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The Kelvin-Helmholtz Instability (KHI), arising from velocity shear across the
magnetopause, plays a significant role in the viscous-like transfer of mass,
momentum, and energy from the shocked solar wind into the magnetosphere.
While the KHI leads to growth of surface waves and vortices, suitable detection
methods for these applicable to magnetohydrodynamics (MHD) are currently
lacking. A novel method is derived based on the well-established λ-family of
hydrodynamic vortex identification techniques, which define a vortex as a local
minimum in an adapted pressure field. The J×B Lorentz force is incorporated
into this method by using an effective total pressure in MHD, including both
magnetic pressure and a pressure-like part of themagnetic tension derived from
a Helmholtz decomposition. The λMHD method is shown to comprise of four
physical effects: vorticalmomentum, density gradients, fluid compressibility, and
the rotational part of the magnetic tension. A local three-dimensional MHD
simulation representative of near-flank magnetopause conditions (plasma β’s
0.5–5 and convective Mach numbers M f ∼ 0.4) under northward interplanetary
magnetic field (IMF) is used to validate λMHD. Analysis shows it correlates
well with hydrodynamic vortex definitions, though the level of correlation
decreases with vortex evolution. Overall, vortical momentum dominates λMHD at
all times. During the linear growth phase, density gradients act to oppose vortex
formation. By the highly nonlinear stage, the formation of small-scale structures
leads to a rising importance of the magnetic tension. Compressibility was found
to be insignificant throughout. Finally, a demonstration of this method adapted
to tetrahedral spacecraft observations is performed.

KEYWORDS

Kelvin-Helmholtz instability, magnetopause, surface wave, vortex identification,
simulations, magnetohydrodynamics, KHI, MHD

1 Introduction

The complex interaction between Earth’s intrinsic magnetic field and the solar wind
results in a cavity called the magnetosphere, bounded by the magnetopause. Various
physical processes exist which allow solar wind mass, energy, and momentum to penetrate
this magnetic barrier, driving magnetospheric dynamics and also causing significant
space weather effects (Buzulukova and Tsurutani, 2022). The three main mechanisms
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by which this penetration occurs are magnetic reconnection
(Dungey, 1961), a quasi-viscous interaction (Axford and Hines,
1961; Axford, 1964), and diffusive transfer (Tsurutani and
Thorne, 1982). The dominant transfer mechanism at Earth is
dependent on the local Interplanetary Magnetic Field (IMF) and
plasma conditions. Northward IMF conditions are conducive
to viscous-like transfer, whereas southward IMF conditions
enable magnetic reconnection-driven transfer to dominate.
The viscous-like interaction between magnetospheric and solar
wind plasma’s is predominantly driven by the Kelvin-Helmholtz
instability (KHI), a fluid-like instability at interfaces with
a velocity shear (Chandrasekhar, 1961), which leads to the
generation and evolution of surface waves and vortices on the
magnetopause (Hwang et al., 2022).

KH waves and vortices at the magnetopause form from small
deformations of the boundary about equilibrium, called seed
perturbations (Hasegawa et al., 2009). Because of the continuous
magnetosheath flow adjacent to the magnetopause, plasma parcels
closer to the boundary must move faster around these seed
perturbations than ones further away. From Bernoulli’s principle,
this establishes a pressure gradient which acts to further deform
the magnetopause surface. These larger deformations subsequently
drive greater pressure gradients and so on. Thus, in the absence
of an additional force to counteract this process and stabilise the
boundary, the velocity shear is KH unstable. This process occurs
not only in the space plasmas at the magnetopause, it has also
been observed or predicted at other planetary magnetopauses
(Masters et al., 2012; Paral and Rankin, 2013; Ruhunusiri et al.,
2016; Masters, 2018; Dang et al., 2022; Montgomery et al., 2023;
Donaldson et al., 2024), the magnetopause of magnetised moon
Ganymede (Kaweeyanun et al., 2021), comet tails (Ershkovich,
1980), and along the surface of CMEs (Nykyri and Foullon, 2013).

In the initial linear growth phase of the KHI, the deformations
of the magnetopause can be described as magnetopause surface
waves (MSWs) from linear MHD wave theory (Pu and Kivelson,
1983). Surface waves are magnetosonic modes which can only
propagate tangentially to a boundary or surface, requiring them
to have maximum amplitude at the interface and decay along the
boundary normal on both sides (Kivelson and Chen, 1995). This
means they can be mathematically formulated from evanescent
magnetosonic waves on each side of an assumed discontinuity,
tied together through boundary conditions. Surface waves are
elliptically polarised with opposite polarisation on either side of the
boundary, forming flow vortices centred on the interface (Dungey
and Southwood, 1970).

MSWs usually originate at the near-equatorial dayside
magnetopause flanks and propagate tailward due to advection
by the magnetosheath flow (Song et al., 1988). As MSWs travel
tailwards, their amplitudes continue to grow due to the KHI.
The magnetosheath side of the interface will eventually start to
carry the deformed magnetopause along with it. This results
in the interface itself rolling-up into a vortex shape, which is
typically seen in the instability’s nonlinear stage (Fujimoto et al.,
2006). This nonlinear growth can subsequently trigger secondary
processes such as vortex-induced reconnection (Nykyri and Otto,
2001; Nakamura et al., 2017; 2013), the Rayleigh-Taylor instability
(Guglielmi et al., 2010), and kinetic (ion and electron) instabilities
(Nykyri et al., 2006; Moore et al., 2016; 2017; Ma et al., 2021a;

Nykyri et al., 2021).Thismakes theKHI amechanism for cross-scale
energy transfer. Understanding how the KHI’s MSWs/vortices are
generated and transfer energy across the magnetopause is an active
field of research that has existed since its discovery (see reviews by
e.g., Zhang et al., 2022; Masson and Nykyri, 2018; Faganello and
Califano, 2017; Kivelson and Chen, 1995).

By approximating the magnetopause as an unbounded
tangential discontinuity between two incompressible plasmas
(subscripts 1 and 2), Chandrasekhar (1961) used linear
incompressible MHD theory to show that MSWs with normalised
wave vector k̂ are unstable to the KHI if Equation 1 is satisfied:

(k̂ ⋅ (v1 − v2))
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Flow Shear Driver

−
ρ1 + ρ2
ρ1ρ2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Density Weighting

 1
μ0
[(B1 ⋅ k̂)

2 + (B2 ⋅ k̂)
2]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Magnetic Tension Stabiliser

> 0 then KHI unstable. (1)

Here v1,2 is the fluid velocity, ρ1,2 is the density, and B1,2 is
the magnetic field vector on either side of the fluid boundary.
Unfortunately, this approach requires unrealistic assumptions of
unbounded magnetic field lines, incompressibility, homogeneity,
and an infinitesimally thin boundary layer, all of which we will
show to be important along a realistic magnetopause below. While
this condition has often been applied to observational case studies
of the KHI to demonstrate whether the boundary is KHI unstable
or not, it ought to be remembered that this condition strictly
applies only at the source region of the linear stage of the KHI.
Hence, when maturer vortices have developed, the data collected
by a spacecraft crossing the vortex may not satisfy this condition
anymore. Furthermore, it has been shown in MHD simulations that
the properties (amplitude and frequency) of the KHI seed spectrum
affect the growth and size of the Kelvin-Helmholtz waves–this may
help explain the enhanced geo-effectiveness of solar wind structures
with certain periodicities (Nykyri et al., 2017).

Equation 1 shows that wave vectors aligned with the flow shear
most efficiently support the flow shear driver term of the KHI.
However, this does not mean the most unstable k̂ is necessarily
aligned with the flow shear because of the second term, the
stabilising effect of magnetic tension. For magnetic fields parallel
to k̂, the KHI will be suppressed by the magnetic tension if the
relative speed does not exceed the root-mean-square Alfvén speed
in the two media. This is intuitive–as the surface begins to deform,
the frozen-in field lines will also be deformed, which magnetic
tension will oppose. In contrast, magnetic fields orthogonal to
k̂ result in no curvature of field lines and hence no tension
force. Thus the KHI was thought to be uninfluenced by such a
magnetic field. If bothmagnetic fields are perpendicular to the shear
flow, the most unstable k̂ is aligned with the flow shear, whereas
for magnetic fields not strictly aligned with the flow and under
typical magnetopause conditions, k̂ is most unstable perpendicular
to the magnetospheric magnetic field (Southwood, 1968; Walker,
1981). Crucially, these conclusions are only true in the unbounded
quasi-steady state. In reality, closed magnetospheric magnetic field
lines in the vicinity of the magnetopause are necessarily bounded
by the ionosphere–sometimes known as “line tying” (Miura and
Kan, 1992).

The ionosphere is highly reflecting to magnetosonic modes
such as surface waves, almost perfectly reflecting them and
thus anchoring closed magnetic field lines in the ionosphere
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(Kivelson and Southwood, 1988). Thus unlike the unbounded case
where a spectrum of field-aligned wavenumbers are possible, the
ionospheric boundary conditions quantise the possible field-aligned
wavenumbers. The result is that linear surface waves necessarily
should have standing structure along the field (Chen and Hasegawa,
1974; Plaschke and Glassmeier, 2011; Archer et al., 2019; 2021).
Unlike in the unbounded state, where the field lines would just move
with the plasma, in the bounded state the field will now impose a
magnetic tension restoring force even when it is orthogonal to the
flow shear. In local simulations, this has shown to stop the vortex
development if the z-extent around the equatorial plane is not large
enough (Brackbill and Knoll, 2001; Hashimoto and Fujimoto, 2006;
Takagi et al., 2006). In addition to this, it allows for the field topology
to evolve. Over time, as the KHI progresses into the nonlinear
stage, the bounded magnetic field can become twisted into flux
ropes (Otto and Fairfield, 2000; Hwang et al., 2020; 2022) meaning
that the magnetic tension will become increasingly important
even when the magnetic field is orthogonal to the flow shear.
This results in current sheets being generated in the mid-latitudes
eventually inducing magnetic reconnection (Faganello et al., 2012;
2014). Furthermore, this twisting requires additional energy which
reduces the growth rate of the KHI or stabilises the boundary
entirely (Miura, 1987). This process is typical of the low-latitude
flank magnetopause (e.g., Hwang et al., 2022).

So far only the incompressible regime has been considered,
but plasma’s are malleable and therefore compressibility cannot be
ignored. Indeed the vortices produced by the KHI act as obstacles
to the driving flow, which can lead to compressions and even shocks
within the plasma (e.g., Palermo et al., 2011).The fast magnetosonic
convective Mach number, M f , is a dimensionless number defined
as a ratio of the flow speed in the obstacle frame, u, and the
magnetosonic speed, u f , such that M f = u/u f . This ratio is used
to determine how compressible a flow is (Miura, 1990; Miura and
Kan, 1992; Palermo et al., 2011), since the proportional change
in density due to flow variations scales as ∼M2

f . Values of M f <
0.3 are typically considered incompressible as they result in ≲
10% changes in density. Equation 1 shows that unstable surface
waves can be generated on a incompressible infinitesimally thin
tangential discontinuity when the velocity shear exceeds some
critical threshold. Compressibility lowers this threshold relative to
the incompressible situation and thus has a destabilising effect;
the extent to which Fejer (1964), Sen (1965), and Southwood
(1968) disagreed. Further to this, Sen (1965) also suggested that
compressibility has both a destabilising effect on the lower critical
shear flow velocity, and stabilising effect on the wave growth
rate (i.e., a reduction of the growth rate) if the shear flow speed
is sufficiently smaller than the magnetoacoustic speed. Pu and
Kivelson (1983) coupled the results of these works by showing
that there are two different modes, each with different upper and
lower critical shear velocities. The modes are only unstable if
the shear velocity is between the upper and lower critical shear
velocity values. Pu and Kivelson (1983) show that the lower critical
velocity shear of both modes is due to the stabilising effect of
magnetic tension, which they show compressibility lowers for both
modes. The upper critical velocity is due to a transition of the
surface evanescent wave to a leaky oscillatory wave or “body
wave” which carries energy away from the boundary and into the
magnetosphere and magnetosheath, consequently stabilising the

KHI. They show that compressibility increases the growth rate of
one of themodes slightly and significantly reduces the growth rate of
the other. They conclude that the impact of compressibility depends
on the tangential wave vector, but generally compressibility does
not significantly alter the threshold shear velocity in comparison
to the incompressible limit. Crucially, these works insufficiently
describe reality by approximating the magnetopause as a tangential
discontinuity, making them only valid for wavelengths much larger
than the boundary thickness.

Inconsistencies in growth rates at short wavelengths arise when
the magnetopause’s finite thickness is ignored (Lerche, 1966), as
the effects of a finite thickness stabilises the magnetopause to
short wavelengths. In the compressible case KHI growth rates
are reduced by the background magnetic field component parallel
to the shear flow direction when using a finite thickness for
the magnetopause (Ong and Roderick, 1972), agreeing with the
tangential discontinuity findings of Sen (1965) and Pu and Kivelson
(1983). The compressible KHI growth rates on a finite boundary
were first found with linear theory by Miura and Pritchett (1982),
which advanced MHD simulations of the KHI are now capable of
recovering (Briard et al., 2024). Aswell as the growth rates, the upper
and lower critical velocity conditions introduced by Pu andKivelson
(1983) are also affected when instead considering a finite boundary
thickness.The lower critical shear velocity is zerowhen themagnetic
field is orthogonal to both the shear flow and the mode’s wave
vector (Miura andKan, 1992). In addition, the upper critical velocity
shear limit is removed when including an inner boundary within
the magnetosphere due to the interaction of reflected waves with
the magnetopause (Fujita et al., 1996). In summary, the role of
compressibility is dependent on the thickness of the shear interface
(Miura and Pritchett, 1982) as compressibility plays a significant role
in the gradual–but not total–stabilisation of the boundary due to the
finite magnetopause thickness (Miura, 1992).

Palermo et al. (2011) investigated the influence of plasma
homogeneity and compressibility on the formation of KH vortices
and found that compressibility, inhomogeneity, and magnetopause
thickness all play a role in vortex formation and propagation and
state that compressibility effects stabilise the magnetopause.

Other studies have shown that plasma inhomogeneity decreases
growth rates as the gradients increase (Amerstorfer et al., 2010). Ma
et al. (2024) suggest that the KHI growth rate is insensitive
to the density gradient across the shear flow boundary in the
compressible regime and go on to show that these variations
affect the secondary processes which the KHI trigger. This further
reinforces that linear incompressible theory can only approximately
describe the KHI along the magnetopause. These studies suggest
that magnetopause thickness, magnetic tension, and compressibility
stabilise the magnetopause to the KHI, and plasma inhomogeneity
destabilises it but beyond this does not affect the growth rate.

Overall, whilst this shows that the role of compressibility and
magnetic tension on the KHI is a stabilising one, the significance
of magnetic tension, compressibility, and density variations on
vortex formation at the magnetopause is still an open question.
One reason for this is because identifying MSWs and their
coupled vortices using in-situ measurements or simulation is not
trivial (Plaschke, 2016). Given the major role that the Kelvin-
Helmhholtz instability is thought to play in the viscous-like
interaction between the solar wind and magnetosphere, the ability
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to clearly identify the vortices produced by this process is important.
This paper introduces a novel vortex identification method for Ideal
MHD, based on existing methods from hydrodynamics. Current
techniques, both in hydrodynamics and space plasma physics, are
summarised in Section 2. Section 3 derives the new MHD-valid
vortex identificationmethod, whichwe call λMHD.We then apply the
λMHD method to a simple MHD simulation of the KHI in Section 4,
comparing the results to previous methods and assessing the
importance of different physical effects on the vortices it identifies.
We also discuss potential in-situ applications.

2 Vortex identification techniques

2.1 Defining a vortex

Although a vortex is a pervasive and familiar concept which
is qualitatively understood as a region of swirling fluid about
some arbitrary axis line, perhaps remarkably a universally accepted
mathematical vortex definition still does not exist (Jeong and
Hussain, 1995; Cai et al., 2018; Yao and Hussain, 2018). To aid the
discussion, it is important to understand the origins of a vortex in
general. Vortices are formedwhen shearingmomentum is redirected
in some way, translating it into rotational momentum. Without an
adequate restoring centripetal force, the centrifugal motion of the
fluid in a vortex will tear itself apart, diffusing it. In hydrodynamics,
the centripetal force that prevents this usually comes from gradients
in pressure which originate from velocity gradients, following
Bernoulli’s principle. This is known as cyclostrophic balance and is
only true in a steady inviscid planar flow (Jeong and Hussain, 1995).

The MHD case complicates this by introducing magnetic
pressure and magnetic tension forces. In MHD the restoring force
will also includemagnetic field contributionswhich are causedwhen
the field is perturbed by the moving plasma (Collado-Vega et al.,
2018). As the stress in anMHD fluid is anisotropic, due to magnetic
tension introducing bias along the field direction, the consequential
pressure contribution from the field will be a complex superposition
of themagnetic pressure and some part of themagnetic tension (this
is explored further in Section 3.1). This added complexity means
that MHD requires some formal vortex definition beyond that of
hydrodynamics.

2.2 Existing hydrodynamic approaches

Identifying and/or quantifying a vortex is a problem which still
exists and is widely researched in the hydrodynamic community (see
review by Zhang et al., 2018, and references therein). Most of these
methods typically stem from the velocity gradient tensor, ∆v where

G = ∆v =
[[[[

[

∂1v1 ∂1v2 ∂1v3
∂2v1 ∂2v2 ∂2v3
∂3v1 ∂3v2 ∂3v3

]]]]

]

. (2)

One example of a popular vortex core line identification
technique derived from the velocity gradient tensor is the Q
definition (Hunt et al., 1988). This defines a vortex as a connected

fluid region with a positive second invariant of ∆v. Finding the
characteristic equation of G gives

det (G− λI) = λ3 − Pλ2 +Qλ−R = 0 (3)

where the first, second, and third invariants of G are defined
respectively as

P = Tr (G) ; Q = 1
2
[Tr(G)2 −Tr(G2)] ; R = det (G) . (4)

For an incompressible fluid (∇ ⋅ v = Tr (G) = 0), the Q criterion is
equivalent to a region where the magnitude of the rotation rate
tensor, Ω = 1

2
(GT −G), is larger than the magnitude of the strain-

rate tensor, S = 1
2
(GT +G).This is expressed as (‖Ω‖2F − ‖S‖

2
F)where

‖ ⋅ ‖F is the Frobenius norm given by ‖X‖F = √∑
n
i=1∑

m
j=1X

2
ij. Due to

its simplicity, this strictly incompressible definition of Q is usually
applied, even when dealing with compressible fluids.

Another popular vortex core line identification technique
derived from the velocity gradient tensor, and based on locating local
pressure minima, is the λ2 definition (Jeong and Hussain, 1995).
The technique starts with the Navier-Stokes momentum equation
and derives the pressure Hessian, containing local pressure extrema
information. After discarding unsteady irrotational straining and
viscous effects, which are unrelated to vortical motion, this becomes

∂i∂jPadp = SikSkj +ΩikΩkj, (5)

where Padp is the adapted pressure (pressure with the unsteady
irrotational straining and viscous effects removed). An adapted
pressure minimum in some plane requires, through a second partial
derivative test on Padp, two negative eigenvalues of S2 +Ω2. Hence
a vortex core in this method is defined as a connected region
which satisfies this condition. This can be simplified by sorting the
eigenvalues in descending order: λ1 > λ2 > λ3 and stating a vortex
occurs where λ2 < 0 (a step-by-step derivation can be found in
the appendix of Cucitore et al., 1999). λ2 can be interpreted as
identifying a local pressure minima in some arbitrary intersecting
plane. Due to how the value is constructed, the magnitude of
the parameters does not have any physical significance except for
comparison to other values of itself. Cucitore et al. (1999) show that
the λ2 method is a requirement of some measure of the rotation rate
prevailing over somemeasure of the strain rate, implying that λ2 and
Q are comparable.

Both of these criteria are only valid for homogeneous and
incompressible hydrodynamic fluids. In addition, as they both only
use the velocity vector field, they are ignorant to themomentum they
represent. Extensions to these techniques do exist which provide
weighting dependent on momentum. The simplest is weighted-λ2
(Yao and Hussain, 2018) (denoted as λ2 herein) which is identical
to λ2 but weights Equation 5 by density. This results in a shifting
of power from high velocity vortices to high momentum vortices.
A further extension is known as λρ (Yao and Hussain, 2018)
which extends λ2 to be valid for compressible, inhomogeneous
hydrodynamic fluids. This is achieved by using the symmetric part
to the tensor product of the momentum gradient tensor, ∆(ρv), and
the velocity gradient tensor, ∆v, alongwith the symmetric part of the
momentum compressibility gradient tensor, ∆[( ∆⋅ v)ρv]. λρ can be
broken into three parts which represent the vortical momentum, the
fluid compressibility, and the density gradients. If the definition is
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applied to an incompressible and homogeneous fluid then it reduces
to λ2. A useful feature of the Q and λ-family of techniques is that
they are Galilean invariant (Jeong and Hussain, 1995), meaning the
methods are consistent across all inertial frames of reference.

2.3 Current approaches to vortex
identification at the magnetopause

Typically, MSWs due to the KHI at the magnetopause are
identified in-situ by using hodograms to show quasi-periodic
fluctuations of the magnetopause surface passing over spacecraft
(Hasegawa et al., 2004). This method is deficient if only single
spacecraftmeasurements are used as it can be difficult to characterise
structure size (Hasegawa et al., 2004). As well as this, the method
cannot identify magnetopause vortex structures (Cai et al., 2018).
Vortical patterns will be present in the data from both surface
roll-up and the boundary adjacent vortices the waves generate
in the boundary-adjacent flow. It is important to be able to
distinguish between them as surface roll-ups only occur in the
nonlinear stages of the KHI but boundary-adjacent vortical flow
can occur at any stage (Chandrasekhar, 1961; Hwang et al., 2022).
This makes identifying vortices and their coupled surface waves two
different problems.

Numerous vortex identification techniques applicable to the
magnetopause have been developed but all have deficiencies (see
review byHasegawa, 2012). For example, a sensible starting place for
vortex identification would be using the vorticity vector. However,
at shear boundary regions vorticity is high even in the absence
of any rotating flows, meaning that it is not suitable for KH
vortex identification. Takagi et al. (2006) suggested using low-
density plasma moving faster than the magnetosheath plasma to
detect surface roll-ups. However, Plaschke et al. (2014) showed
that this signature is not unique to surface roll-ups due to
the plasma depletion layer and vortices from MSWs providing
false-positives. Alternatively, based on a hybrid Vlasov simulation
of theKHI, Settino et al. (2021) suggest kinetic signatures such as ion
non-Maxwellianity, total current density, temperature anisotropy,
agyrotropy, and magnetic field gradients might serve as proxies for
KH-vortices.

Another popular method used for both simulation and in-situ
analysis investigates local total pressure minima, where the total
pressure is the sum of thermal andmagnetic pressures (Nykyri et al.,
2017; Rice et al., 2022). Pressure minima are coupled to vortices due
to Bernoulli’s principle as discussed above.This approach, and using
the vorticity vector, typically fails when fluctuations are large or if
other physical processes which can interfere with the dynamics of
the KHI (e.g., reconnection) are taking place (Settino et al., 2021).
Other drawbacks of local pressureminima arise due to the vortex not
containing a three-dimensional pressure minima and also pressure
minima not always being associated with vortices as other physical
process can create them.

The simpler hydrodynamic vortex identification techniques
(Q and λ2) have also been used to study the KHI at Earth’s
magnetopause, though this is only possible for multi-point analysis
due to the necessity of calculating gradients (Settino et al., 2021).
Cai et al. (2018) used data from the ClusterMission (Escoubet et al.,
2001) to identify vortical structures at Earth’s magnetopause. They

applied the method to magnetic field data rather than the velocity
data, assuming these vary similarly via the frozen-in flux theorem.
They conclude thatQ is easy to implement but imprecise and that λ2
is more precise but does not provide geometric information about
the vortex core.These results agree with a different study performed
by Collado-Vega et al. (2018) who investigated the effectiveness ofQ
and λ2 in identifying vortices in a 3-dimensional BATS-R-US global
MHD magnetosphere simulation (Tóth et al., 2005). They state that
neither method is immune to false identifications and conclude
by stating that incorporating the effects of the magnetic field will
likely increase the scientific yield. Since both techniques derive from
hydrodynamics, this can only be done by deriving the equivalent to
the λ-family of methods from the MHD equations.

3 The λ method for ideal MHD

3.1 MHD effective pressure

The λ-family of definitions all work by using a second partial
derivative test on some adapted pressure Hessian to find local
pressure minima. Local pressure minima here refers to a minima
in pressure in a plane, not a three dimensional minima as some
vortices only have minima in a plane perpendicular to a vortex axis
rather than a three dimensional minima (e.g., Burgers vortex). In
the case of hydrodynamics without any external forces, the only
inviscid force acting on the fluid arises from thermal pressure
gradients. Thus thermal pressure is the field used, adapted by
discarding any contributions which cause pressure minima without
being associated with vortical flow, e.g., sink flow (Jeong and
Hussain, 1995). However, in MHD the plasma is also subject to
magnetic pressure and magnetic tension forces. The total pressure
generally used in ideal MHD is the sum of magnetic pressure,
Pmag = B

2/(2μ0), and thermal pressure, Ptherm = nkBT. However this
does not necessarily describe all the pressure-like forces on the
plasma–those which can be expressed as an irrotational field −( ∆P).
The magnetic tension B ⋅∇B/μ0 may also have a pressure-like part
to it. One example of this is the magnetic dipole, which is a current-
and force-free magnetic field. Since this exhibits magnetic pressure
gradients, these must be completely cancelled by magnetic tension
forces; thus tension can in part contribute to the total of pressure-
like forces in ideal MHD. In an alternative case where current is
induced, such as in a field aligned current, the magnetic tension
will be a highly rotational field as stress is transmitted along the
field. This highlights that in a dynamic environment such as KH
vortices, the magnetic tension will be composed of both rotational
and irrotational components.

The fundamental theorem of vector calculus states that any
vector field, which exists in the domain V and is twice continuously
differentiable inside V, can be decomposed into the sum of a curl-
free (irrotational, − ∆P), and divergence-free (rotational ∆×U),
field. This is also known as a Helmholtz decomposition. Applied to
the magnetic tension this gives

τ = − ∆Pten +

∆×U = τ irr + τ rot, (6)

where Pten is the pressure field associated with the irrotational part
of the tension force andU is the vector potential field describing the
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rotational part to the tension. The Helmholtz decomposition allows
for an effective total pressure field in MHD to be defined as the sum
of thermal pressure, magnetic pressure, and the pressure-like part of
the tension:

Peff = nkBT+
B2

2μ0
+ Pten = Ptherm + Pmag + Pten. (7)

A general solution to Equation 6 can be derived so that Pten can be
investigated

τ (r) = − ∆( 1
4π
∫
V

∆′ ⋅ τ (r′)
|r− r′|

dV′ − 1
4π
∮

S
n̂′ ⋅

τ (r′)
|r− r′|

dS′)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Pten(r)

+ ∆× ( 1
4π
∫
V

∆′ × τ (r′)
|r− r′|

dV′ − 1
4π
∮

S
n̂′ ×

τ (r′)
|r− r′|

dS′)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

U(r)

.

(8a)

= − ∆Pten +

∆×U (8b)

where S is the enclosing surface of V.
Axiomatically, Pten andU are not unique. Any arbitrary constant

scalar can be added toPten to provide the samedistinct τ irr = −

∆Pten
solution. Similarly, any arbitrary gradient field can be added to U
to give the same unique solution to τ rot =

∆×U. As the effective
pressure itself is not directly required in λ-family methods, only its
Hessian, this gauge freedom is unimportant here.

Computationally, it is more efficient to perform the Helmholtz
decomposition in Fourier space

τ =∭ τ̂ (k)eik⋅rdVk, (9)

where τ̂ denotes the Fourier Transform of the magnetic tension. In
an unbounded domain this requires that the tension decays faster
than 1/r. By splitting the tension’s Fourier transform τ̂(k) into its
components parallel and perpendicular to k

τ̂‖ (k) =
k ⋅ τ̂ (k)
|k|2

k, (10)

τ̂⊥ (k) = −k×
k× τ̂ (k)
|k|2
, (11)

it can be seen that

τ̂ (k) = τ̂‖ (k) + τ̂⊥ (k) (12a)

= −ik
ik ⋅ τ̂ (k)
|k|2
+ ik×

ik× τ̂ (k)
|k|2

(12b)

= −ikP̂ten (k) + ik× Û (k) (12c)

where the Fourier Transforms of the scalar field Pten and the
vector field U are defined as

P̂ten (k) = i
k ⋅ τ̂ (k)
|k|2
, (13)

Û (k) = i
k× τ̂ (k)
|k|2
. (14)

Substituting into Equation 9 demonstrates this provides the
Helmholtz decomposition

τ = ∭−ikP̂ten (k)eik⋅rdVk⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−∇Pten

+∭ ik× Û (k)eik⋅rdVk⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∇×U

, (15)

since in Fourier space ∇→ ik. The Fourier method has been used to
perform the decomposition seen in the following section.

3.2 λMHD derivation

Here we derive a λ-family vortex definition applicable to ideal
MHD, which we call λMHD. The derivation closely follows that
of λρ found in Yao and Hussain (2018). The aim is to find the
Hessian of the MHD effective pressure defined in Section 3.1 so
that a second partial derivative test can be performed on it to
identify local pressure minima. Gravitational effects are assumed to
be negligible. We neglect viscous effects in the derivation below due
to space plasma being collisionless. However, this definition is valid
for a viscous ideal MHD fluid as a viscosity term in the pressure
Hessian is neglected as viscosity can provide centripetal forces
(e.g., Kármán’s viscous pump) and remove the pressure minima
in the fluid. Neglecting this term allows for the method to be
able to successfully identify a vortex even when pressure-minima
are not providing the centripetal restoring force (see Jeong and
Hussain, 1995; Yao and Hussain, 2018, for further description of the
viscous case in hydrodynamics).

The derivation starts with the ideal MHD Cauchy-Momentum
equation, where the Helmholtz decomposition of the magnetic
tension has been performed

∂
∂t
(ρv) + ∆⋅ (ρvv) = − ∆Peff + τrot. (16)

Rewriting this in tensor notation (using the Einstein summation
convention) for component i and taking the gradient in
coordinate j,

∂t∂j (ρvi) + ∂j∂k (ρvivk) = −∂j∂iPeff + ∂jτirot. (17)

Apply the chain rule twice

∂t∂j (ρvi) + ∂jvk∂k (ρvi) + vk∂k∂j (ρvi)

+∂j (ρvi)∂kvk + (ρvi)∂k∂jvk = −∂j∂iPeff + ∂jτirot.
(18)

Using the definition of the material derivative D
Dt
= ∂t + vk∂k this can

be simplified to

D
Dt
(∂j (ρvi)) + ∂jvk∂k (ρvi) + ∂j ((ρvi)∂kvk) = −∂j∂iPeff + ∂jτirot.

(19)

Taking the symmetric part of Equation 19 by applying to each tensor
Aij the symmetric operator 1/2(Aij +Aji)

D
Dt
( 1
2
(∂j (ρvi) + ∂i (ρvj))) +

1
2
(∂jvk∂k (ρvi) + ∂ivk∂k (ρvj))

+ 1
2
(∂j ((ρvi)∂kvk) + ∂i ((ρvj)∂kvk)) = −∂j∂iPeff +

1
2
(∂jτirot + ∂iτjrot) .

(20)

Substitute in the symmetric, Sij = 1/2(∂jvi + ∂ivj), and anti-
symmetric,Ωij = 1/2(∂jvi − ∂ivj), parts of the velocity gradient tensor

D
Dt
( 1
2
(∂j (ρvi) + ∂i (ρvj))) + ρ(SikSkj +ΩikΩkj) +

∂kρ
2
(vi∂jvk + vj∂ivk)

+ 1
2
(∂j ((ρvi)∂kvk) + ∂i ((ρvj)∂kvk)) = −∂j∂iPeff +

1
2
(∂jτirot + ∂iτjrot) .

(21)
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The effective pressure Hessian (denotedH) can now be written as,

−Hij = −∂j∂iPeff = Eij +Mij +Dij +Cij +Tij. (22a)

Where each term represents a different physical property:

UnsteadyStrain:Eij =
D
Dt
(1
2
(∂j (ρvi) + ∂i (ρvj))) , (22b)

VorticalMomentum:Mij = ρ(SikSkj +ΩikΩkj) , (22c)

DensityGradients:Dij =
∂kρ
2
(vi∂jvk + vj∂ivk) , (22d)

Compressibility:Cij =
1
2
(∂j ((ρvi)∂kvk) + ∂i ((ρvj)∂kvk)) , (22e)

RotationalMagneticTension:Tij = −
1
2
(∂jτirot + ∂iτjrot) . (22f)

As discussed by Jeong and Hussain (1995) and Yao and Hussain
(2018), there is an inconsistency between the existence of a pressure
minimumand a vortex core in Equation (22a). Simply finding a local
pressure minimum is not sufficient in identifying a vortex core as
unsteady irrotational motion can cause pressure minima in a fluid
without vortical flow as a consequence of unsteady strain in the fluid.
In the example of a surface wave in an incompressible isothermal
hydrodynamic fluid, a vortex would not be identifiable in pressure
alone as there would not be a pressure minimum despite vortical
flow being present. However, removing the unsteady strain provides
the minimum needed in the adapted pressure Hessian to allow for
vortex identification in this case. Choosing to neglect the unsteady
strain effect in Equation 22a completes the derivation,

−H =M+D+C+T. (23)

Equation 23 outlines that only contributions fromM+D+C+T are
required to identify a pressure minimum in a plane, which requires
two positive eigenvalues of the pressure Hessian tensor (Jeong and
Hussain, 1995; Yao andHussain, 2018). Consequently, λMHD defines
a vortex as a connected region with two negative eigenvalues of
M+D+C+T. Since this tensor is real and symmetric, it has real
eigenvalues only. Thus if its eigenvalues λ1 > λ2 > λ3, then λMHD is
equivalent to the requirement that λ2 < 0 within the vortex core.

In summary, λMHD adds a correction term to λρ which extends
its usage to a magnetised ideal MHD fluid. λMHD is constructed of
four terms which each represent different physical effects believed
to affect the formation of the vortices such as in the KHI: vortical
momentum (M), density gradients (D), fluid compressibility (C),
and rotational magnetic tension (T).

4 Application to local MHD simulation

To demonstrate λMHD and its potential usage in identifying
MSWs and vortices at the magnetopause due to KHI, we apply
it to data from a local MHD simulation of the KHI. Here local
refers to the simulation being a simplified and restricted domain
in the vicinity of the magnetopause shear flow. This is in contrast
to global simulations, which model the entire magnetosphere–solar
wind interaction (e.g., Michael et al., 2021).

4.1 Simulation overview

We use a local MHD simulation representative of near-flank
magnetopause conditions (Ma et al., 2020) under northward IMF.
This region was chosen as it is the location where KHI is predicted
to be most unstable along the magnetopause due to the large
velocity shear (Southwood, 1968). Northward IMF is chosen as
it is also most unstable orientation predicted by linear theory
(Chandrasekhar, 1961) and confirmed by observations (Kavosi and
Raeder, 2015). As well as this, northward IMF prevents large-
scale reconnection being induced bymagnetic shear (Vernisse et al.,
2016; Fadanelli et al., 2018; Sisti et al., 2019). The plasma beta has
a value of β = 5.0 in region 1 (the magnetosheath), meaning
magnetic field dynamics dominate over plasma dynamics; and β =
0.5 in region 2 (magnetosphere), meaning that plasma dynamics
dominate over the magnetic field here. The fast magnetosonic
Mach number in the simulation frame has values of M f ∼
0.4, corresponding to the weakly compressional regime where
compressibility should be non-negligible. The Alfvén Mach number
has moderate values of MA ∼ 0.89 in region 1 and MA ∼ 0.55 in
region 2, meaning that magnetic tension cannot be neglected.These
Mach numbers have been calculated in the simulation frame as the
vortex is approximately stationary in the centre of the simulation
throughout (cf. Palermo et al., 2011).

The MHD KHI is numerically simulated by solving a full set
of normalised resistive MHD equations using a leap-frog scheme
in a Cartesian coordinate system (Otto, 1990; Nykyri and Otto,
2001; Ma et al., 2014a; b, 2017). The x-direction points along the
normal to the unperturbed sheared flow layer, the y-direction is
along the sheared flow direction, and the z-direction is determined
by the right-hand rule. All physical quantities are normalised by
characteristic values and their initial states are outlined in Table 1.
The length scale, L0, magnetic field scaling factor, B0, and number
density scaling factor, n0 may be chosen freely, whereas all other
scaling quantities are derived from these. To provide physical
context, we have assigned values to the dimensionless simulation
units which best represent the near-flank magnetopause (Ma et al.,
2020). However, these values are arbitrary and do not affect the
physics of the simulation or any of the results presented.

The whole simulation domain is given by [−Lx,Lx] × [−Ly,Ly] ×
[−Lz,Lz] along the x-, y-, and z-directions, where Lx = 25L0, Ly =
10L0, and Lz = 120L0. The grid has 203 cells in each direction with a
resolution of 0.1L0 in the y-direction, 0.6L0 in the z-direction and is
stretched along the x-direction with a minimum resolution of 0.1L0.
The boundary conditions along the y-direction are periodic. Along
the x-direction, the boundaries are closed, in which vx = 0 and ∂x =
0 for the rest of the quantities.The dimension along x is large enough
to ignore the influence from the boundaries such as MHD wave
reflections. To maintain the top boundary from the perturbation,
an artificial friction term −ν(z)(v− v0) is applied to the right-hand
side of the momentum equation in the simulation (Ma et al., 2017).
Here, v0 is the unperturbed bulk velocity, which also represents
the solar wind or ionosphere speed. The friction term tends to
force the plasma to move at its initial velocity, or equivalently
it absorbs perturbations, maintaining the initial boundary layer
away from the equatorial plane. The friction coefficient is given by
ν(z) = 0.5{2− tanh [(z+ zν)/L0Dν] + tanh [(z− zν)/L0Dν]}, zν = 30L0,
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TABLE 1 Table showing the normalisation constants and initial state used in the simulation.

Quantity Value Initial state

Region 1 (x > 0) Region 2 (x < 0) x-profile

Length Scale, L0 600 km

Magnetic Field, B0 60 nT (0,0,0.5B0)
T (0,0,B0)

T 1/2(Bz1 +Bz2) + 1/2(Bz1 −Bz2) tanh (x/L0)ez

Number Density, n0 11cm−3 0.8n0 1.2n0 1/2(n1 + n2) + 1/2(n1 − n2) tanh (x/L0)

Velocity, VA0 B0/√μ0ρ0 = 394 km/s −0.5VA0 0.5VA0 0.5 tanh (x/L0)ey

Pressure, P0 B2
0/2μ0 = 1.4nPa 1.25P0 0.5P0 P1 + (B2

z1 −B
2
z(x))/2μ0

Plasma Beta, β Ptherm/Pmag 5 0.5

Alfvén Mach Number,MA |V| /VA 0.89 0.55

Fast Mach Number,M f |V| /u f 0.39 0.46

Time, t0 L0/VA0 ∼ 1.5 s

Atwood Number, A (ρ2 − ρ1)/(ρ1 + ρ2) = 0.2

and Dν = 3, which has been switched on only near the top and
bottom boundaries (Ma et al., 2017; Ma et al., 2021b).

To overcome issues with Fourier analysis and noise from
differentiation, we trilinear interpolate all the data to a regular
grid of resolution 0.1L0 in all directions for our investigations. The
simulation boundary conditions are valid for the Fourier approach
to the Helmholtz decomposition of the magnetic tension. The y-
boundary is periodic, which a Fast Fourier Transform assumes.
The x-dimension is suitably large that perturbations decay before
reaching the simulation edges (the x-extent of the simulation is twice
that shown in Figure 1). The large dimension along the z-direction,
alongwith the frictional term at the boundary,means that theAlfvén
wave is fully damped before it reaches the top/bottom simulation
edges. We found no evidence of Gibbs effects present from the
application of Fourier approach to the Helmholtz decomposition.

The initial steady state is a one-dimensional transition layer
with a flow shear, the conditions of which are outlined in Table 1.
This transition layer is initially imposed by a hyperbolic tangent
function with characteristic thickness of L0 and maintains the
total force balance across the sheared flow layer (i.e., the sum
of the thermal pressure and magnetic pressure is constant).
The KHI is triggered by a velocity perturbation localised in
the vicinity of the equatorial plane (i.e., z = 0), which is given
by v = ∇Φ(x,y) × ez f(z). Here, the stream function is Φ(x,y) =
δv cos (kyy)cosh−2sec (x/lx), normal scale of the perturbation lx = 2L0,
KH wavenumber ky = π/Ly, amplitude of the velocity perturbation
δv = VA0/20, and the localisation function f(z) is given by f(z) =
0.5{tanh [(z+ zd)/L0Dz] − tanh [(z− zd)/L0Dz]}, where zd = 20L0,
and Dz = 3.

Figure 1 shows 3 snapshots of the simulation in the equatorial
plane. t = 30t0 is approximately during the quasi-linear surface
wave stage, t = 80t0 is during the nonlinear surface roll-up stage
of the KHI, and t = 130t0 is during the turbulent stage beyond the
surface roll-up. These three stages are used throughout this work.
At time t = 80t0, and t = 130t0 there are secondary KHI forming as

highlighted in panels 1b and 1c. The dashed black line is plotted
along the ρ = ρ0 line as a visual aid to the reader for identifying the
proxy-boundary. As M f ∼ 0.4 this proxy-boundary should be little
affected by compressible effects. Note also that different methods of
magnetopause identification in simulations are known not to always
be co-located (García and Hughes, 2007; Gordeev et al., 2013). It
does not feature in the turbulent stage as there is no clear boundary
between the two sides.

4.2 Results and discussion

4.2.1 Exploring Pten
A key step in the derivation of λMHD is the realisation that a part

of the magnetic tension contributes to the pressure-like forces on
the plasma, with this achieved through a Helmholtz decomposition
of the magnetic tension into rotational and irrotational vector
fields. Figure 2 shows this decomposition. In the quasi-linear stage
(t = 30t0), tension is shown to be acting as a stabilising force
opposing the deformation of the boundary as expected.The tension
is entirely rotational in this initial stage, as expected for a linear
incompressible surface wave (Plaschke, 2016). This implies the
tension field is not yet perturbed enough to provide a (nonlinear)
pressure-like contribution. In the nonlinear surface roll-up stage
(t = 80t0), the tension field has become sufficiently twisted for the
tension to start exhibiting a pressure-like part, but the tension overall
is still predominantly rotational. The force is again pointing in
directions to try and restore the boundary to its original shape–with
the pressure-like part now also contributing to this. In the turbulent
stage (t = 130t0) it becomes unclear on the behaviour of the tension
as the KHI-generated structures have evolved turbulently–it is
however clear that the forces are still predominantly rotational. The
tension generally has a largermagnitude in regions where secondary
KHI are present.
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FIGURE 1
An equatorial (z = 0) view of the magnitude of the magnetic field, magnitude of the velocity, and density at the quasi-linear (t = 30t0) (panels A,D,G),
nonlinear surface roll-up (t = 80t0) (panels B,E,H) and turbulent (t = 130t0) stages (panels C,F,I) of the simulation. The black boxes in panels b and c
highlight secondary KHI. The dashed black line is plotted along ρ = ρ0 contour as a proxy for the boundary between the two sides. There are streamlines
present in grey on the velocity plots to demonstrate the velocity shear.

Since λMHD relies upon finding an effective pressure minimum,
we show the various forms of pressure in Figure 3. Here the variation
of the pressure fields about their respective mean is shown–this
eliminates any bias from Pten lacking uniqueness. In the quasi-
linear stage, the effective pressure has a single minimum near the
centre of the simulation between the points where the boundary is
most deformed. In the nonlinear stage, the effective pressure has a
minimum near the centre of the surface roll up. There is now also
an obvious maximum adjacent to it. Along the boundary in the
region of secondary KHI (as highlighted in Figure 1B) several small-
scale effective pressure minima are also present.There are also other
minima in regions where it is clear turbulence/inhomogeneity is
present by looking at the other pressures. It is evident that δPTen does
not play a major role in how the total effective pressure is defined as
it is generally an order of magnitude smaller than the other pressure
variations. δPTen becomes larger in regions where the magnetic field
lines are contorting, but overall it is smaller than δPtherm + δPmag.

This can also be seen in Figure 3C where the δPTen minima appear
to sit along the upper and lower boundaries of the mixed/turbulent
plasma and the homogeneous plasma.

Like the tension force itself, |δPTen| appears to be largest
in regions where secondary smaller-scale KHI structures are
present. This is likely down to the following two reasons.
Firstly, recall that magnetic tension is related to the curvature
of field lines, meaning rolled-up smaller scale structures will
have greater tension. Additionally, the growth rate of smaller
scale structures is greater than larger scale ones (Nagano,
1979; Sundberg et al., 2010; Rice et al., 2022) meaning they
will roll-up and evolve faster, i.e., increasing the field line
curvature.

4.2.2 Validating λMHD
Section 4.2.1 demonstrates that the contributions to the effective

pressure from the pressure-like part of the magnetic tension are
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FIGURE 2
An equatorial (z = 0) view of the total τ, irrotational part, τIrr, and rotational part, τRot, of the magnetic tension as found through a Helmholtz
decomposition. In colour is the magnitude with overlaying unit vectors to indicate the acting direction in the xy-plane. The quasi-linear (t = 30t0)
(panels A,D,G), nonlinear surface roll-up (t = 80t0) (panels B,E,H), and turbulent (t = 130t0) stages (panels C,F,I) of the simulation are shown. The dashed
black line is plotted along ρ = ρ0 contour as a proxy for the boundary between the two sides.

small for this simulation. Consequently, hydrodynamic techniques
might be sufficient in identifying vortices for the simplified
magnetopause in this simulation.We therefore compare λMHD to the
other vortex criteria mentioned in Section 2.2.

The different vortex methods are applied to every cell in the
simulation, where spatial derivatives are undertaken through second
order accurate central differences in the interior points and first
order accurate differences at the boundaries. To remove machine
noise in the gradients we apply a multidimensional Gaussian filter
with a standard deviation of 0.5 grid cells. The smoothed data is
then passed through a 3× 3× 3-cell multidimensional median filter
to ensure that the regions are ‘connected’ – meaning that more
than one adjacent cell in a plane must be identified as vortical for
a positive identification. Typically with these types of techniques
a threshold is chosen to define a vortex (Dong and Tian, 2020),
however we have chosen not to do this to allow for a more

complete comparison of the techniques and what they physically
represent.

Figure 4 shows the λMHD vortex definition compared to the 2-
dimensional velocity streamlines (vz is negligible throughout this
plane) to qualitatively assess whether the technique is correctly
identifying vortices. In the quasi-linear stage of the KHI (t = 30t0),
there is a single vortex core identified (region 1) which is centred
around the steep edge of the deformed shear flow boundary. After
some evolution to the nonlinear roll-up stage (t = 80t0), the previous
vortex has now evolved and been stretched and torn into four
large structures (regions 2, 4, 5, 6). The strongest signature in the
simulation is region 2, a structure at the edge of the simulation
that is the leading edge of the rolled up surface (remembering the
boundary conditions in y are periodic). The other three structures
are in the centre of the simulation, again where the surface roll-
up is present. Interestingly, the secondary small-scale KHI vortices
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FIGURE 3
An equatorial (z = 0) view of the perturbations from the mean pressure due to magnetic tension, thermal pressure, magnetic pressure, and total
pressure. The quasi-linear (t = 30t0) (panels A,D,G,J), nonlinear surface roll-up (t = 80t0) (panels B,E,H,K) and turbulent (t = 130t0) stages (panels C,F,I,L)
of the simulation. The dashed black line is plotted along ρ = ρ0 contour as a proxy for the boundary between the two sides.

(region 3) have a stronger signature than the three vortex structures
within the roll-up (regions 4, 5, 6). It appears the vortices are
all situated where the principal curvature of the boundary is
greatest, with the strength being proportional in some way to
the curvature of the boundary i.e., stronger vortices deform the
boundary more.

The original large-scale vortex becomes unidentifiable in the
turbulent stage, it is possible that region 4 becomes region 7 and
region 5 becomes region 9, but this is ambiguous. Instead strong
λMHD signatures are present in much of the simulation domain due
to lots of small-scale vortical structures being present throughout.
There are two large vortices present (regions 7 and 9). Some of
the strongest signatures are found where secondary KHI is present
(region 8). Generally, speaking λMHD grows with time as the
strongest signatures are seen in the turbulent stage and the weakest
in the quasi-linear stage.

Figure 5A shows a zoom in of vortex region 4 from the nonlinear
roll-up stage. In the simulation frame the vortex is not immediately
apparent in the flow, despite λMHD identifying a distinct vortex in this
region. However, exploiting the Galilean invariance of the method,
we transform the velocity field into a different frame in panel b.
This clearly demonstrates an isolated vortex is present, hence the
distinct regions identified by λMHD within the KHI roll-up are real
vortical features in the flow.This again highlights the need for vortex
identification techniques, since they can pinpoint vortices which are
not clear from visual analysis. We emphasise that the vortices these
techniques identify are not simply the large-scale roll-up structure
of the boundary overall, but flow vortices present as substructure
within this roll-upwhich are ultimately responsible for the boundary
deformations.

Figure 6 shows the MHD effective pressure with overlaying
contours of the different vortex identification methods (λMHD and
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FIGURE 4
An equatorial (z = 0) view of vortex identification method −λMHD values on a log10 colour-scale. The quasi-linear (t = 30t0) (panel A), nonlinear surface
roll-up (t = 80t0) (panel B) and turbulent (t = 130t0) stages (panel C) of the simulation. In grey are 2D velocity field streamlines. The numbers in the plot
indicate regions of interest discussed in the text. The dashed black line is plotted along ρ = ρ0 contour as a proxy for the boundary between
the two sides.

FIGURE 5
An equatorial (z = 0) view of vortex identification method −λMHD values on a log10 colour-scale. Region 4 (see Figure 4B) of the nonlinear surface
roll-up (t = 80t0) stage is shown. Panel a and b show the same λMHD colour map calculated in the simulation frame. In black are 2D velocity field
quivers, panel (A) shows the original velocity field quivers, panel (B) shows a Galilean transformed field where the V′x = Vx −0.25VA0. The dashed black
line is plotted along ρ = ρ0 contour as a proxy for the boundary between the two sides.

those mentioned in Section 2.2), which should identify pressure
minima. Contour levels have been arbitrarily chosen to display
behaviour at extremes of large and small values that constitute a
vortex (without any data-driven thresholds imposed; cf. Dong and
Tian, 2020) for more comprehensive comparison of the different
methods. Visually comparing the hydrodynamic criteria and λMHD,
it appears that all the definitions of a vortex identify similarly
compact regions. This further qualitatively validates λMHD and
also suggests the simpler hydrodynamic criteria may be used as
proxies for λMHD. Since each method makes different levels of
assumptions about the fluid, comparing the different definitions
explores how introducing these different physical effects affects the

regions identified as a vortex core, hence their importance in vortex
formation and evolution.

Q and λ2 perform almost identically across the three time steps
shown in Figure 6 and identify similar regions to those discussed in
Figure 4. The criteria identify regions where the local boundary is
most deformed and by comparing to effective pressure in Figure 3,
it is clear that they are locating local pressure minima in the quasi-
linear stage. In the nonlinear and turbulent stages, this is less clear.
The minima located by them differ to the local minima in the
effective pressure plots. The effective pressure appears to highlight
the general region however the criteria clearly outlines the vortex
core regions. This is because the neglected parts of the adapted
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FIGURE 6
An equatorial (z = 0) view of contours for different vortex techniques on a linear colour-scale. These are plotted over the effective pressure variations
from the mean. The quasi-linear (t = 30t0) (panels A,D,G,J,M), nonlinear surface roll-up (t = 80t0) (panels B,E,H,K,N), and turbulent (t = 130t0) stages
(panels C,F,I,L,O) of the simulation. The dashed black line is plotted along ρ = ρ0 contour as a proxy for the boundary between the two sides.

effective pressure Hessian are non-negligible in these stages and
neglecting them allows for a clearer identification.This suggests that
making these adaptations to the pressure Hessian are vital to the
success of the λ-family of techniques. Furthermore, it demonstrates
that while local total pressure minima may be reliable in the quasi-
linear stage as an approximate identification tool, beyond this the
method is not precise enough and advanced vortex identification
techniques are necessary.

ComparingQ and λ2 to λ2 probes the importance of momentum
flow over velocity flow in the identification of a vortex. Crucially, the
power and strength of those regions shift to locations where there
is larger vortical momentum instead of just vortical velocity. Since
λ2 simply weights λ2 by local density, the sign remains unchanged

and thus it identifies identical regions to λ2. Unlike Q and λ2, the
units of λ2 are comparable to those of λMHD allowing for direct
comparisons to bemade between the two criteria. In this simulation,
the λ2 and λ2 results do not appear to differ much–this is likely due
to the uniform initial density along the shear direction. Comparing
the results of λρ to that of λ2 allows for an insight into how fluid
compressibility and density gradients influence where a vortex core
is identified. It is apparent that these two factors do influence vortex
identification as there is an obvious reduction in the volume that
λρ identifies as vortical compared to the less advanced methods. In
particular, the vortex appears less strongly in λρ at the t = 30t0 stage
compared to the earlier consideredmethods. In the later stages of the
KHI, there are more detached vortical regions seen in λρ compared
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to the less advanced methods. This suggest that λρ is capable of
distinguishing between multiple vortices in close proximity. The
less advanced methods appear to smear these multiple vortices into
one large vortex core structure making them less useful if studying
vortex shedding, complex regions, or turbulent stages. Due to this,
λρ is better suited for revealing finer details of the complex physics
taking place.

λMHD includes the influence of the magnetic field to the
definition of a vortex core. λMHD appears to identify almost the same
structures as λρ, indicating that magnetic tension may not play a
dominant role in the large-scale vortices in this simulation. This
is somewhat expected since under northward IMF the magnetic
tension is least effective at suppressing the KHI, and the scale
of variations along the anchored field lines are much larger than
those perpendicular to the field (Equation 1). Nonetheless, λMHD
does identify additional finer-scale archipelago-like structures less
dominant in the hydrodynamic approaches. These occur at the
small-scale secondary KH vortices, likely because the tension term
becomes more important in these regions as previously discussed in
Section 4.2.1. As many of these values are relatively close to zero,
this may suggest that in practical applications a higher threshold
value than the lowest contour displayed of 0.01× 10−22 Pa m−2

may be needed for the λMHD (and maybe λρ) technique(s). This
would reduce the number of small scale structures being identified,
enabling focus on stronger vortices and their large-scale structure.
How best to set such vortex thresholds is an area of ongoing research
even in hydrodynamics (Chakraborty et al., 2005; Pierce et al., 2013;
Liu et al., 2019; Dong and Tian, 2020).

Figure 7 shows 2-dimensional histograms over the entire
simulation domain quantitatively comparing each hydrodynamic
vortex criterion (vertical axes) with λMHD (horizontal axes). In all
the histograms there is a main data population confined to a y∝
x line (except for Q where the criteria for a vortex is positive
not negative making it y∝ −x instead) meaning all the techniques
have a good correlation with λMHD – especially λρ during the
linear and nonlinear stages. This is reflected in the strong Pearson’s
correlation coefficients, R. There are two secondary populations
in the histograms. The first is along the y = 0 region–largely with
negative λMHD values. These correspond to regions where λMHD
has identified a vortex where the hydrodynamic definition has not.
Assuming λMHD is successfully identifying vortices and given the
only difference between it and the λρ definition is the introduction
of the rotational tension term, this feature must be due to magnetic
field effects that λMHD is able to extract which the hydrodynamic
definitions cannot. The second is around the x = 0 region, this is
due to the hydrodynamic definitions identifying larger regions as
vortical compared to λMHD. This supports the previous finding that
the simpler hydrodynamic definitions have a poorer precision than
λρ or λMHD. As the simulation becomes turbulent, there is a larger
variance about the linear relationship between the hydrodynamic
and MHD methods, though the correlation is still reasonable. The
increased variance is expected as, e.g., the magnetic tension term
becomes more important in the small-scale structures which form.
An analysis of each technique’s performance against λMHD can
provide a better understanding of how different regimes can affect
vortex formation and identification.

The Q, λ2, and λ2 comparisons all demonstrate good
correlations with the λMHD technique which strongly suggests

that compressibility and plasma inhomogeneity do not play a
significant role in the identification of the vortex, as these techniques
are ignorant of these effects. The secondary populations break
this pattern and are not as present in λρ which reinforces that
the regions identified by the simplest hydrodynamic criteria are
not as precise as the more advanced methods. Previous research
has found that the simpler hydrodynamic techniques struggle
to distinguish between two vortices situated close together in
space and tend to blur the volumes into one large structure
(Cai et al., 2018; Collado-Vega et al., 2018) – our results agree with
these findings.

The square of Pearson’s correlation coefficient between λρ and
λMHD indicates the amount of variance in λMHD explainable by
hydrodynamic effects alone. λρ has a very good Pearson’s correlation
coefficient with λMHD of 0.97 in the quasi-linear stage, hence vortex
identification is virtually entirely described by hydrodynamics and
magnetic effects are negligible during this early stage of the KHI
within this simulation (again likely due to the northward IMF
conditions used along with long field lines). As it evolves into the
nonlinear surface roll-up stage, hydrodynamics only explains 71%
of the variations present. Magnetic tension term therefore plays a
non-negligible role, likely due tomagnetic tension’s effects becoming
more important as secondary KHI begin to form. In the turbulent
stage of the KHI, less than half (47%) of the variations in λMHD are
due to hydrodynamic effects alone, meaning that magnetic tension
becomes an essential component likely due to the increased number
of smaller-scale magnetic structures present.

The analysis has shown that (for this simulation at least) Q, λ2,
and λ2 are good approximations of a vortex in the MHD regime.
However, they are prone to false-identifications as they struggle to
distinguish between multiple vortices in close proximity. Including
density gradient and compressibility effects allows λρ to more
successfully distinguish between these close proximity vortices,
allowing it to provide more precise vortex identifications. Effects
from magnetic tension, only incorporated into λMHD, become
more important over time due to structural evolution and field
line twisting, wrapping, and distortion. While the different vortex
criteria include and/or exclude different physical effects related to
vortex formation, quantitatively comparing these eigenvalues does
not self-consistently enable a thorough investigation of the interplay
these physical effects since each criterion has a different eigenvector.
A different quantitative method needs to be used to fully explore
how each different term, and therefore effect, influences vortex
identification.

4.2.3 Contributions to λMHD
As derived in Section 3.2, there are four physical effects which

contribute to λMHD: vortical momentum (M), fluid compressibility
(C), density gradients (D), and the rotational tension (T). Here
we investigate to what extent each contributes to λMHD within the
simulation.

The effective pressure Hessian tensor, H, is real and symmetric
(hence also Hermitian). It therefore has real eigenvalues whose
eigenvectors can be chosen to be real and orthonormal. From
the spectral theorem the Hessian’s eigenvalue can be rewritten
as a linear combination of eigenvector projections, known as
a spectral eigendecomposition. Let V̂H,2 be the normalised
eigenvector of H corresponding to the second eigenvalue, λMHD.
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FIGURE 7
2D histograms across the entire simulation domain comparing λMHD with the hydrodynamic vortex criteria. Counts are plotted using a log10 colour
scale. The quadrant which represents a vortex in both λMHD and the comparison definition is labelled with ‘V’. The R value denotes Pearson’s correlation
coefficient. Analysis of the quasi-linear (t = 30t0) (panels A,D,G,J), nonlinear surface roll-up (t = 80t0) (panels B,E,H,K), and turbulent (t = 130t0) stages
(panels C,F,I,L) are shown.

Right multiply Equation (23) by V̂H,2 and left multiply by the
transpose to get,

λMHD = −V̂
T
H,2HV̂H,2 (24a)

= V̂T
H,2MV̂H,2 + V̂

T
H,2DV̂H,2 + V̂

T
H,2CV̂H,2 + V̂

T
H,2TV̂H,2 (24b)

= λM + λD + λC + λT. (24c)

For clarity λM,D,C,T are not eigenvalues of their respective
matrices, but are the contributions to the λMHD eigenvalue ofH.This
demonstrates how each term directly contributes to λMHD which
allows for quantitative analysis and comparison of the different

contributions each physical effect has on λMHD. It is widely accepted
thatmagnetic tension is a stabilising force for theKHI so it is sensible
the derivation has it subtracted instead of added. Regions where
tension acts to stabilise, i.e., regions where a vortex exists, thus
become identified as vortical.

Figure 8 shows a spatial map of the contribution each term
has to λMHD at each of the three stages considered. The values
shown are processed like before. In overview, it is clear that the
vortical momentum term (panels a–c) generally dominates the
λMHD definition, supporting the conclusion that Q, λ2, and λ2 are
reasonable approximations of λMHD. The other terms appear to act
as corrections to the vortical momentum term. Density gradients
(panels d–f) generally oppose the vortical momentum. The fluid
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FIGURE 8
An equatorial (z = 0) view of each contributing term to λMHD. The values on a symlog10 colour-scale where the linear scale is between ±10−22 Pa m−2.
Negative regions (red) support λMHD, positive values (blue) are regions in opposition with λMHD. The quasi-linear (t = 30t0) (panels A,D,G,J), nonlinear
surface roll-up (t = 80t0) (panels B,E,H,K) and turbulent (t = 130t0) stages (panels C,F,I,L) are shown. The dashed black line is plotted along ρ = ρ0
contour as a proxy for the boundary between the two sides.

compressibility term (panels g–i) is generally small at all three stages
shown.Over the course of the three stages, the rotational component
of the magnetic tension (panels j–l) tends to grow in regions
where smaller-scale vortices form, reinforcing its importance over
these scales. However, all the terms appear to have a complex
relationship with λMHD overall, supporting in some locations but
opposing in others.

In the quasi-linear stage, vortical momentum is the dominant
term. There are two different populations in this term, the first
(region 2) is in support of a vortex and lies between where
the interface is most deformed. The other population (regions
1 and 3) oppose a vortex. Density gradients (panel d) oppose
the formation of a vortex at the centre of simulation (region
5). Interestingly, this opposition is strongest at the edges along

the normal of the vortical momentum region (2) rather than at
the centre. This serves to reduce the volume being identified as
vortical and is the reason the λMHD method is more precise,
allowing for better vortex core identification. This suggests that
the density gradient term is crucial for the reliable identification
of multiple vortices in close proximity. Furthermore, the density
gradient term contributes to the existence of vortices at the outer
edges of the simulation near the boundary (regions 4 and 6)
where vortical momentum is not present (regions 1 and 3) –
this may alternatively be a reduction in the non-vortex signature
provided by the momentum term. Further investigation is needed
into the physical interpretation of this, which we leave to future
work since overall these regions are not identified as vortices.
Compressibility appears negligible at this stage. The rotational
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FIGURE 9
A 2D histogram across the simulation domain comparing λMHD with the terms contributing to it. Counts are plotted using a log10 colour scale. The R
value shown is the Pearson’s correlation coefficient. Analysis of the quasi-linear (t = 30t0) (panels A,D,G,J), nonlinear surface roll-up (t = 80t0) (panels
B,E,H,K), and turbulent (t = 130t0) stages (panels C,F,I,L) are shown.

tension term is complex in regions 10, 11, 12 – there is weak
opposition along the boundary (the dashed line) in regions 10,
11, and 12 implying tension is acting to stabilise the boundary
as expected. However, the term appears to weakly support off the
boundary in these regions too. Reasoning for this is unclear. It is
worth noting that regions 4 and regions 10 look very similar, as do
regions 6 and 12 however this may just be a consequence of the
structure shape.

In the nonlinear surface roll-up stage, the density gradient term
strongly opposes the larger scale vortex (region 8) but has little
power on the small-scale secondary KHI (region 7) implying the
termmay have a scale–or KHI-stage–bias.The density gradient term

appears to have the same relationshipwith the small-scale secondary
KH vortices (region 7) as it has with the single vortex in the quasi-
linear stage–it opposes the formation of a vortex at the centre of
simulation on edges of the region of vortical momentum, but not
at the centre where it supports it. The compressibility term does
not appear to show any obvious trend and is generally small at this
stage. The rotational magnetic tension term has become large in
region 13 where the small-scale secondary KH vortices are present,
opposing their formation. It appears to have little impact on the large
scale vortex.

In the turbulent stage, the density gradient term appears to
have the same relationship with the small-scale secondary KH
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FIGURE 10
A spatial slice through the x = z = 0 line of the simulation showing −λMHD, −λρ, and −λ∗ρ values. Only the vortex identifying values are shown.

FIGURE 11
Vortex criteria values are shown using multi-spacecraft techniques with a mesocentre along the spatial slice through x = z = 0 of the simulation with
varying radial distances between spacecraft. Only the vortex identifying values are shown. Analysis of the quasi-linear (t = 30t0) (panels A,D,G,J),
nonlinear surface roll-up (t = 80t0) (panels B,E,H,K), and turbulent (t = 130t0) stages (panels C,F,I,L) are shown.

vortices (region 9) as it has with the single vortex in the quasi-
linear stage. This was also seen in region 7 meaning that the
relationships between the physical effects for the secondary KHI
at these stages can be considered as analogous to those for the
large-scale vortex during its quasi-linear stage. The compressibility
term again remains small with no clear relationship to the
vortices. Rotational magnetic tension has further grown, now
opposing the secondary KH vortices.

These trends have only been qualitatively explored in the
equatorial plane. Further quantitative analysis can be made
to better understand the general contributions over the entire
simulation domain.

Figure 9 shows 2-dimensional histograms of the entire
simulation domain comparing each term in Equation 24c with
λMHD. Across all three time steps the fluid compressibility term
is small and poorly correlated to λMHD implying that fluid
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compressibility is not a dominant component in the existence
of a KH vortex in this simulation. This might be attributed
to the low convective fast magnetosonic Mach number used
in this simulation, meaning the plasma is weakly compressible
(representative of the near-flank magnetopause environment;
Ma et al., 2020).

Figure 9D shows that the density gradient term strongly opposes
the formation of a vortex in the quasi-linear stage of its growth but
becomes less significant in the later stages. This suggests that the
density difference across the shearing fluid is important in the initial
stages of KHwave formation. Physically thismakes sense, as the flow
with a lower density will have insufficient momentum to change the
direction of the highmomentum flowwith heavier mass making the
initial wave harder to generate. Beyond the quasi-linear stage, the
flow is sufficiently deformed that this density variation becomes less
significant in comparison to the driving shear flow.There is a smaller
secondary population in this termwhich supports the vortex and can
also be seen in Figure 8D.

Figures 9J–L also indicates that the rotational component of the
magnetic tension term becomes larger as the KHI advances. The
plot suggests that during the turbulent stage, where vortices are
expected to have a small spatial volume and thus larger tension
effects, this term becomes a significant contributor to λMHD. This is
also reflected in the Pearson’s correlation value. Finally, the rotational
component of the magnetic tension term has multiple populations
within itself. In the nonlinear stage, there is a population which
sits along a y∝ x line which will be the population where the term
supports the identification of a vortex–this likely corresponds to
the small scale secondary KH vortices. The second population sits
along the y = 0 line where the tension term does not contribute
to λMHD – this likely corresponds to the single large scale vortex.
This pattern is also present in the turbulent stage. There is a strong
population along a y∝ x line indicating that this term is important
in the turbulent stage. However, there is a larger spread in the y = 0
population which may be because the histograms include the entire
simulation domain and sowill contain variations out-of-planewhich
are not seen in Figure 9.

4.2.4 Potential in situ applications
So far λMHD has been applied to gridded simulation data.

However, it would be helpful to also explore its potential application
to multi-point in situmeasurements, though somewhat challenging.
While the momentum and density gradient terms involve only first-
order spatial derivatives, thus can be calculated with four suitably
instrumented spacecraft in a tetrahedron, e.g., Magnetospheric
Multiscale (MMS) (Burch et al., 2016), the compressibility term
involves second-order derivatives which require 10 spacecraft that
do not lie on any quadric surface (Zhou and Shen, 2024). Finally, the
rotational tension term is challenging since it involves a Helmholtz
decomposition, which is inherently non-local requiring information
throughout space. It may be possible through Equation 8b and
suitable interpolation methods to estimate the decomposition for
a multi-spacecraft mission such as HelioSwarm (Klein et al., 2023).
Determining how to do this, however, is beyond the scope of
this study.

Given these limitations, we simply consider a tetrahedral
spacecraft configuration and only use the momentum and density
gradient terms to construct the adapted pressureHessian–essentially

an incompressible version of λρ denoted as λ∗ρ herein. Section 4.2.2
demonstrated λρ accurately approximates λMHD in this simulation
during the linear and nonlinear roll-up stages, with Section 4.2.3
showing compressibility and magnetic tensions make negligible
contributions. We show an example application in Figure 10, which
uses a spatial slice of the simulation data along the y-axis to
emulate a spacecraft encounter with the magnetopause. The figure
compares λMHD with λρ and λ∗ρ , demonstrating that λρ and
λ∗ρ are near identical techniques which both approximate λMHD
well in the linear, and nonlinear stages here. Unsurprisingly, the
techniques appear to be less useful in the turbulent stage, however,
they do still replicate the λMHD results overall. Thus λ∗ρ may be
a sensible proxy which could be realised by tetrahedral in-situ
data. The qualitative visual differences between the three stages
suggests they may also be used to distinguish between different
evolutionary phases; a prospect we leave for quantitative exploration
in future work.

Regular tetrahedra of spacecraft are considered, with
mesocentres along the x-axis. Simulation data are trilinearly
interpolated to spacecraft locations. Since spacecraft separation
affects the quality and scales over which gradients can be estimated
(De Keyser, 2008), we vary the tetrahedra’s radial distances r as
60 km, 100 km, and 200 km (the simulation grid spacing is 60 km).
These cover the range of MMS separations over the course of the
mission, excluding its smallest tetrahedron sizes. Gradients are
calculated using techniques outlined in Paschmann andDaly (1998)
and are used to calculateQ, λ2, λ2, and λ∗ρ . Figure 11 shows how each
technique performs with different tetrahedra sizes, compared also
with the true values from the simulation grid.

Figure 11 shows that all the techniques considered might be
applied to virtual spacecraft observations with varying success.
Generally speaking, the smaller the tetrahedron, the closer the
virtual spacecraft value is to the simulation value. All the techniques
reliably approximate the simulation values during the linear
and nonlinear stages of the KHI regardless of virtual spacecraft
separation. Interestingly, the smaller tetrahedron separation more
precisely mimics the simulation results of all the techniques but
contains larger amounts of noise, likely due to the interpolation–this
is best seen in the quasi-linear stage. Notably, the widths of the peaks
in the λ∗ρ technique are narrower than those in the less advanced
techniques implying that a more specific region is being located
by this technique–the core of the vortex. This is easiest seen when
comparing Figures 11A,J.

5 Conclusion

The Kelvin-Helmholtz instability is a dominant driver of the
viscous-like transfer of mass, momentum, and energy across the
magnetopause through surface waves and their coupled vortices. A
vortex detection method suitable for MHD, called λMHD, has been
derived by self-consistently incorporating the J×B Lorentz force
into the λ-family of hydrodynamic vortex identification techniques.
These methods define a vortex as a local minimum within some 2D
plane of an adapted pressure field. Within ideal MHD, the effective
pressure field is defined as the sumof the thermal pressure,magnetic
pressure, and the pressure-like part of the magnetic tension which
is extracted using a Helmholtz decomposition. This is then adapted
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by removing the effects of unsteady straining, which can result
in pressure minima unrelated to vortices, which is key to the
λ-family methods’ success. λMHD has been validated against the
velocity field and other hydrodynamic techniques using a local
three-dimensional MHD simulation representative of near-flank
magnetopause conditions under northward IMF.

λMHD is composed of four components: vortical momentum,
density gradients, fluid compressibility, and the rotational part of
the magnetic tension. These effects have separately been shown
to influence KHI formation (e.g., Chandrasekhar, 1961; Miura
and Pritchett, 1982; Pu and Kivelson, 1983; Amerstorfer et al.,
2010; Ma et al., 2024). In this work it was found that the vortical
momentum dominates λMHD in the simulation at all times, meaning
that hydrodynamic techniques which capture this effect only, may
be good proxies for λMHD. During the linear growth phase, density
gradients generally act to oppose vortex formation but become less
important in the later stages of vortex evolution.This is in agreement
with previous work where plasma inhomogeneity was found to
not affect growth rate (Ma et al., 2024). The rotational part of the
magnetic tension has been shown to become important in small-
scale structures suggesting that the hydrodynamic definitions would
be insufficient at identifying these. Fluid compressibility was found
to be insignificant at all stages.

Some of these results will be due to the choice of plasma
parameters used, which are representative of the near-flank
magnetopause. Dimensionless scaling arguments might infer the
implications of this work under different plasma regimes though.
The simulation is only weakly compressible (M f ∼ 0.4), but
compressibility effects are expected to vary as ∼M2

f (Palermo et al.,
2011). Here we shall assume this scaling for the compressibility
term, λC, and that the vortical momentum term, λM, might be
unaffected by the convective Mach number. Over the three stages
of the simulation presented, the ratio of these terms’ standard
deviations, σ(λC)/σ(λM), constitute 6%, 14%, and 21% respectively.
For the compressibility term to be as significant as the momentum
term during the quasi-linear regime, scaling arguments suggest a
supermagnetosonic Mach number (M f ≳ 1.6) would be needed. In
contrast, for the nonlinear and turbulent stage, trans-magnetosonic
Mach numbers (0.8 ≲M f ≲ 1.2)might suffice.TheseMach numbers
are likely underestimates as we have not taken into account the
poor correlation of compressibilitywith λMHD.These estimates are in
agreementwith previousworkswhich suggest compressibility affects
the later stages of the KHI (growth rate) more than the initial stages
(lower critical velocity). Similar arguments can be made for the
magnetic tension term, λT, by considering the AlfvénMach number
which is MA ∼ 0.9 and MA ∼ 0.6 in regions 1 and 2 respectively.
The relative importance of magnetic tension should scale as ∼M−2A
(Equation 1). Performing similar analysis to compressibility, we find
the ratio of the standard deviations, σ(λT)/σ(λM), to be 10%, 27%,
and 47% respectively. For the tension to be of similar importance to
the momentum suggests weaker Alfvén Mach numbers 0.3 ≲MA ≲
0.6 may be required on both sides (likely overestimates due to weak
correlation).Wewould expect from linear theory that the field being
modelled perfectly transverse to the shear flow will result in the
magnetic tension playing a sub-dominant role especially during the
linear growth (Chandrasekhar, 1961). Note this scaling argument
does not take into account how tension’s importance in λMHD may
vary by introducing magnetic shear. This is known to not only

increase the tension’s stabilising effect on the KHI, but also breaks
the north-south symmetry, complicating the KHI’s evolution with
secondary processes such as vortex-induced reconnection being
triggered earlier in the instabilities lifetime than otherwise expected
(Vernisse et al., 2016; Fadanelli et al., 2018; Sisti et al., 2019). Our
discussion overall highlights how the different physical effects
known to affect the KHI depend on both plasma conditions and
evolutionary stage.

Due to the higher-order gradients and non-local Helmholtz
decomposition required for the calculation of λMHD, it cannot
simply be applied to current tetrahedral spacecraft missions (e.g.,
MMS) – however this might change with future missions with
more spacecraft such as HelioSwarm (Klein et al., 2023; Zhou and
Shen, 2024). For tetrahedral missions, an incompressible version
of the hydrodynamic definition λρ is the most advanced definition
which can be applied. Virtual satellite data from the simulation
suggest that this is a good approximation to λMHD, better than
other simpler techniques. Despite this, there are drawbacks of using
these for spacecraft data which are not explored here, such as cold
magnetospheric ions making it difficult to measure densities and
velocities (Archer et al., 2019). It would be advantageous to make
use of only measurements unaffected by such instrumental effects,
such as the magnetic field. Cai et al. (2018) did this assuming that
magnetic field perturbations were correlated to those in velocity.
However, this is not necessarily the case as the frozen-in flux
theorem applies to magnetic field lines rather than vectors. In
linear MHD wave theory the vector perturbations in magnetic
field depend on plasma displacement variations along field-lines
(Singer et al., 1981). Recent investigations have also shown that in
realistic magnetic geometries, magnetic perturbations can even be
oppositely polarised to those of the velocity (Archer et al., 2022).
Therefore, care is needed in using other quantities as proxies in
these vortex identification methods and ideally a full derivation is
required for each.

On the whole, all the different techniques explored are useful
for identifying vortices in magnetised fluids, and which technique
to use is dependent on the desired purpose. Section 4.2.2 shows
that hydrodynamic techniques are valid to use in MHD fluids
with varying success. We found that the Q, λ2, and λ2 techniques
reliably locate broad vortical regions, which provide general
information of the shape and location of the large-scale vortex.
Alternatively, the λρ, and λMHD techniques, through incorporating
further physical effects, allow them to better hone in on the vortex
core specifically instead of the wider vortical region. This result
is also echoed when exploring tetrahedral spacecraft applications.
There are, however, disadvantages to these techniques. The most
obvious is that the rotational axis and orientation of the vortex
is not captured by any of the scalar criteria considered, meaning
complimentary analysis is needed for this (Liu et al., 2019). Another
issue is the sensitivity of the different methods, particularly λρ,
and λMHD, to any vortex threshold chosen–a subject of ongoing
studies within hydrodynamics also (e.g., Chakraborty et al., 2005;
Pierce et al., 2013; Liu et al., 2019). It is important to note that there
is no single proper vortex threshold–especially if strong and weak
vortices co-exist. Higher thresholds neglect weaker and smaller-
scale vortices, while potentially splitting up larger-scale vortices due
to their substructure. On the other hand, lower thresholds smear
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out weaker vortices by over saturating the stronger ones and may
introduce fine-scale structure, which could be related to turbulence
ormerely instrument/numerical noise. Consequently, it is suggested
that any practical applications of a vortex identificationmethod uses
some data-driven threshold, bearing in mind the focus of the study
at hand and how the threshold level will affect this.

Extensions to the work presentedwill further our understanding
of the factors important for the formation and detection of KH
vortices at the magnetopause. Some of the complex relationships
found statistically in this paper, such as the two populations
surrounding density gradients, require full 3-dimensional analysis
to provide physical insight. Applications to several local MHD
runs with different plasma conditions (e.g., Otto, 1990; Nykyri and
Otto, 2001; Ma et al., 2014a; b, 2017) may help determine how the
relationships presented vary with plasma parameters. Moreover, an
application to a global magnetosphere model (e.g., Eggington et al.,
2022; Tóth et al., 2005; von Alfthan et al., 2014) would capture more
realistic magnetic geometries allowing for a more representative
study of the dependencies found here. Finally, applications to
real multi-point spacecraft data should be demonstrated. Overall,
the vortex identification techniques discussed in this paper have
the potential to become useful tools both in simulations and
observations, enabling robust detection of events and investigation
of the physical effects behind vortex formation, which could
certainly complement other current topics of research related to the
KHI such as vortex-induced reconnection and cross-scale coupling.
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