of 453 nucleus-shaped anomaly areas throughout the
year, and it was found that they were all distributed between the
south and north latitudes of 40°–70°. Among them, 266 were located
in the north latitude area, accounting for about 59%, and 187 were
located in the south latitude area, accounting for about 41%. After
marking the nucleus-shaped anomaly area on a map using Miller
projection, the overall trend of geographic spatial distribution was
observed, and it was found that the distribution of nucleus-shaped
anomaly areas in the south and north latitudes showed a wavy
and parallel trend with a belt-like distribution. Its global geographic
spatial distribution is shown in Figure 12, the dots of different colors,
orange, green, blue, and purple, represent the anomalous regions of
spring, summer, autumn, and winter, respectively.

In order to explorewhether seasonal factors will affect the spatial
distribution of nucleus-shaped anomaly areas, the author divided
the annual data into four seasons for analysis. There are 142, 124,
129, and 58 nucleus-shaped anomaly areas in the four seasons of
spring, summer, autumn, and winter, respectively. It was found that
spring has the most nucleus-shaped anomaly areas, while winter has
the least. Spring is about three times that of winter, and the number
of nucleus-shaped anomaly areas in summer and autumn is similar.
The number of regions in the north latitude is higher than that in
the south latitude in all four seasons. The line graph of its quantity
distribution is shown in Figure 13.

An analysis of the global spatial distribution of nucleus-shaped
anomaly regions in spring (March to May) revealed a total of 142
anomaly regions, accounting for 31% of the year, including 80 in the

north latitude region and 62 in the south latitude region, as shown by
the orange dots in Figure 12; In summer (June to August), a total of
124 nucleus-shaped anomaly areas were found, accounting for 27%
of the year, including 71 in the north latitude area and 53 in the south
latitude area, as shown by the green dots in Figure 12; In autumn
(September to November), a total of 129 nucleus-shaped anomaly
areas were found, accounting for 28% of the year, including 79 in
the north latitude area and 50 in the south latitude area, as shown
by the blue dots in Figure 12; In winter (December to February), a
total of 58 nucleus-shaped anomaly areas were found, accounting for
14% of the year, including 36 in the north latitude area and 22 in the
south latitude area, as shown by the purple dots in Figure 12.

5.3 Global magnetic latitude spatial
distribution

In addition to analyzing the geographical spatial distribution,
the author also analyzed the spatial distribution of magnetic
latitudes in areas with nucleus-shaped anomalies. Due to the
similarity between the division of magnetic field dip angle in
the north-south latitude of geomagnetic latitude and the division
of geographical latitude in the south-north latitude, the spatial
distribution of nucleus-shaped anomaly areas in the south and north
latitudes of geomagnetic dip angle remains basically unchanged.The
statistical histogram is shown in Figure 14.

An analysis of the spatial distribution of magnetic latitudes in
nucleus-shaped anomaly areas throughout the year revealed that
most of the areas were distributed between 58° and 80° of the south
and north magnetic latitudes. The spatial distribution of magnetic

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2024.1431273
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Li et al. 10.3389/fspas.2024.1431273

latitudes in nucleus-shaped anomaly areas throughout the year
is shown in Figure 15.The red, blue, green, and yellow dots represent
the nucleus-shaped anomaly areas in the four seasons of spring,
summer, autumn, and winter, respectively.

In the magnetic north latitude region, only six nucleus-shaped
anomaly areas are located above 80°, while the remaining nucleus-
shaped anomaly areas are all between 60° and 80°, and the
distribution trend fluctuates in a ripple pattern with the fluctuation
of magnetic latitude. Only two cases are located above 80° S latitude
in the magnetic south latitude region, two cases are located below
58° S latitude, and the remaining nucleus-shaped anomaly areas are
located between 58° and 80° S.

Based on the above analysis of the frequency distribution,
global spatial distribution, and magnetic latitude distribution of
nucleus-shaped anomaly areas, the possible physical process for
their generation is due to changes in magnetic field and spatial
position, which cause anomalies in waveform data and power
spectral density data, resulting in the appearance of nucleus-shaped
anomaly areas in the power spectral image.

The energy value at the center of the nucleus-shaped anomaly
area is relatively high, and as the distance from the center
increases, the color will become lighter, making the detection of
edge areas a challenge. This model has limitations in handling
details and boundaries, as detailed information may be lost during
downsampling, resulting in poor segmentation results at boundaries
and small structures. In addition, it is more sensitive to noise and
interference in the image. In the presence of noise or interference, the
segmentation results are easily affected, leading to misclassification
or missed segmentation.

6 Conclusion

When studying the power spectrum image of the VLF frequency
band of the electric field detector, a nucleus-shaped anomaly area
was discovered. In order to detect and analyze these nucleus-shaped
anomaly areas, the author made improvements based on the U-net
network and proposed the ODM_Unet algorithm. Then, using data
from November 2021 to October 2022, the frequency distribution
range, geographic spatial distribution, and magnetic latitude spatial
distribution of the nucleus-shaped anomaly areas were further
analyzed, and the following conclusions were obtained:

(1) Compared with existing classical semantic segmentation
algorithms, the ODM_Unet algorithm has better performance
and effectiveness, and can effectively detect nucleus-shaped
abnormal regions.

(2) After analysis, it was found that the distribution of nucleus-
shaped anomaly areas is closely related to their frequency
range and magnetic latitude. The nucleus-shaped anomaly
areas are mainly distributed between 0 and 12.5 KHz, with the
vast majority concentrated around 6 kHz. They will generate
a ripple-like strip distribution with the fluctuation of the
magnetic latitude’s isomagnetic lines, parallel to the magnetic
latitude’s isomagnetic lines.

(3) The effective detection of nucleus-shaped anomaly areas
by the ODM_Unet algorithm has reference significance for
the detection of other types of spatial electromagnetic field

disturbances and lays the foundation for subsequent research
on nucleus-shaped anomaly areas.
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