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Kinetic Alfvén wave cascade in
sub-ion range plasma turbulence

Johan Sharma* and Kirit D. Makwana

Department of Physics, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India

Kinetic Alfvén waves (KAWs) are simulated with a 3D particle-in-cell (PIC) code
by using the eigenvector relations of density, velocity, electric, andmagnetic field
fluctuations derived from a two-fluid KAW model. Similar simulations are also
performed with a whistler waves setup. The 2D two-fluid eigenvector relations
are converted into 3D by using rotation of the reference frame. The initial
condition for the simulations is a superposition of several waves at scales slightly
larger than the ion skin depth. The nonlinear interactions produce a transfer
of energy to smaller scales. The magnetic field perturbation ratios, velocity
perturbation, and density perturbation ratios are calculated from the simulation
at higher wavenumbers and compared with the analytically expected ratios for
KAWs and whistler waves. We find that in both types of simulations, initialized
either with an ensemble of KAWs or with whistlers, the observed polarization
relations at later times match better with the KAW relations compared to
whistlers. This indicates a preference for excitation of KAWfluctuations at smaller
scales. The power spectrum in the perpendicular direction is calculated, and
it shows similar indices as measured in the solar wind power spectrum in the
transition (sub-ion) region. The power law extends to smaller scales when a
higher ion-to-electron mass ratio is taken. The 2D magnetic power spectrum
in magnetic field parallel and perpendicular directions shows typical anisotropy
where the power spreadsmore in the perpendicular direction than in the parallel
direction. This study shows that KAWs can explain features of the sub-ion range
plasma turbulence in the solar wind.
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1 Introduction

The solar wind is an excellent laboratory for studying plasma turbulence (Bruno and
Carbone, 2013). Observations of frequency spectra of velocity and magnetic fluctuations
in the solar wind in an intermediate range of frequencies (∼10−4 − 10−1Hz) (Coleman,
1968; Podesta et al., 2007; Roberts, 2007; Bamert et al., 2008) have revealed scaling similar
to that of hydrodynamic turbulence of Kolmogorov (−5/3) (Kolmogorov, 1941) and/or
Iroshnikov-Kraichnan (−3/2) scaling (Kraichnan, 1965; Iroshnikov, 1963). Many attempts
have been made to understand these observations through theory and simulation models.
There are a wide variety of models ranging from the observationally driven large-scale
models of magnetohydrodynamics (MHD) to the small-scale models of kinetic scales.
MHD models provide the overall picture of the solar system plasma, while kinetic models
promise to explain the physical processes that result in the heating and acceleration of
solar wind (Ofman, 2010).

The shear Alfvén waves (Alfvén, 1942) are often found in the solar wind (Belcher and
Davis, 1971). The incompressible MHD model is often used to describe the turbulence
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generated by Alfvén waves (Goldreich and Sridhar, 1995;
Galtier et al., 2000; Boldyrev, 2006; Matthaeus et al., 1983; Cho and
Vishniac, 2000; Bhattacharjee and Ng, 2001; Schekochihin, 2022).
There could also be compressible slow and fast magnetosonicmodes
present in MHD turbulence (Makwana and Yan, 2020). As the
energy cascades to smaller scales anisotropically (Shebalin et al.,
1983), the perpendicular scales become comparable to the ion
gyro-radius. As a result, ions cannot follow magnetic field lines,
whereas electrons can continue to do so, leading to finite Larmor
radius effects and kinetic Alfven waves (KAWs) (Hasegawa and
Uberoi, 1982). KAWs are thought to play a role in the heating
and acceleration of the solar wind (Ofman, 2010; Voitenko and
Goossens, 2006; Narita et al., 2020). Recent observations also
show a turbulent power law spectrum below the ion-scales
(Alexandrova et al., 2009). The existence of a KAW cascade is
posited to explain this kinetic range turbulence (Shaikh and
Zank, 2009; Voitenko and Goossens, 2004; Howes et al., 2008;
Sahraoui et al., 2009; Schekochihin et al., 2009; Sahraoui et al., 2010;
Howes et al., 2011; Boldyrev and Perez, 2012; TenBarge et al., 2012;
Told et al., 2015; Chen, 2016; Chen and Boldyrev, 2017; Cerri et al.,
2019; Passot and Sulem, 2019). At the same time whistler waves
have also been proposed to play a role in solar wind heating
(Chang et al., 2011; Saito and Peter Gary, 2012) and in the kinetic
range cascade (Gary et al., 2012; Gary and Smith, 2009). Salem et al.
(2012) compared the kinetic Alfvén wave and whistler waves model
predictions with magnetic and electric field measurements in the
solar wind.They found that the turbulent fluctuations at small scales
are consistentwith theKAWspectrum. Similar results were obtained
by Chen et al. (2013), Sahraoui et al. (2009, 2010) in their studies.

Kobayashi et al. (2017) and others have shown that there is
a steeper spectral law in the transition range (near the ion
characteristic scale) than at smaller scales [which show a slope
of around −2.8 (Alexandrova et al., 2009; Sahraoui et al., 2010;
Sahraoui et al., 2013;Matteini et al., 2017; David andGaltier, 2019)].
The physics behind this steeper slope in the transition range is
not well understood. Some studies give possible explanations for
this transition range like the weak or imbalanced KAW turbulence
(Voitenko and De Keyser, 2011; Passot and Sulem, 2019), ion-
cyclotron waves (Bruno and Trenchi, 2014; Bruno and Telloni,
2015; Squire et al., 2022; Bowen et al., 2024), weak dispersive range
(WDR) formed by co-collisions between co-propagating waves
along mean magnetic field B0 (Voitenko and De Keyser, 2016;
Passot et al., 2022; Passot et al., 2024) andhelicity-barrier hypothesis
(Meyrand et al., 2021). Huang et al. (2020) showed the coexistence
of KAWs and Alfvén ion cyclotron waves (AICW) in the slow solar
wind in the inner heliosphere using NASA’s Parker Solar Probe.
They measured the magnetic power spectra of KAW in the ion-
transition range and found the slope of around k−3.73⊥ . Huang et al.
(2021) used the high-resolution data from the Parker Solar Probe
and found that the power spectra in the sub-ion range do not
follow a single turbulence scaling and found the spectral index
varying in the range −3 to −5.7. These results are similar to the
reported results by Bruno and Trenchi (2014), Bruno et al. (2014),
Kobayashi et al. (2017), Huang et al. (2020).

First-principle numerical simulations can help in disentangling
the different modes present in this turbulence. Earlier simulation
studies on sub-ion range turbulence have involved initial conditions
which are quite ideal and nonlinear (Olshevsky et al., 2018), or uses

Alfven modes for initialization (Franci et al., 2018; Grošelj et al.,
2018) or there is random forcing (Kobayashi et al., 2017), or
with forcing containing compressive terms (Cerri et al., 2016) or
using OU forcing (Arzamasskiy et al., 2019) or Alfven forcing
(Grošelj et al., 2019) or a general initial perturbation (Camporeale
and Burgess, 2011). There are other simulations that are restricted
to 2D (Matteini et al., 2020; Makwana et al., 2023; Parashar et al.,
2010; Parashar et al., 2011; Valentini et al., 2014; Franci et al.,
2015; Servidio et al., 2015; Franci et al., 2016; Cerri and Califano,
2017; Cerri et al., 2017; Grošelj et al., 2017; Perrone et al., 2018;
Pezzi et al., 2018; Matthaeus et al., 2020; Franci et al., 2022), or
discusses the effect of collisions (Pezzi et al., 2017) or discusses the
generation of sub-ion scale turbulence by means of reconnection
(Franci et al., 2017), or only looks at electron scales (Califano et al.,
2020; Muñoz et al., 2023; Gary et al., 2012). In some studies, they
also obtain polarization ratios but either look at more general
compressibility ratios (Matteini et al., 2020) or do not compare
with different wave modes (Grošelj et al., 2017) or compare ratios at
different β values (Cerri et al., 2016). There are also 3D simulations
but with themain focus on spectrum (Howes et al., 2011; Gary et al.,
2012; TenBarge et al., 2013; Chang et al., 2015; Cerri et al., 2018;
Cerri et al., 2016) and do not discuss the polarization ratios. Some
studies look at dissipation and energy spectrum with gyrokinetic
simulations (Told et al., 2015). Cerri et al. (2019) used collection of
simulations described above and found similar conclusions of KAW.
Other simulations analyze current sheet structures (Sisti et al., 2021)
or ion cyclotron waves (Squire et al., 2022) or discuss linear and
nonlinear timescales in the kinetic range turbulence (Gary et al.,
2020) or look at stochastic in heating with predictions from Alfven
and KAW scalings (Cerri et al., 2021).

In this study, we perform 3D fully-kinetic PIC simulations
of sub-ion range turbulence. Instead of arbitrary perturbations
or forcing, we carefully initialize these simulations by using a
superposition of either KAWs or whistlers setup according to their
eigenvector (i.e., polarization) relations derived from a two-fluid
model.This allows for separately studying the nonlinear interactions
of these modes. We find that these larger-scale waves interact with
each other to produce a cascade of energy to smaller scales. We then
compare the various polarization relations at higher wavenumbers
with the expected polarization relations of whistlers andKAWs.This
allows us to identify the modes produced by the forward cascade.
We find a preference for the KAW cascade, even in simulations
that are initialized with whistlers. We also measure the power
spectrum and compare it with observations. Hence our study is
complementary to all the above studies, which have also hinted at
the presence of KAWs in the sub-ion range turbulence. In Section 2
we describe the setup of the numerical simulations, including
the two-fluid relations for KAW and whistlers and the way they
are used to provide the initial conditions for the simulations. In
Section 3 we compare the analytical dispersion relation of KAW
from the two-fluid model and that obtained from 2.5D and 3D
simulations. Comparison of magnetic polarization ratios obtained
from simulations with the analytically expected ratios of KAWs
and whistlers are shown in Section 3.1. In Sections 3.2, 3.3, we
compare the ion-density perturbation and velocity perturbation
ratios, respectively. Section 4.1 shows themagnetic and velocity field
spectrumobtained from the simulation at different time steps and its
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spectral index. Here, simulations with different plasma beta and ion-
to-electron mass ratios are also shown. In Section 4.2 we present the
2D magnetic energy spectrum in k⊥ − k‖ plane and its anisotropy.
The conclusions and implications are discussed in Section 5.

2 Setup of numerical simulations

We aim to simulate the nonlinear interactions of KAW and
whistler waves in 3D particle-in-cell simulations. The initial
condition of the simulations is a superposition of these waves at
scales close to the ion skin-depth (kdi ≲ 1) with the goal of seeing
a cascade of energy to smaller scales. In order to set up the KAW
modes, we use the Hollweg (1999) (from now on referred to as H99)
relations of two-fluid KAW. The two-fluid eigenvector relations in
H99 paper are derived by considering kx = 0, i.e., the relations are
valid only for wave-vectors in the ky − kz plane. We are using these
eigenvector relations in a 3D simulation set in a reference frame S′.
In order to do this we need to generalize the eigenvector relations
to 3D. To accomplish this we take the initialization wavevectors in
3D and then rotate our frame of reference around the z′-axis such
that the kx becomes zero in this new reference frame S. In this
rotated frame we can use the eigenvector relations from the H99
paper. Let the primed symbols k′x,k′y,k′z and δE′x,δE′y,δE′z represent
the wave-vector and the electric field perturbations respectively
in the simulation frame S′. The unprimed symbols kx,ky,kz and
δEx,δEy,δEz represent the corresponding quantities in the rotated
reference frame S in which the eigenvectors from H99 hold. In
the simulation, we take k′x,k′y, and k′z as input, and then we rotate
our frame of reference along the z-axis by an angle ϕ to unprimed
coordinates. The δE and other quantities are obtained in this frame
fromH99 relations, and then rotated back to frame S′ to use them in
initializing the simulations (see Supplementary Appendix for more
details). Similar process is used for whistler wave as well.

2.1 KAW polarization relations

The eigenvector relations express the ratio of the different
perturbed physical quantities in a KAW mode. Their amplitude is
defined up to a multiplicative constant, which we set by setting the
amplitude of δEx. The rest of the perturbed quantities are defined by
the eigenvector relationships. These relations are used to setup the
initial wave modes in the simulation, as well as to identify the wave
modes produced by the cascade. In frame S the KAW electric field
eigenvector relations are taken from H99, Makwana et al. (2023).

δEz
δEx
= i

kz (ω2 − k2v2A)
kyωωc,i

(Ge −meω
2/k2

z)
Gt

, (1)

δEy
δEx
= i
(ω2 − k2v2A)(Ω

2 (mev
2
A −Gi) −Ge)

Gt (Ω2 − 1)ωωc,i
. (2)

Here the index i represents ions, e represents electrons, s represents
species and t represents total. Gt, Gi, and Ge are given by Equation 3,

Gt = Gi +Ge = γiκT0,i + γeκT0,e, (3)

Ω = ω
kzvA

, ion cyclotron frequency ωc,i =
eB0
mic

, and Alfvén speed
is given by Equation 4,

v2A =
B2

0

4πn0 (mi +me)
. (4)

where, B0 = B0 ̂z is mean magnetic field.
The electric field polarization in the simulation

reference frame (S′) is obtained using rotation matrix (see
Supplementary Appendix). The same rotation relations are used
to obtain the eigenvector relations for the magnetic and velocity
fields in the simulation frame. Since density is a scalar, it remains
unchanged δn′s = δns. The dispersion relation of KAW from the
2-fluid model is

Ω6 k
2
z

k2 (1+ k
2
yL

2
e) −Ω

4[
k2
z

k2 (1+ k
2
yL

2) + (1+ β+ k2
yL

2
e)]

+Ω2 (1+ 2β+ k2
yL

2) − β = 0, (5)

where, β, ωp,e, L, and Le are given by Equations 6–9 respectively

β = βtot =
Gt

miv
2
A

, (6)

ω2
p,e = 4πq2

en0/me, (7)

L = 1
|ωc,i|
√Gt

mi
=

vs
|ωc,i|
, (8)

Le =
c

ωp,e
= L

√β

√1+mr

mr
. (9)

Here mr =mi/me is the mass ratio of ion to electron. Equation 5
has three roots; the intermediate value of these three roots is
the KAW branch. The magnetic perturbation ratios give some
important characteristics of the waves in plasma. The magnetic field
perturbations δB are obtained from the electric field perturbations
using Faraday’s law as

δB = c
ω
(k × δE) . (10)

The magnetic perturbations δB in frame S are obtained from
Equation 10 and then rotated to obtain δB′ in the simulation frame.
The theoretically expected magnetic perturbation ratios δB′x/δB′y
and δB′x/δB′z are then obtained from this.

KAWs also have density perturbations. The relation for ion
number density perturbation ratio for KAW is given by Equation 11,

δns
n0,s
=

ieδEz
kz (Ge −meω

2/k2
z)
. (11)

We have kept only the terms with lowest order in ω/ωc,s since ω≪
ωc,s. For the electron-proton plasma n0 = n0,i = n0,e, and we use the
quasineutrality condition for electron density perturbation, δni =
δne.The velocity perturbations for KAWs from the 2-fluidmodel are

δvx,s =
qs

msωc,s
(δEy − i

ω
ωc,s

δEx)− i
Gsky
msωc,s

δns
n0
, (12)

δvy,s = −
qs

msωc,s
(δEx + i

ω
ωc,s

δEy)−
Gskyω

msω
2
c,s

δns
n0
, (13)
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δvz,s = i
qs

msωc,s
δEz +

Gskz
msω

δns
n0
. (14)

Boldyrev et al. (2013) derive the KAW relations from kinetic theory.
They obtain KAW relations from full kinetic equations, by use of
certain approximations. In their paper, to obtain KAW relations
theymake simplifications to Equation 18 and obtain the polarization
ratios given in Equations 42, 43. Our relations are similar to those, as
shown below. Dividing Equations 1, 2, then in the denominator, we
haveGi ≫mev

2
A, and also, we are analyzing in the range Ω ≳ 2. Also,

Ge ≫meω
2/k2

z since vth,e ≫ vA. Now if we take Ω2 − 1 ∼Ω2, then our
polarization ratio reduces to

δEz
δEy
≈

kzGeΩ2

−kyΩ
2Gi
= −

kz
ky

Te

Ti
(15)

Since Boldyrev et al. (2013) assume ky = 0, whereas, in this work,
kx = 0, a rotation of frame is required for comparison. Their frame
transformed by y→−x, and x→ y gives our reference frame.
Then Equation 42 of Boldyrev et al. (2013) becomes Equation 15.
Now Equation 43 in Boldyrev et al. (2013) is the inverse of
our Equation 2. In the denominator of Equation 2, we can
say ω2 − k2v2A ∼ −k

2
⊥v

2
A and using above approximations we get

Equation 43 of Boldyrev et al. (2013). So our equations reduce
to Boldyrev et al. (2013) expressions except for the frequencies,
which are their respective frequencies. By comparing the frequency
expression of Boldyrev et al. (2013) with our frequencies, we find
that in the range 1 < k⊥di < 3 these frequencies differ by less
than 30%. The Boldyrev et al. (2013) frequency is obtained by
assuming k⊥di ≫ 1, whereas for our case where we are looking at
the modes excited close to the ion skin depth scale, k⊥di ≳ 1. In this
case, the H99 expressions are more appropriate.

2.2 Whistler wave polarization relations

For obtaining the whistler wave relations we use Swanson (2003)
(SW03). The mean magnetic field B0 in SW03 is the same as in
our case, but the wave vector k in SW03 is in x-z plane, but it is
in y-z plane in our case. To express the relations of SW03 we give
a rotation by 90° so that y→−x and x→ y, so the electric field
components also become δEx→ δEy and δEy→−δEx. Also, we use
a signed definition of ωc,e, which is negative. Then the dispersion
relation for the whistler wave at an arbitrary angle θ is given by
Equation 16,

ω = −
k2c2ωc,e cos θ

ω2
p,e
, (16)

where θ is the angle between the mean magnetic field. The wave
equation for cold plasma is also modified to our frame of reference,
given by Equation 17,

(

iD S− n2 cos2 θ n2 cos θ sin θ

n2 − S iD 0

0 n2 cos θ sin θ P− n2 sin2 θ

)(

δEx
δEy
δEz

)= 0. (17)

As δEz = 0 for whistler wave, so the equation becomes

(
iD S− n2 cos2 θ

n2 − S iD
)(

δEx
δEy
) = 0. (18)

So we get the electric field perturbation ratio δEy/δEx, given by
Equation 19,

δEy
δEx
= −iD
S− n2 cos2 θ

. (19)

Here, S and D are given by Equations 20, 21,

S = 1+
ω2
p,i

ω2
c,i −ω

2 +
ω2
p,e

ω2
c,e −ω2 , (20)

iD = −
iωc,eω

2
p,e

ω(ω2
c,e −ω2)

−
iωc,iω

2
p,i

ω(ω2
c,i −ω

2)
, (21)

and n = ck
ω
. Also δEz/δEx = 0 for whistler wave.

We can obtain the magnetic field perturbation δB for whistler
waves again by using Faraday’s law as in Equation 10 for KAWs.
Then, we use the same rotation of the reference frame as done for
2-fluid KAW relations and obtain the magnetic perturbation ratios
in full 3D. Also, the velocity perturbation for the whistler wave
has been obtained from SW03. They obey the same relations as
Equations 12–14, except that the number density perturbations for
whistlers are zero. Using the same method of the rotation of the
reference frame, these relations are then used to obtain the velocity
perturbation ratios for the 3D case.

2.3 Simulation setup

We use the implicit particle in cell code iPIC3D (Lapenta,
2012; Markidis et al., 2010) for our simulations. The simulations
are initialized with either an ensemble of superimposed KAWs or
an ensemble of superimposed whistlers. This allows us to study
the nonlinear interactions of the wave modes amongst themselves.
The polarization relations shown in Sections 2.1, 2.2 are used to
set up the KAWs and whistlers, respectively. Normalization in
the simulation has been taken to make length in units of ion-
skin depth di, velocity in units of speed of light c, and time
in units of inverse plasma ion frequency ω−1p,i (ωp,i = c/di). The
mass and charge for ions are taken as unity (e = 1 and mi = 1).
The number density is normalized to the background density,
n0, and due to the unit mass of ions, the normalized mass
density of ions is unity. The magnetic field is normalized to
c√4πρ0, where ρ0 represents the total mass density. The electric
field follows the same normalization. In these units, the Alfvén
speed normalized to the speed of light numerically corresponds
to the normalized background field strength, B̂0 = vA/c = 0.01. The
eigenvector relations described above are converted into these
normalized units for utilization within the code.

We have used periodic boundary conditions in the three-
dimensional simulation box. The uniform plasma is initialized with
a uniform magnetic field B0 along z-axis. The information about
the length of the box, resolution, and thermal velocities of electrons
and ions for the simulations is listed in Table 1. The modes for
simulation initialized with KAW are chosen such that k⊥ ≫ k‖ for
each wave. For whistler simulation, we have used a more isotropic
distribution of wave modes. In both simulations, we have taken care
that the wavenumber modes have small values, kdi < 1 (because we
are injecting modes at large scales). We have used 64 quasi-particles
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TABLE 1 Simulation parameters.

Name Lx,Ly,Lz mr Res. vth,i vth,e βe βi

A0 20di 25 2403 0.0152420c 0.074478c 1.233 1.291

A1 25di 25 2403 0.0152420c 0.074478c 1.233 1.291

A2 25di 25 4803 0.0152420c 0.074478c 1.233 1.291

A3 25di 50 4803 0.0152420c 0.074478c 0.616 1.291

A4 25di 50 4803 0.0107786c 0.052665c 0.308 0.645

TABLE 2 List of simulations, the number of wavenumbers in the initial condition, amplitude of waves, initial perturbation amplitude, and the initial
mode-numbers.

Simulation No. waves Ampl. δB/B0 Initial mode-numbers (nx,ny,nz)

S0 16 3.5× 10−6 0.339 (1,3,1), (0,2,1), (−1,3,2), (−3,0,1), (−1,3,−1), (−2,2,−1), (3,0,−1), (3,2,−2), (1,−2,1), (2,−3,−2),
(−1,−2,1), (−3,−1,1), (2,−2,1), (0,−3,2), (−2,−2,−1), (−3,−2,−1)

S1 16 3.5× 10−6 0.579 (1,2,1), (0,2,1), (−1,1,2), (−2,1,2), (−2,1,−2), (−2,2,−1), (2,2,−2), (1,2,−2), (1,−2,−1), (1,−3,−2),
(−1,−2,1), (−3,−1,2), (1,−2,2), (1,−2,2), (−2,−2,−2), (−3,−1,−1)

per species per cell for all simulations. A superposition of different
wave vectors is used as the initial condition where each physical
quantity, ψ, is given by Equation 22,

ψ (r) = ψ0 +R[∑
k
δψ exp(ik ⋅ r +ϕk)] , (22)

with ψ representing the components of the electric field, magnetic
field, ion velocity, electron velocity, ion density, and electron density.
A randomphase ϕk is put for each wave-vector, ψ0 is the equilibrium
field value and δψ is the perturbation amplitude derived from the
polarization relations. The electric and magnetic fields are directly
initialized on the grid. The density and velocity perturbations
are used in the initial Maxwellian distribution of particles. For
initialization, the Maxwellian distribution for a given temperature
Ts is used where kBTs =msv

2
th,s/3 with thermal speed vth,s. The fluid

velocities are added as a drift velocity in the exponential term of
the Maxwellian. The wave-vector is k = kx ̂i+ ky ̂j+ kzk̂, where kx,y,z =
nx,y,z(2π/Lx,y,z) with wavenumbers nx,y,z. The initial wavevectors are
large-scale, of the size of the simulation box, such that kdi ≲ 1.
This allows us to look at the cascade of energy to smaller scales
by the nonlinear interactions. For KAWs, we have used |nz| <
√n2

x + n2
y so that they satisfy k⊥ > k‖. 16 wavevectors are used

in the initial conditions, where S0 wave input is used for KAW
simulations, and the S1 wave input is used for whistler simulations.
They are listed in Table 2. We use the amplitude of electric field
perturbation in x-direction (δEx) as an input parameter and all the
other perturbation amplitudes are obtained from the eigenvector
relations. The angular frequency in these relations is used from the
2-fluid dispersion relations. The simulation then solves for the time
evolution of the plasma with these initial conditions.

3 Dispersion and polarization
properties

We check the linear dispersion properties of the KAW by
comparing the frequency measured in KAW simulations with the
frequency calculated from the two-fluid model and frequency
from the NHDS (New Hampshire Dispersion Solver) which is
a dispersion solver for the fully kinetic case (Verscharen and
Chandran, 2018; Verscharen et al., 2013). We take the KAW root of
Equation 5 and evaluate it for different values of the wavenumbers.
Then simulations are run with single KAW modes corresponding
to these wavenumbers. The frequencies from the simulation
are obtained by using the magnetic field Bx propagation in y-
direction. The wave is observed at two different time steps, and
the distance traveled by this wave in the y-direction, Δy, in this
time Δt is measured. The observed frequency is then ω = kyΔy/Δt.
This is done for both 2.5D and 3D simulations and the results
are shown in Figure 1 where the wavenumbers used are ny = 2, 3,
4, 6, 8, 10, nz = 1, and nx = 0. We find that the frequency from
the 2.5D simulations matches very closely with the 3D simulation
results which means that the 3D simulation gives expected results.
We have also run a 2.5D KAW simulation with input wavenumber
nx,ny,nz = 0,5,1 which gives a frequency of 0.00394 ωp,i and a 3D
KAWsimulationwithnx,ny,nz = 3,4,1 giving a frequency of 0.00402
ωp,i. Both the simulations have the same k‖ and k⊥ and give almost
the same result for frequency. This further verifies the accuracy of
the rotation and, hence, the 3D simulation.

Figure 1 shows that the observed frequency follows the trend
but is smaller than that expected from the two-fluid dispersion
relation. This is very similar to the result obtained in Makwana et al.
(2023) for similar simulation parameters. It was shown there that the
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FIGURE 1
Comparison of frequencies (ω/ωp,i) from 2-fluid KAW, NHDS, 2.5D and 3D KAW simulation with varying kydi at constant kz. Here nz = 1 and ny = 2, 3, 4,
6, 8, 10 and A0 simulation parameters has been used.

observed dispersion relationmatches much better with a hot plasma
dispersion relation, even though we use a two-fluid description
in the initialization. That showed that such an initialization is
suitable for PIC simulations. Here also, we find that the NHDS
dispersion relation results are very close to those observed in our
3D simulations. Hence we conclude that the 2-fluid eigenvector is
a good initialization for 3D simulation also, while being easier to
implement than a fully kinetic initialization.We also checked for the
value of k′ ⋅ r′ before and after the rotation, and it remains the same,
i.e., k′ ⋅ r′ = k ⋅ r, as expected. This means that the waveform factor
cos (kxx+ kyy+ kzz+ϕk) remains unchanged as we go from frame S
to S′.

Figure 2 shows the RMS amplitude of the magnetic field
perturbations, i.e., δBrms/B0 at different time steps for the 3D
KAW simulation. As this is an initial perturbation simulation,
the turbulence it produces decays, and the fluctuation amplitude
decreases with time. At ωp,it = 0, the RMS amplitude is 0.339, and
it reaches a value of around 0.2 at ωp,it = 1700. The Alfvén crossing
time is 250ω−1p,i . We see that the amplitude reduces by more than
40% in a few Alfvén crossing times. We analyze the development
of turbulence over this time period.

3.1 Magnetic perturbation ratios

The ratio |δBx/δBy| is calculated from simulation data. The
magnetic field data B(r) at a given time step is Fourier transformed
to B̂(k) and then the ratio of the Fourier amplitudes is calculated at
specific wavevectors k. These ratios are shown in Figure 3 for both

the simulations initialized with KAWs and whistlers. The S0 wave
input is used for KAW simulations, and the S1 wave input is used
for whistler simulations. The results of |δBx/δBy| from the analytical
calculations of two-fluid KAW, and two-fluid whistler modes are
also shown in this figure. Figures 3A–C shows the variation of ratio
|δBx/δBy| with perpendicular wavevector along kx (with ky = 0 and
nz = 1). Figures 3D–F show this ratio along ky (with kx = 0 and nz =
1).

At t = 0, Figure 3D shows that the observed ratio from the
KAW simulation matches with the analytical expectation at kydi =
0.5. Similarly, the observed ratio from whistler simulation matches
with the analytical expectation for whistlers at kydi = 0.5. This is
because the input wavevectors in both simulations include the
wavenumber (0, 2, 1) which corresponds to this wavevector. On
the other hand, the larger wavenumbers are not initialized with
any specific wave mode. At t = 0, Figure 3A shows that for these
higher wavenumbers, the KAW simulation shows polarization
ratios quite close to the whistler expectation, while the whistler
simulation shows fluctuations falling between the KAWandwhistler
expectation values. However, as time progresses to ωp,it = 800 and
ωp,it = 1600, Figures 3B, C show that the polarization ratios from
both the KAW as well as whistler simulation show values quite
close to the KAW expectation. Similarly, in Figure 3D, we see that
at t = 0, the higher wavenumbers in the KAW simulation show
polarization ratios closer to the KAW expectation, whereas the
whistler simulation lies closer to the whistler expectation. However,
as time advances, the higher wavenumbers in both KAW and
whistler simulations show ratios closer to the KAW expectation
(Figures 3E, F).This shows that themagnetic polarizations ofmodes
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FIGURE 2
δBrms/B0 for 3D KAW simulation at different time steps. A2 simulation parameters with S0 input waves are used to run the simulation.

excited non-linearly at smaller scales tend to behave more like
KAWs. We have also looked at this ratio along the kx = ky and kx =
2ky line of wavevectors. For kx = ky, the KAW and whistler modes
have the same analytical expectations, so they do not distinguish the
modes. Along kx = 2ky, also we find the ratios in simulations match
closely with KAW. However, the gap between KAWs and whistlers is
largest for the cases shown in Figure 3.

We also look at the ratio |δBx/δBz| from the simulation
data. These results are obtained by the same process of Fourier
transforming and then taking the ratio as done for |δBx/δBy|.
Figure 4 shows these ratios for both simulations as well as their
analytically expected values from the two-fluid KAW and whistler
models. It shows the ratios as a function of ky (with kx = 0 and nz =
1). Since the initial wavenumbers include nx = 0, ny = 2, and nz = 1
which corresponds to the first point (ky = 0.5), there the simulation
ratios match with their analytical counterparts at t = 0. Figure 4A
shows that initially, at the higher wavenumbers, the ratios from
KAW simulation are similar to the analytical expectation for KAWs,
and the whistler simulation lies closer to the whistler analytical
expectation. At higher time steps Figures 4B, C it can be seen that
the |δBx/δBz| both from the whistler and KAW simulations shows
a closer match with analytical KAW than to analytical whistler,
indicating the cascade of KAW to smaller scales in both cases. The
ratio |δBx/δBz| along kx (with ky = 0 and nz = 1), gives the same
results for analytical expectations of both KAWs and whistlers since
δBx/δBz = − kz/kx for this case. Both the simulations also lie close
to this analytical expectation. Hence it does not help to distinguish
between KAW and whistler and is not shown.

The ratio |δBz/δB| = |δB̂z(k)|/√δB̂
2
x(k) + δB̂

2
y(k) + δB̂

2
z(k) is

also obtained from the simulation data. This is related to the
compressibility, C‖ = δB2

‖/δB
2, which is measured in solar wind

observations and thought to be related to KAW fluctutations
(Kiyani et al., 2013). Figure 5 shows these ratios from the whistler
and KAW simulations as well as it is analytic expectation for
KAWs and whistlers obtained from their 2-fluid models. The top
row shows the variation of |δBz/δB| along kx (with ky = 0 and
nz = 1) and second row shows it along ky (with kx = 0 and nz =
1). As before Figure 5D shows the simulations matching with
analytical expectations at kydi = 0.5. At t = 0, along the kx direction,
Figure 5A, the KAW simulation shows ratios closer to the whistler
expectation, while the whistler simulation fluctuates between the
two modes. As the simulations evolve in time, Figures 5B, C, we
see that the KAW simulation lies closer to the KAW analytical
expectation at higher wavenumbers. The whistler simulation is
closer to the whistler analytical expectation up to kxdi = 1, but
beyond that, it also appears to go towards the KAW expectation.
Along ky direction, Figures 5E, F, the KAW simulation again seems
closer to the analytical KAW prediction. At t = 800ω−1p,i the whistler
simulation shows ratios matching with KAW predictions, while at
t = 1600ω−1p,i it shows a fluctuating behavior between the 2 modes.
This could mean that some fraction of whistler modes may be
present in the simulation. However, the difference between the
analytical value of δBz/δB for KAW and whistler is very small
(between 0.6 and 1), while for δBx/δBy and δBx/δBz the difference
was of an order of magnitude. Hence it is difficult to distinguish the
two modes using δBz/δB.
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FIGURE 3
|δBx|/|δBy| ratios from analytic KAW relations (black), analytic whistler (dotted blue), KAW simulation (red) and whistler simulation (green) (A) at t = 0 (B)
at t = 800ω−1p,i and (C) at t = 1600ω−1p,i along ky = 0 and (D–F) along kx = 0 at their respective times are shown. To run the simulation A2 parameters are
used with S0 wave input for KAW simulation and S1 wave input for whistler simulation.

FIGURE 4
|δBx|/|δBz| ratios from analytic KAW relations (black), analytic whistler (dotted blue), KAW simulation (red) and whistler simulation (green) at (A) t = 0, (B)
t = 800ω−1p,i and (C) t = 1600ω−1p,i are shown. Here nz = 1, kx = 0 and ky is varied. A2 simulation parameters are used.

We have also run these simulations with 125 particles per cell
per species, and we get similar results.This indicates that noise is not
affecting our results. From the spectra, we can see that noise becomes
important at k⊥di > 4 for the velocity fields (and further smaller
scales for magnetic fields), but we are comparing polarization ratios
in the region k⊥di < 3. We have also compared these results for
different plasma β mentioned in Table 1 and found similar results,
i.e., in this case also we find the KAWs as the dominant mode for
these beta values. However, it is possible that other modes may
be important at other plasma beta. We initialize simulations with
either KAWs or whistlers at large scales and allow modes to be
excited at smaller scales. This can be seen from the energy spectra in
Section 4.1. The ratios |δBx/δBy|, |δBx/δBz| and |δBz/δB| show that

the modes excited at these smaller scales tend to be in agreement
with the ratios expected of KAWs, even in the simulations initialized
with whistler modes. This indicates a natural preference for the
excitation of a KAW cascade in the sub-ion range. Typically “energy
cascade” refers to the local, nonlinear energy transfer from large to
small scales in the inertial range over a vast range of scales. While
the kinetic range of scales in a plasma is quite limited and even
more so in simulations, there also “energy cascade” is often used
to describe the transfer of energy (Franci et al., 2017; Passot et al.,
2022). Here, by “cascade”, we are referring to the transfer of energy
from large scales to smaller scales (as seen in the energy spectra)
and the excitation of wave modes at smaller scales (as seen in the
polarization relations which match with KAW). This is referred to
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FIGURE 5
|δBz|/|δB| ratios from analytic KAW relations (black), whistler (dotted blue), KAW simulation (red) and whistler simulation (green) at (A) t = 0, (B) t =
800ω−1p,i and (C) t = 1600ω−1p,i along ky = 0, and (D–F) along kx = 0 at their respective times are shown, for A2 simulation parameters.

as the KAW cascade. Earlier we had shown in 2.5D simulations the
locality of KAW nonlinear energy transfer (Makwana et al., 2023)
by using bispectral analysis. Next we take a further look at what
relations the density and velocity perturbations follow.

3.2 Number density perturbation

The ratio of density perturbation to mean number density for
ions along ky (with kx = 0 and nz = 1) is obtained from simulation
data.We take the Fourier transform of the density field and then take
the ratio of the Fourier amplitude at a given k, n̂(k) with the Fourier
amplitude at k = 0, since that would correspond to themean number
density. We use A2 simulation parameters to run the simulations.
We also obtain the ratio from the analytical KAW 2-fluid model.
The results are shown in Figure 6. There is no density perturbation
in the case of the whistler waves, so analytical whistler expectations
are not plotted here. Figure 6A shows that at time t = 0, the ratios
from analytical KAW relations and KAW simulation are quite close
at the input wavenumber kydi = 0.5, but they do not match at higher
wavenumbers, with the higher wavenumbers showing ratios lower
by more than 3 orders of magnitude. The whistler simulation shows
density perturbations lower by more than five orders of magnitude
compared to KAW expectations. As the KAW simulation evolves,
Figures 6B, C, these density perturbations grow. In some cases, like
atωp,it = 800 for kydi = 0.75− 1.75, the ratio has increased by a factor
of around 100 compared to t = 0. Although it does not reach the
level of KAW expectation, it tends to get closer to it. It maybe
that particle noise might affect the density perturbations and bring
them to a lower level. On the other hand, we know that whistler
waves have no density perturbation, but we are still getting density

perturbation for the whistler simulation at higher times. We see that
the density perturbation for whistler simulation increases from the
order of 10−7 at ωp,it = 0 to 10−3 at ωp,it = 1600 which is as much
as the level seen in the KAW simulation. Figures 6D–F show the
ratio of ion-density perturbation to the parallel magnetic field at
t = 0, 800 and 1600ω−1p,i respectively along ky(di). We see that at
ωp,it = 0, the KAW simulation results match with analytic KAW,
but the whistler simulation has a very low value. At ωp,it = 800,
both the simulation results are close to analytic KAW ratios, and at
ωp,it = 1600, both the simulation results match with analytic KAW
at higher wavenumbers. We see that the whistler simulation ratio
in this case rises from 0.1 at t = 0 to 30− 100 at ωp,it = 1600. This
shows that KAW-like density perturbations are being produced even
in the whistler simulation. We also find almost the same spectra
for electron density fluctuations showing that the quasineutrality
condition works well.

3.3 Velocity perturbation ratios

We now compare the velocity perturbation ratio |δvx/δvy| for
the analytical whistler wave, analytical KAW, and the simulations
of KAWs and whistlers. The simulation data provides the current
density for both species. The fluid velocity perturbation of a species
is obtained by taking the ratio of its current density to its charge
density and then taking the Fourier transform. The ratio of these
Fourier-transformed velocities is then taken to obtain the required
ratios. Figure 7 shows these different ratios at the three different time
steps. The simulation results are obtained using the A2 simulation
parameters. At t = 0 in Figure 7A along kx, both the KAW and
whistler simulations lie in between their analytical expectations.

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2024.1423642
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Sharma and Makwana 10.3389/fspas.2024.1423642

FIGURE 6
The ratio of ion density perturbation to the mean ion density at time (A) t = 0, (B) 800 and (C) 1600ω−1p,i with varying ky values. (D–F) shows the ratio of

ion-density perturbation to parallel magnetic field at t = 0, 800 and 1600ω−1p,i, respectively. Green and red curves are obtained from whistler and KAW
simulation, respectively, and black from analytic KAW. A2 simulation parameters are used to run the simulation.

FIGURE 7
The ratio of velocity perturbation |δvx|/|δvy| at time t = 0 (A, D), t=800ωP,i

-1 (B, E) and t=1600ωP,i
-1 (C, F) (from left to right) with varying kx(ky) values in top

(bottom) row from KAW simulation (red), whistler simulation (green), analytic KAW (black) and for analytic whistler (dotted green). A2 simulation
parameters are used.

In Figure 7D, along ky at t = 0, the whistler simulation results
are closer to analytical whistler but KAW simulation does not
match with analytical KAW, except at the input wavevector kydi =
0.5. Along the kx direction, as the simulation evolves Figure 7B

shows that at time t = 800ω−1p,i the results from both KAW and
whistler simulations seem closer to the whistler expectation at lower
wavenumbers, while at higher wavenumbers they lie in between the
two modes’ expectations. However, at t = 1600ω−1p,i , Figure 7C shows
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FIGURE 8
The (A) magnetic energy and (B) velocity spectrum for KAW simulation, and (C) magnetic energy and (D) velocity spectrum for whistler simulation at
different times with respect to the perpendicular wavevector k⊥di. A2 simulation parameters are used with S0 wave input for KAW and S1 wave input for
whistler simulation. Vertical dashed line is k⊥de = 1.

that both the whistler and KAW simulations show ratios closer to
the KAW expectation at higher wavenumbers. Along ky direction
as well, at t = 800ω−1p,i Figure 7E shows that the simulation ratios of
both KAW and whistlers lie between the analytical expectations.
Then, later in Figure 7F, the simulated ratios seem closer to the
KAW expectation at higher wavenumbers. After looking at all
these characteristic polarization ratios from simulations, it seems
that the KAW modes are preferentially excited in the sub-ion
range cascade.

4 Energy spectrum

4.1 Magnetic energy and velocity spectrum

Now we look at the spectra that are produced by the
KAW simulations. We have calculated the magnetic energy and
velocity spectrum along the perpendicular wavevector (k⊥) for
the KAW simulation. To obtain the magnetic energy 2D power
spectrum we use the discrete Fourier transform of magnetic field

components, |B̂(k⊥,kz)|2 = |B̂x(k⊥,kz)|2 + |B̂y(k⊥,kz)|2 + |B̂z(k⊥,kz)|2.
The spectrum along the perpendicular direction is the spectrum in
the kx − ky plane. To make the spectrum along the k⊥ direction, we
take an average of energy spectrum over a ring in the kx − ky plane
for a fixed value of k⊥. Then the spectrum along the k⊥ direction can
be obtained by taking different values of k⊥ and applying the same
averaging operation. The perpendicular wavenumber spectrum is
obtained by summing over all the parallel wavenumbers, i.e., along
the wavevector kz. Figure 8A shows the magnetic spectrum in the
perpendicular wavenumber obtained from the simulation with 16
waves injection using A2 simulation parameters. The spectrum
is shown at ωp,it = 0,300,500,900,1300,1700 with 4803 resolution
for S0 input wave. The dotted lines are made to see the visual
comparison of the simulation slope with these reference slopes. At t
= 0 the spectrum peaks at the input wavenumbers and drops steeply
for k⊥di > 1. As the time increases, the higher wavenumber modes
gain energy, indicating energy cascade to smaller scales. As can be
seen in the figure at t = 500ω−1p,i the higher wavenumber modes get
more energy than at t = 300ω−1p,i and similar behavior can be seen for
higher wavenumbers. At t = 1700ω−1p,i the slope becomes saturated.
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FIGURE 9
The magnetic energy spectrum |B̂(k)|2 at different times with respect to the perpendicular wavevector k⊥di. (A) is for A3 and (B) A4 simulation
parameters.

We find a slope of −3.02 up to k⊥di ≈ 3. Beyond that, there appears
to be a break in the slope. However, for simulation parameters A3
and A4 that use a mass ratio of 50 (implying smaller electron scale)
the KAW spectrum appears continuous up to k⊥di ∼ 6 (Figure 9).
So, for the A2 simulation, the break could be due to some electron
scale physics.

PreviouslyMakwana et al. (2023), we have shown perpendicular
magnetic energy spectrum obtained by 2.5D PIC simulations, and
the spectrum is similar to 3D case but less smooth and clear.
The reason can be given to the fact that in the 3D case, for
obtaining the perpendicular spectrum, we have to average over
a ring on the perpendicular wavevector plane, while for the 2D
case, there is no averaging. Huang et al. (2020) have also obtained
the magnetic power spectrum for the solar wind with data taken
from NASA’s Parker Solar Probe. They have obtained the power
spectrum for both the parallel and the perpendicular direction
and have got different slopes. For the perpendicular magnetic
spectrum in the transition range (also called the sub-ion range),
they have obtained a power law slope of −3.73. There is a large
variation in the spectral slope in the sub-ion range (Sahraoui et al.,
2009; Sahraoui et al., 2010; Bruno and Trenchi, 2014; Bruno et al.,
2014) depending on various physical conditions of the solar wind.
The spectral slopes measured in our simulations also lie within
this range.

The velocity field spectrum in the perpendicular direction is
also obtained and its behaviour is similar to the magnetic spectrum.
Initially, at ωp,it = 0, all the energy is in the initial wavenumbers
and very little energy in higher wavenumbers. As the simulation
evolves in time, the higher wavenumbers start to get energy, as can
be seen in Figure 8B. As can be seen from the figure, the slope at
higher times saturates from ωp,it = 500 to 1,700, giving an index

of around −4.4. We see the noise in velocity spectrum becomes
dominant after k⊥di ∼ 4. However, we are analyzing the polarization
ratios in the sub-ion range up to k⊥di ∼ 3. Also, we have run 125ppc
simulation, and we get similar polarization ratio graphs. So our
results are not affected by the particle noise. Figure 8C shows the
magnetic spectrum for thewhistler simulation, which is steeper than
the KAW simulation, and Figure 8D shows the velocity spectrum for
the whistler simulation.

We have also run KAW simulations with different mass ratios
and different ion and electron thermal velocities. The magnetic
power spectra in the perpendicular direction for these simulations
are shown in Figure 9. Figure 9A shows the magnetic spectrum with
a ion-to-electron mass ratio of 50 and A3 parameters. This results in
the decrease of electron beta βe shown in Table 1 in A3 parameters.
The magnetic spectrum in Figure 9B is the result of simulation
with a mass ratio of 50 with A4 parameters. These changes lead
to a decrease in both electron and ion plasma beta, the values for
which are shown in Table 1, A4 parameters. From Figure 9A, we
observe a spectral index close to −3 in the saturated state, which
is similar to that observed in Figure 8A. However, now we get a
continuous power-law spectrum down to smaller scales and do not
see a break.This extension of spectra to smaller scalemay be because
electron scales become smaller with increasedmass ratio. It is known
that in the sub-ion range the spectral slope is quite variable while
it settles to around −2.8 value as we go deeper towards electron
scales Alexandrova et al. (2013) In Figure 9B, the steepness of the
slope further decreases, and we observe a spectral index of around
−2.8 in the saturated state, which is the index sometimes observed
in the solar wind turbulence dissipation range (Verscharen et al.,
2019). This shows that the spectral index could depend on the
plasma beta parameter. There could be various reasons for this
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FIGURE 10
The logarithm of 2 dimensional magnetic energy spectrum ln|B̂(k⊥,kz)|2 at time (A) t = 0, (B) 800ω−1p,i and (C) 1600ω−1p,i (from left to right) in k⊥ − kz plane
for KAW simulation. And the logarithm of 2-dimensional magnetic energy spectrum for whistler simulation at the time (D) t = 0, (E) 800ω−1p,i and (F)
1600ω−1p,i. A2 simulation parameters are used to run the simulation.

decrease in steepness like higher intermittency at ion scales at higher
β (Parashar et al., 2018) and that could cause a steeper slope at
higher beta (Boldyrev and Perez, 2012).

4.2 2D magnetic energy power spectrum

To understand these interactions in more detail we obtain the
2-dimensional magnetic field power spectrum for KAW simulation
in the k⊥ − kz plane. Figure 10 shows the 2D magnetic field power
spectrum at t = 0,800 and 1600ω−1p,i (from left to right, respectively)
for A2 simulation parameters for KAW (top row) and for Whistler
simulation (bottom row). As can be seen in Figure 10, at t = 0,
all the magnetic energy is in the initial wavenumbers, but as the
simulation evolves in time, the energy starts to spread to higher
wavenumbers. The energy is spread more in the perpendicular
direction than in parallel direction, showing the typical anisotropic
energy cascade. We get similar results for whistler simulation
but there appears to be lesser anisotropy compared to the KAW
simulation case. In Makwana et al. (2023), even stronger anisotropy
was observed with the energy concentrated mainly along kz = 0,
whereas here, it is not so prominent. The reason might be the partial
information in 2.5D simulations where we had taken kx = 0, and
the spectrum was only w.r.t. ky. This means that some nonlinear
interactions would be suppressed, and it was not able to show
the behavior of the full 3D spectrum. In the 3D simulations, all

three-wave interactions are accounted for. In the 2.5D simulations,
we saw the non-resonant 3-wave interactions responsible for the
energy spread to higher wavenumbers. Using bispectral analysis we
showed that these interactions were local. We suspect that similar
3-wave interactions are playing an important role here. Another
non-linear energy transfer possibility is magnetic reconnection-
induced energy transfer from reconnection scales back to larger
scales, as in Franci et al. (2017). Other possibilities could be nonlocal
transfers from large to small scales, by shear (Gorman and Klein,
2024) or other effects (Friedrich et al., 2024). One unknown point
is the observation of modes at the high kzdi ∼ 2− 3 in KAW
simulation case. This region is k⊥ ∼ k‖, so these may not be KAWs.
These were observed in 2.5D simulations also, and they could
be ion-cyclotron waves, or some other modes. The identity of
these modes and their generation mechanisms will be studied in
future work.

5 Conclusion

In this study, we found that the two-fluid KAW eigenvector
relations work well as an initial condition in a fully kinetic 3D PIC
simulation. Previously, in Makwana et al. (2023), we did 2.5D PIC
simulations and showed that the two-fluid eigenvector relations gave
a linear dispersion relation close to the hot plasma kinetic dispersion
relation. In thisworkwe extend that study to full 3DPIC simulations.
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Comparison of the analytical two-fluid KAW dispersion relation,
2.5D simulations, and 3D simulations shows that the frame rotation
works appropriately in order to set up initial conditions for different
wave-mode simulations.

The simulations are initialized at small wavenumbers (large
scales) by eitherKAWsorwhistlers.Therefore, initially, themagnetic
perturbation ratios |δBx/δBy|, |δBx/δBz|, and |δBz/δB| at the input
wavenumbers match with the analytical expectations of those
modes. The higher wavenumbers (smaller scales) are not initialized
with any specific mode so the perturbation ratios for those do not
show any correspondence with the KAW or whistler modes. As
the simulation evolves and nonlinear interactions occur we see that
energy is transferred and modes are excited at higher wavenumbers.
The simulations initialized with KAWs, as well as those initialized
with whistlers, show excitation of modes that show perturbation
ratios closer to those expected from KAW. Similar results are seen
in the velocity and density perturbation ratios. These results are
more in line with the KAWs as compared to the whistler wave.
In the KAW simulations, this can be explained as a cascade of
KAWs in the simulation with the evolution of time. Their presence
in simulations initialized with whistlers shows that we can expect
KAWs to be the dominant wave-modes at these scales. For the
generation of KAWmodes in the whistler simulation, there could be
several possibilities. There is the conversion of incident wave mode
to KAW at the resonant layer in tokamaks (Hasegawa and Chen,
1976), parametric decay of whistlermodes can lead to the generation
of KAWs (Sharma et al., 1986) or other non-linear couplings of
whistlers could also generate KAWs (AC-L, 1995). KAWs are also
generated by phase mixing (Vásconez et al., 2015). What processes
are responsible for the generation of KAWs in these simulations
needs to be investigated.

The perpendicular magnetic energy spectrum obtained for the
KAW simulation by running the simulation with 4803 resolution
shows different behavior from time t = 0 to 1700ω−1p,i . We see that
at t = 0, all the energy is contained in the injection wavenumbers.
As the simulation evolves in time, the higher wavenumbers get
energy. Although the turbulence is decaying in these simulations,
the magnetic spectrum comes close to a steady slope of index −3 at
later times, and the velocity spectrum reaches a steady slope close to
−4.4. This implies that the non-linear interactions in the simulation
produce a cascade of KAWs, resulting in this spectrum. Huang et al.
(2020) and Huang et al. (2021) have obtained the energy spectrum
in parallel and perpendicular directions in the transition (sub-ion)
range from the data of NASA’s Parker Solar Probe. In their study,
they found magnetic spectra with slopes ranging from −3 to −5.7,
which was also attributed to KAWs. Our results of the KAW cascade
show similar behavior and are able to produce the magnetic energy
perpendicular spectrum of solar wind in the ion-transition range.
They support the existence of KAWs in the ion-transition range of
solar wind turbulence. By increasing the ion-to-electron mass ratio,
we see extension of this sub-ion range power law to smaller scales.
When we decrease plasma β we observe slightly shallower power-
law indices. Earlier studies have also shown that the spectral indices
can vary with plasma β (Franci et al., 2016), although the behavior
may be complicated.

A more detailed picture of the non-linear interactions of KAWs
in the simulation is shown by the 2D magnetic energy spectrum in
the k⊥ − kz plane.The spectrum shows that there is a spread of power

to higher wavenumbers in both the parallel and perpendicular
direction, but the spread is anisotropicallymore in the perpendicular
than in the parallel direction. By comparing these results to our
previously obtained 2.5D simulation results (Makwana et al., 2023),
we find that the energy spread in the perpendicular direction in 3D
simulations is not as strongly anisotropic as in the 2.5D case. The
reason could be the absence of some of the non-linear interactions
in the case of 2.5D simulations, as the waves are confined only to the
2D ky − kz plane.

There have been earlier studies showing nonlinear generation of
whistlers by pump KAWs (Dwivedi et al., 2012) and also excitation
of low-frequency KAWs by whistlers (Goyal et al., 2017). There is
also the possibility of the co-existence of whistler modes and KAWs
(Mithaiwala et al., 2012). However, this generally happens closer to
the electron scales. The cascade of whistler waves has also been
simulated in PIC at close to the electron scales (Gary et al., 2008). In
this study we find that at the sub-ion scales, KAWs are preferentially
excited compared to whistlers. It needs to be studied whether it is
simply conversion of the Alfvén cascade at magnetohydrodynamic
scales into a KAW cascade (Xiang et al., 2019) and/or is it also
excitation of the KAWs by some instabilities. One drawback of this
study is that it simulates decaying turbulence. More general forced
simulations will provide better characteristics of turbulence. Also,
there could be other modes playing an important role in addition
to the two modes studied here. To study further smaller scales, we
would need to use kinetic dispersion properties. Furthermore, the
resolution is quite limited. We require higher resolution in both
space and time, with higher mass ratios, to obtain more realistic
kinetic range turbulence properties.
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