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A machian model as potential
alternative to dark matter halo
thesis in galactic rotational
velocity prediction

Stephan Walrand*

Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium

A novel axially symmetricmetric is proposed to solve the Einstein field equations.
This provides an analytical solution within the matter in the equatorial plane
for any galaxy density profile. The solution predicts the observed increase in
rotational velocity up to the edge of the galaxy’s bulge. However, beyond
the bulge, the rotational velocity remains constant, which contradicts the
observed peak curves. The existence of the Universe is then considered by
approximating the gravitational fields within the galaxy as the sum of those
generated by the galaxy and the Universe. The resulting solution explicitly
includes a Universe frame-dragging term, aligning with the sixth version of
Mach’s principle proposed by Bondi and Samuel: “inertial mass is affected by the
global distribution ofmatter”. Neglecting the presence of the Universe, stars only
have a relative rotation to the bulge, and their rotational velocitiesmonotonically
increase with the radial distance r to balance the increasing mass contained in
distances < r. At larger distances, the bulge’s attraction and its frame-dragging
effect decrease, resulting in a constant rotational velocity. When the Universe
is considered, stars also have a relative rotation to the non-rotating Universe
and experience an additional centrifugal force at any distance from the bulge.
This component induces a decrease in rotational velocity as the gravitational
influence of the bulge diminishes with r. This model predicts the observed
rotational velocity curves for the galaxies M31, M101, and M81 without requiring
any darkmatter halo or adjustable parameters. This success substantiatesMach’s
idea as an alternative to the dark matter halo theory.
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1 Introduction

Most galaxies are dominated by a central mass according to their observed luminous
material. However, the observed rotational velocity in these galaxies increases up to a
radial distance significantly greater than what Newtonian dynamics predicts. Solving this
discrepancy has been the subject of numerous studies.

Slight modifications to the law of gravitation, such as modified Newtonian dynamics
(MOND), were proposed to address this issue (Milgrom, 2002). However, themost accepted
theory is the presence of a dark matter halo, with several proposed profiles (Navarro, 1996;
Merritt et al., 2005; Merritt et al., 2006).

Numerous axially symmetric solutions to the Einstein field equations have been derived
and studied (Bronnikov et al., 2020). Recently, it has been demonstrated that the full
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resolution of the Einstein field equations using the
Weyl–Lewis–Papapetrou coordinates could explain the flatness of
the rotational velocity curve (Cooperstock and Tieu, 2007, Beordo
et al., 2024). A simplified Mach’s principle added to Newtonian
dynamics has also been proposed as an explanation for the flatness
of the velocity curve (Darabi, 2013).

In a lecture on the origin of the general theory of relativity, Albert
Einstein mentioned that he was already familiar with the intriguing
idea of Ernst Mach that the inertia of anybody is the result of the
interaction of that body with the rest of the bodies in the Universe
(though this formulation by Einstein is not found in Ernst Mach’s
work (Mach 1901)). Einstein further said: “This idea fascinated
me; but it did not provide a basis for a new theory” (Einstein
1933). Although general relativity is not directly based on this idea,
Einstein was enthusiastic about the existence of the Lense–Thirring
effect, widely considered as a Machian manifestation of the general
relativity (Lense and Thirring, 1918; Bondi and Samuel, 1997).
However, some exact solutions, such as the Gödel rotating Universe
(Gödel, 1949) and the completely empty hyperboloid Universe
found by De Sitter in 1917 which was of particular concern
to Einstein (Janssen, 2016), are in complete contradiction to Mach’s
principle.

The relationship between Mach’s principle and general relativity
has been a controversial topic, intensely discussed throughout the
20th century (Sciama, 1953; Rindler, 1994; Bondi and Samuel,
1997; Narlikar, 2003). At the Tübingen conference on Mach’s
principle in 1995, an exit poll showed that three participants
believed general relativity was Machian, while 21 did not; 14
participants believed general relativity using appropriate boundary
conditions was Machian, while seven did not (Barbour et al., 1995).
Several attempts have been made to integrate Mach’s principle with
general relativity (Brans, 1962; Licata et al., 2016), Einstein himself
attempted to reformulate it to fully agree with this principle.

In recent decades, researchers have focused more on searching
for a perturbing body, i.e., dark matter, rather than on improving
or developing theories. A winning strategy to explain the anomaly
of Uranus’ orbit, but which failed to explain the perihelion
anomaly of Mercury via the hypothetical planet Vulcan (Baum and
Sheehan 2013).

This study proposes an axially symmetric metric that enables an
analytical solution to the Einstein field equations and investigates
whether a solution explaining the observed galactic rotational
velocity profiles can emerge by adding Machian properties.

2 Method

2.1 General solution derivation

We consider the following stationary axially symmetric diagonal
metric in the coordinate system [t, r, ϕ, z]:

ds2 =∑3
i=0

giidx
i = c2 e2λ dt2 − e−2β (dr2 + e2γdz2) − e−2λ r2dφ2 (1)

where λ, β, and γ depend only on r and z.
All the differentials and tensors were computed using wxMaxima

22.04.0 (https://wxMaxima-developers.github.io/wxmaxima/) and
analytical integrations with https://www.integral-calculator.com/.

The non-null components of the mixed Einstein tensor for
this metric are as follows (see the cyl_metrics.wxmx file, which
in this paper ranges from zero to three rather than from one to
four in Maxima):

ein00 =
e2β( re−2γ (λzz − (λz)

2 − γzλz − βzγz + βzz) + rλrr − r(λr)
2 + rγrλr + 2λr − rγrr − r(γr)

2 + rβrγr − γr + rβrr)

r
(2)

ein11 = −
e2β(re−2γ (λz)

2 − r(λr)
2 + λr + γr − βr)

r
(3)

ein22 = −e
2β(e−2γ(λzz + (λz)

2 − γzλz + βzγz − βzz)
+λrr + (λr)

2 + γrλr + γrr + (γr)
2 − βrγr − βrr)

(4)

ein33 =
e2β(re−2γ(λz)

2 − r(λr)
2 + λr − βr)

r
(5)

ein13 = e
2λ ein31 =

e2β(2rλrλz − λz + βz)
r

(6)

With regard to the length of the equations, we
maintained the compact Maxima notation in Eqs 2–6, i.e., the
coordinates in the subscript refer to the differential against
these coordinates.

The r-collapse is prevented by imposing:

ein11 = κρ(r,z)u1u
1 = 0→ re−2γ(λz)

2 − r(λr)
2 + λr + γr − βr = 0 (7)

ein13 = κρ(r,z)u3u
1 = 0→ 2r(λr)(λz) − λz + βz = 0 (8)

where κ is the Einstein gravitational constant, ρ(r,z) is the
fluid density, and u is the four-velocity of the fluid modeling
the galaxy. The condition ein33 = 0 was not implemented.
Indeed, in these axially symmetric metrics, orbital obliquity,
which could balance the gravitational attraction in the z-
direction, is not feasible. Evidently, ein22 = 0 is also not
imposed because the purpose is to study the rotating velocity
within the matter.

Notably, by using the metric in Eq. 1, we neglected the handling
of the components ein20 and ein

0
2, which should be non-null to fit the

terms κρu2u0 and κρu0u2 of the stress-energy tensor. We will come
back to this issue in section 2.2.

The introduction of an integrating factor is a well-known
method that involves multiplying nonlinear differential equations
by a factor to facilitate their solution (Hermann et al., 2016). To
facilitate the solutions of Eqs. 7, 8, we use a similar strategy,
except for the introduction here of an additive integrating factor
μ(r,z) defined by:

β = λ+ γ+ μ (9)

To overcome the nonlinearity of Eq. 4, we focus on
systems modeled by:

λ = χ(r)ζ(z) (10)

As explained at the end of this section, in the
solution, χ(r) and ζ(z) determine the radial and transverse
galaxy density profiles, respectively. Combining Eq. 9 with
Eq. 10 results in:

μz + γz = −rχχr (ζ
2)z (11)
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Eq. 11 can be directly integrated into:

μ+ γ = A− 1
2
r(χ2r )ζ

2 (12)

where A is an arbitrary function of r. By introducing Eqs. 10,
12 into Eq. 9, we derive:

β = A+ χζ− 1
2
r(χ2r )ζ

2 (13)

By inserting Eqs. 9, 10, 13 into Eq. 7 and multiplying by
2e2γ, we obtain:

(e2γ)r − (2 r(χr ζ)
2 + 2Ar − (rχ2r)r ζ

2 )e2γ + 2 rχ2 (ζz)
2 = 0 (14)

The general solution is as follows:

e2γ = 2(ζz)
2 e−h(r,z) ∫

r0

r
r′(χ(r′))2 eh(r

′,z)dr′ (15)

where r0 is an arbitrary integration constant and:

h(r,z) = −2∫
r

0
r′ (χr′ ζ)

2 dr′ − 2A+ rχ2r ζ
2 (16)

After substituting Eqs. 15, 16 into eq. 14, a straightforward
calculation proved that these equations are the solutions.

Asmentioned earlier, the resolution is based on the introduction
of an additive integrating factor μ(r,z), which is finally not explicitly
present in the metric solution.

Eqs. 15, 16 can be analytically computed only for some simple
power functions of r, such as:

λ = rζ(z), (17)

Using Eq. 17 results in the following galaxy density and rotation
velocity equations (see cyl_metric_1_r_z.wxmx):

ρ(r,z) = 2
κc2

ζ(z)
r

(18)

2π
dφ
dt
= 2π√ζ(z) r c (19)

Eq. 19 shows that the rotational velocitymonotonically increases
with r, which contradicts the observed profiles.

2.2 Rotational velocity on the equatorial
plane

Eq. 18 shows that the transverse density profile is directly given
by ζ(z), while the radial density profile is given by (rχr)r

r
which will

be proved at the end of this section.
We consider a galaxy for which the transverse ζ(z) density profile

is modeled by a pseudo-Gaussian, i.e.,:

λ(r,z) = χ(r)e−
z2+ε

T2 (20)

where ε is any strictly positive dimensionless small constant. For
simplicity, and owing to the dimensionless nature of coefficients λ, β,
and γ, we did not choose the normalized distribution form. Notably,
even if the transverse density profile ζ(z) is independent of the radial
coordinate r, the transverse full width at half maximum of the whole

galaxy decreases with the radial coordinate r due to the presence of
the term (rχr)r

r
.

With this distribution, the first- and second-order differentials of
the metric components versus z vanish in the z = 0 plane, facilitating
to an analytical solution to the Einstein field equations on the
equatorial plane of the galaxy.

To handle the components κρu2u0 and κρu0u2 of the stress-
energy tensor, we consider the following metric:

ds2 = c2 e2χ dt2 − e−2χ−2A (dr2 + dz2)
+(N2e2χ − r2e−2χ)dφ2 + 2Nce2χdtdφ

(21)

where N denotes a function of r. We could have kept the term e2γ

present in Eq. 1, but at the end γmust be set to zero in the equatorial
plane to ensure ein11 = 0. This is because, Eq. 8 is automatically
satisfied in the equatorial plane using the distribution in Eq. 20.

All the following equations in this study are formulated for
the equatorial plane, with only the lowest order in each equation
explicitly maintained (see ax_gal_z0. wxmx for the derivation of the
following equations). On this plane, the cancellation of ein11 and ein

3
3

is obtained using the following choice:

Ar =
(Nr)

2 e4χ − 4r2(χr)
2

4 r
(22)

Wenowbeginwith a domino cascade.Using Eq. 22, the resulting
density equation at the lowest order is:

κρc2 = ein00 + ein
2
2 ≈

2(rχr)r +O(N
2)

r
(23)

Eq. 23 shows that χ = O(ρ) and N is at least in the order of ρ
1
2 .

The time equation is:

ein00 = κρu
0u0 = κρu

0 c2u0 + κρu0Nu2 ≈
4r2(rχr)r +O(N

2)

2r3
(24)

The right-hand side of Eq. 24 shows that ein00 = O(ρ), and thus,
the third member, κρu0 c2u0 shows that u0 = O(ρ0).

The rotational velocity equation is:

ein22 = κρu
2u2 ≈ κρ(N− r2)u2u2 + κρNu2u0

≈ −
4r3(χr)(rχr)r +O(χN

2) +O(N2)

2r3
(25)

As the classical centrifugal force is ρ(u2)2 and balances the
gravitation force O(ρ2), we have u2 = O(ρ

1
2 ), which involves ein22 =

O(ρ2) and Eq. 25 involves that N is at least in the order ρ.
The cross terms equation ein20 at the lowest order is:

ein20 = κρu
2u0 ≈ κρN u2u

2 + κρc2 u2u0 ≈ −
c((Nrr)r−Nr)

2r3
(26)

The right-hand side member shows that in reality N = O(ρ
3
2 ).

Thus, rewriting the equations at the lowest order gives:

κρc2 = ein00 + ein
2
2 ≈

2(rχr)r
r

(27)

ein22 = κρu
2u2 ≈ κρ(−r2) u2u2 ≈ −2(χr)(rχr)r (28)
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ein02 = κρu
0u2 ≈ κρ(−r2) u0u2 ≈

(Nrr)r− (Nr)
2rc

(29)

Eqs. 26, 29 are identical and define the function N, the explicit
knowledge of which is not required to predict the rotational velocity.

For typical galaxy density ρ, the metric matrix gij is close
to diag(c2,−1,−r2,−1) within the galaxy, giving marginal length
and time contraction. Thus, Eq. 28 accurately yields the rotational
velocity as a function of the observed radial distance.

Using Eqs. 20, 21 and directly integrating Eq. 27 to derive χr, we
obtain the rotation velocity:

2πr
dφ
dt
≈ 2π√κc

2

2
∫
r

0
rρdr c (30)

Eq. 30 shows that the rotation velocity monotonically increases
for any density distribution ρ, which contradicts the observed peak
curves.This discrepancy results from the fact that Eqs. 27, 28 model
a lone galaxy in empty space. Undeniably, when χ→ 0, the metric
expressed by Eq. 21 reduces to the Minkoswki metric, for which the
Einstein tensor vanishes, and thus, corresponds to an empty space
according to the field equations.

Consequently, the universe-frame-dragging was missing.
Indeed, a uniformly dense Universe is modeled using χ =
κ ρ
8
r2c2 in Eq. 27. However, in this case, Eq. 28 shows that the

Universe has a non-null rotation velocity around the z-axis, which
increases with the radial distance r, similar to the non-Machian
Gödel solution (Gödel, 1949). Furthermore, this rotation does not
make sense for the modeling of a Universe because the position and
direction of the z-axis are arbitrary.

2.3 Machian solution to the rotating
Universe problem

The Einstein formulation of Mach’s principle presented in
Section 1 implies that the complete treatment of a specific body
cannot be performed without considering the impact of all the
other bodies. Unfortunately, computing the metric of a rotating disk
surrounded by uniformly densematter at rest from the Einstein field
equations is unfeasible. An easy way to address this issue in the
study of finite-size bodies (stars, galaxies, and galaxy clusters) is to
consider the following modified equation:

einji + ein
j
i = κρuiu

j (31)

where einji is the Einstein tensor corresponding to the Universe
metric. Eq. 31 signifies that the gravitational fields within a galaxy
are approximated by the sum of those generated by the galaxy and
by the Universe. This makes sense from the perspective of the low
density of galaxies and Universe. For a homogeneous Universe,
Eq. 31 can be rewritten as follows:

einji + κρ uiu
j = κρuiuj (32)

where ρ and u are the uniform density and speed of the Universe,
respectively. Now, Eq. 32 satisfies the requirement of treating all
the bodies together. Indeed, the galaxy of interest is modeled by
the right-hand side term, whereas the impact of all other bodies

is modeled by the middle term. Notably, Eqs. 31, 32 preserve the
tensorial nature of the Einstein field equations.

With Eq. 32, the null-Einstein tensor, Minkowski metric now
corresponds to a uniformly dense Universe as it involves ρ = ρ.

Choosing a reference frame co-moving with the Universe,
we have ui = u

i = 0 for i ≠ 0. Thus, only Eq. 27 is modified,
which becomes:

κρc2 ≈ 2 1
r
 (rχr)r + κρc

2 (33)

Finally, Eqs. 28, 33 provide the rotational velocity of the galaxy:

2πr
dφ
dt
≈ 2π √κc

2

2
∫
r

0
r(ρ − ρ)dr √1−

ρ
ρ
 c (34)

The first square root of Eq. 34 represents the gravitational force,
which is a monotonically increasing term. Interestingly, this term
contains a virtual negative density −ρ within the galaxy, which is an
effect of the whole Universe mass on the metric within the galaxy.
The last square root represents the inverse of the frame-dragging of
the Universe. This term reduces the rotation velocity to zero when
the galactic density ρ becomes equal to the mean Universe density ρ.

Figure 1 illustrates the prediction results of rotational velocity
for the three galaxies M31, M81, and M101 (see M81_M101_M31_
velocity.xlsx file) using Eq. 34 and the following density profile:

ρ = ae−br
k
+ pe−mrq + ρ (35)

The rotational velocities of the three galaxies were predicted
using the same value of the current estimate of the mean Universe
density present in Eq. 35, i.e., ρ = 2.2× 10−28 kg/m3. For the three
galaxies, the exponent k modeling the bulge was close to two and
the exponent q modeling the disk tail close to 1. The prediction of
the M81 bulge density and size was in line with the observations,
i.e., 5× 10−21 kg/m3 ≈ 1010 Mʘ within10 kly (Feng et al., 2014).

Themeasurement of the rotational velocity in 1973 of these three
galaxies by Roberts and Rots (Roberts and Rots, 1973) initiated the
dark matte halo genesis.

3 Discussion

The proposed solutions (Eqs 28, 33) accurately predicted
the rotational velocity shapes of the galaxies. After reaching
a peak, the velocity declined and finally vanished when the
galaxy density ρ reached the mean Universe density ρ. Without
considering the Universe, i.e., ρ = 0 in Eq. 34 or using Eq. 30,
the rotation velocity monotonically increases for any density
profile. This indicates the importance of the frame-dragging
effects on galaxy rotation, which cannot be derived from
Newtonian dynamics.

Although the model provides the gravitational field and motion
equations (Eqs 27, 28), it does not provide any information
regarding the actual metrics within the galaxy. The metrics in Eq. 1
or 21 correspond to the metrics for a lone galaxy in empty space.
Therefore, no physical implications could be derived directly from
these metrics.

As galaxies have low densities and stars move at low velocities,
galactic rotation is widely considered as a non-relativistic problem,
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FIGURE 1
Left vertical axis: circles are the rotational velocities observed by Roberts and Rots in 1973; solid lines are velocities predicted by Eq. 34 in the absence
of dark matter halo; blue dotted line is predicted velocity of M31 without universe matter, i.e., ρ = 0 (Eq. 26). Right vertical axis: dashed lines are the
radial densities of the galaxy, and the dotted-dashed black line represents the mean universe density.

for which the Einstein field equations should not provide results
very different from the Newtonian limit. However, special relativity
tells us that making such a shortcut can be hazardous: the
low-speed limit of kinetic energy in special relativity does
not vanish as it does in the Newtonian mechanics, rather,
it becomes mc2. Particle creation and annihilation prove this
value as the real energy at rest and not only as a pure offset
in theory.

Mach and Einstein were concerned that, similar to constant
motion, acceleration should make sense only relative to the other
mass bodies. A later study showed that, according to the Einstein
field equations, a body at rest but surrounded by masses in rotation
undergoes inertial forces induced by the rotating masses (Pfister,
2007). Therefore, even if the stars are moving at low velocities, the
centrifugal force experienced by a star can strongly depend on its
relative rotation with the bulge of the galaxy and with the other
celestial bodies too.

The proposed solution based on Eq. 34 clearly integrates this
process. If the galaxy alone was modeled, i.e., ρ = 0, the stars
rotate relatively to the bulge only, and their rotational velocities
monotonically increase with r to balance the increasing mass
contained in the region < r. At larger distances, the bulge attraction
and its frame-dragging effect decrease, resulting in a constant
rotational velocity.

When the Universe density ρ is modeled, stars also rotate
relatively to the matter in the Universe, and thus, undergo an
additional centrifugal force at any distance from the bulge. This last
component decreases the rotational velocity as gravitation due to the
bulge decreases with the radial distance r. Rewritten in the classical
form, i.e., mi rω

2 = G
r2
mgMg(r), where mi and mg are the inertial

and gravitational masses of a star, respectively, andMg(r) is the total
gravitational mass within r, Eq. 34 becomes:

1
2

ρ
ρ− ρ

ρdv r (
dφ
dt
)
2
≈ G
r2
 ρdv 2πr∫

r

0
r(ρ− ρ)dr (36)

Eq. 36 differs from the Newtonian theory in three aspects:

- The term 1
2
rescales the observed classical inertial mass ρdv

to what could be observed if our galaxy was isolated in an
empty space. The scaling factor is low because all the stars in
the galaxy rotate in the same direction, which reduces their
relative rotation.

This partial Machian property of the metric resulted from the
fact that in the domino cascade Eqs. 23–26, the priority has been
made to consider that χ should determine the galaxy density. This
choice at the end results in a marginal impact of the term N in the
final solution. In other axial metrics (Cooperstock and Tieu, 2007;
Bronnikov et al., 2020), the cross term directly represented galactic
rotation, which resulted in different solutions. Both solutions are
mathematically valid but have different physical implications. Based
on these considerations, Eq. 31 does not work with the other axially
symmetric metrics.

- At the center of the galaxy, the inertial mass is primarily
generated by the galaxy itself. When r increases, the inertial
mass is gradually more impacted by the Universe and becomes
equal to the classical value when:

ρ = 1
1− 1

2

ρ ≈ 2 ρ (37)
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The divergence of this term when ρ decreases to ρ results from
the simplicity of the model, which assumes a uniformly dense fluid
at rest filling the whole space.This implies that this model cannot be
applied to small scale systems such as the empty space surrounding
dense rotating stars.

- The fact that it is not the whole galaxy mass included in the
sphere radius r which appears in the gravitational force (r∫r0r…
in place of ∫r0r

2…) is a consequence of the axial symmetry and
of the fact that the fluid motion is governed by the metric that
the rotating fluid itself produces.The fact that one power of r is
shifted in front the integral is a consequence of having consider
that χ should determine the galaxy density (see first property
description).

The two first properties showed that the present model satisfies
the sixth version ofMach’s principle proposed in (Bondi and Samuel,
1997), i.e., “inertialmass is affected by the global distribution ofmatter,”
with the scaling factor being

1
2
 

ρ
ρ− ρ

(38)

Definitely, Eqs 37, 38 shows that the inertial mass is affected
by both, the galactic distribution of matter ρ and by the Universe
distribution matter ρ as well.

Mach’s principle was intuitively proposed to explain the curve
flatness with Newtonian dynamics (Darabi, 2013), where mi = C
within the bulge and decreases as mi =

C
r
beyond the bulge, where

C is a tunable parameter. However, the intuitive explanation of this
dependence arising from inertial dilution because of the expansion
of the Universe appears erroneous. This was deduced from the
Newtonian mechanics, which suffered from underestimation of the
rotation velocity beyond the bulge. This decrease in inertia beyond
the bulge contradicts Mach’s principles. Indeed, the impact of the
bulge decreases with distance.Thus, inertia is increasingly governed
by the non-rotating Universe.The relative rotation of galactic matter
with theUniverse is greater than that with the bulge, which rotates in
the same direction as the disk of the galaxy. Eq. 38 shows that, if the
inertia is constant within the bulge, where ρ≫ ρ, it increases beyond
the bulge due to the decrease of ρ.

An analytical solution of the first G order for a free-pressure
rotating fluid has already been obtained to explain the flatness
of the rotation velocity curve (Cooperstock and Tieu, 2007). An
explanation for the rotation curve of theMilkyWay as a consequence
of the frame-dragging effect was recently proposed (Beordo et al.,
2024). Both studies used a non-diagonal metric solution based on
the Weyl–Lewis–Papapetrou coordinates.

The proposed metric expressed by Eq. 21 on the equatorial
plane was obtained through an intuitive deduction process. First, a
diagonal axial metric (Eq. 1) enabled the resolution of the Einstein
field equations within a free-pressure stationary rotating fluid, i.e.,
without radial collapse. In this resolution, the cross-time-angular
components of the stress tensor were neglected. Subsequently, the
metric was slightly modified by adding a cross-time angular term.
By keeping the fact that the galaxy density is determined by χ, the
resolution of the field equations reveals that this cross-time term
does not appear in the equatorial rotation velocity in the first density
order (Eqs. 30, 34). We do not see any physical reason why this
cross term could become significant when moving away from the
equatorial plane. However, we could not prove this mathematically.

By transposing the density term of the Universe to the right-
hand side of Eq. 32, it could be considered as an undetectable
virtual negative density matter filling the entire space. However,
it has some benefits compared to the dark matter halo thesis: it
does not contain any adjustable parameter, while the observer is
free to choose the dark matter halo distribution to explain their
observations; it has a straightforward physical interpretation as the
impact of the gravitational field of the Universe, which results in the
implementation of Mach’s principle.

Eq. 34 includes the frame-dragging, which reduces the rotational
velocity and cancels it when the galaxy density ρ decreases to the
meanUniverse density ρ. Finally, this solution predicted the rotational
velocity profiles for all the three galaxy types, M31, M81, and M101.

Our success in predicting the rotational velocity profiles
substantiates Mach’s ideas about the nature of inertial forces as an
alternative to thedarkmatterhalo thesis. Further investigations should
be performed to determine whether the obtained solution does not
violate any physical constraints. Finally, the impact of Eq. 32 in galaxy
genesis and formation should be evaluated to support or discard the
model. In this evaluation, statistical fluctuations could be added to ρ
to consider the heterogeneities of the Universe.
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