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Deep learning models have made great accomplishments in space weather
forecasting. The critical frequency of the ionospheric F2 layer (foF2) is a key
ionospheric parameter, which can be understood and predicted by some
advanced new deep learning technologies. In this paper, we utilized an Informer
architecture model to predict foF2 for several hours up to 48 h and analyzed
its variations during periods of quiet, moderate, and intense geomagnetic
conditions. The Informer method forecasts the temporal variations of foF2 by
processing and training the past and present foF2 data from the Haikou station,
China, during 2006–2014. It is evident that the Informer–foF2 model achieves
better prediction performance than the widely used long short-term memory
model. The Informer–foF2 model captures the correlation features within the
foF2 time series and better predicts the variations ranging for hours up to days
during different geomagnetic activities.

KEYWORDS

Informer, foF2, ionosphere, long short-term memory, long sequence time-series
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1 Key Points

• An Informer architecture-based model is used to forecast ionospheric foF2 at low
latitudes.

• The Informer–foF2 model has advantages in predicting variations from several
hours up to 48 h.

• The Informer–foF2 model forecast for geomagnetic storms is in good agreement with
the observations.

2 Introduction

The F2 layer of the ionosphere has the highest degree of ionization, which is closely
linked to the Global Positioning System (GPS) and other navigation systems as well as
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long-range, high-frequency (HF) communications. The critical
frequency of F2 layer (foF2), as one of the most important
parameters of radio science, controls the electromagnetic wave
propagation through the ionosphere. Therefore, accurate prediction
of foF2 is important and a difficult problem in space weather
forecasting, especially for long time series at low latitudes
(Cander et al., 1998; Rao et al., 2018; Zhang et al., 2022; Fan et
al., 2019). There are many precedents for researchers to combine
ionospheric phenomena with deep learning (Chen et al., 2019;
Zhou et al., 2021; Wang et al., 2022; Yang et al., 2024; Hu and
Zhang, 2018). Although many models could simulate and predict
the ionospheric F2 layer variations, the complex changes in
solar activities make the spatial and temporal variability of
foF2 difficult to be predicted and even more difficult to achieve
the expected performance at low latitudes. Other ionosphere
models such as the International Reference Ionosphere (IRI)
(empirical model) (Wichaipanich et al., 2017), random forest
(machine learning model), and autoregressive integrated moving
average model (ARIMA, time-series model) cannot predict the
sudden changes in foF2 caused by a geomagnetic storm. These
models do not perform well in long-term forecasting since they
are restricted by long-range dependencies. In order to achieve
improvement in the forecasting accuracy over a longer time span,
deep learning techniques are implemented to forecast foF2 for a
sufficiently long duration. Long sequence time-series forecasting
means the forecast of high-resolution ionospheric parameters
continuously ahead of a few days.

There are several studies on ionospheric modeling using
the basic deep learning approach of artificial neural networks
(ANNs), which began in the mid-1990s (Willscroft and Poole,
1996; Altinay et al., 1997; Sai Gowtam and Tulasi Ram, 2017; Wang
et al., 2013; Kim et al., 2020; Moon et al., 2020; Li et al., 2021;
Zhou et al., 2021). Williscroft and Poole (1996) used 10 years of
foF2 data observed from the Grahamstown ionosonde and the
sunspot number and Ap index to train a simple ANN. Altinay et al.
(1997) developed a 1-h prediction model for foF2 using 10 years of
foF2 data observed from the Poitiers ionosonde in Central Europe
and the Kp index to train a multilayer perceptron model. Since
these ANN-based models do not consider past data for the current
specific period, the predictive performance cannot be applicable to
the phenomena affected by the prior states that are older than the
specified period and are naturally not competent for long time-series
prediction tasks.

To overcome the shortcomings of the above algorithms,
the long short-term memory (LSTM) algorithm, a technique
that remembers past data and reflects it in predictions, was
developed (Ergen and Kozat, 2018). Earlier, foF2 and hmF2
parameters were predicted by Moon et al. (2020) using LSTM
models. Kim et al. (2020) used a physics-based model, which could
predict up to 24 h of mid-latitude ionospheric data by inputting the
parameters predicted by Moon et al. (2020). Although the LSTM-
based model showed reasonably good prediction performance on
geomagnetically quiet days, themodel predictions are not correlated
well during geomagnetically disturbed periods (Kim et al., 2021).
The current LSTM model significantly improves the prediction
accuracy and time span of the long time series, but its response to
abrupt changes was not sufficiently rapid due to the retention of
memory states (Lissa et al., 2020).

The LSTM models incorporating the attention module have
been applied in long-term time-series prediction studies. The
attention mechanism offers the possibility to focus on the response
triggered by a certain factor Xia et al., 2022, such as the foF2
anomalies caused by geomagnetic perturbations (Liu and Guo,
2019; Rao et al., 2021). Tang et al. (2023) combined BiLSTM
with Attention to predict foF2. With the widespread use of the
transformer model (Vasmani et al., 2017), the fully attention-based
model is applied to more and more fields, and its excellent
performance has led to its use for solving long sequence time-series
forecasting (LSTF) problems, but the computational complexity
limitation of the transformer itself has led to unsatisfactory results.
The transformer-like model Informer proposed by Zhou et al.
(2021), which uses the Probsparse self-attention mechanism, has
shown excellent capability in the long-term time-series prediction
problem, and at the same time, the high computational speed,
low complexity, and high accuracy demonstrated by the Informer
are very attractive. The long-term time-series prediction of the
ionospheric foF2 has been implemented in this study based
on the foF2 data from the Haikou station at a low-latitude
region. We achieved better long-term forecasting performance
and avoided self-correction due to geomagnetic activities (Gao
et al., 2020). We present the prediction results of foF2 at low
latitudes using the Informer model and discuss its advantages and
limitations. The Informer-based model shows great potential in
solving LSTF problems and saving computing resources. From an
experimental standpoint, the Informer-based model has excellent
performance in time-series prediction and has great value for
further research and application. In this study, we refer to
the 48-h prediction as a long-term time-series prediction and
attempt to find the most suitable model for long-term time-series
prediction on foF2. The models constructed in this paper are
applicable to the quiet, moderate, and intense geomagnetic periods,
and the comparisons of these models in different periods are
discussed.

3 Informer model architecture

Due to the significant correlation with the foF2 time series,
recurrent neural networks (RNNs) have been extensively used
in foF2 prediction. However, typical RNNs are limited in their
long-term dependence due to gradient issues, which do not
represent abrupt events. The transformer module by using self-
attention can solve those problems to some extent, but the module
is limited by computation complexity and error accumulation
in the decoding process directly in long sequence time-series
forecasting. So the Informer–foF2 model is developed to perform
foF2 forecasting using ProbSparse self-attention to simplify the
calculation and the generative decoder to output the forecast
results directly (Bi et al., 2022).

The Informer model was proposed by Zhou et al., in 2021,
and we fine-tuned the model to make it better at predictive
tasks of foF2. Figure 1 shows the Informer–foF2 architecture. It
has two critical components denoted as encoder and decoder
modules. The encoder converts input information into a
dense vector of fixed dimensionality and extracts features
from elements to generate feature mapping. Inversely, the

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2024.1418918
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Qiao et al. 10.3389/fspas.2024.1418918

FIGURE 1
Informer–foF2 architecture.

decoder combines the information and feature mapping to the
predicted outputs.

ProbSparse self-attention differs in finding a more active query
to simplify corresponding attention calculation from traditional
multi-head self-attention. The sparsity measurement of ProbSparse
self-attention is shown below Equation 1.

M(qi,K) =maxj
{
{
{

qik
T
j

√d

}
}
}
− 1
LK

LK
∑
j=1

qik
T
j

√d
, (1)

where Lk is 1/q (kj | qi), the i times query of sparsity measurement is
defined as qi; and qi and kj from Q and K, generated in the encoder
training process, represent query and key vectors, respectively.
ProbSparse self-attention calculates the corresponding attention
between the active queries and keys, replacing the other by a uniform
distribution. Attention calculation is defined as follows Equation 2,
whereQ is a sparse matrix and it contains the sparsity measurement:

A(Q,K,V) = So ftmax(QK
T

√d
)V. (2)

The distilling block is using 1-d max pooling operation
to accomplish feature downsampling in order to make
encoder feature extraction quick and simple. The ProbSparse
self-attention and distilling operations alternately stack.
The encoder output feature mapping is acquired by a
two-channel stack.

For the decoder architecture, the generative decoder generates
all predicted outputs at once to replace the transformer’s decoder,
in which it avoids the time-consuming dynamic decoding process
in the encoder–decoder architecture. A decoder is composed of
two decoder layers, each with a self-attention, a cross-attention, a
three-layer norm, and a dropout. The decoder input is a truncation
of the later part of the encoder input and a matrix with the

same shape as the predicted target. After passing through the
decoder, each placeholder (position to be predicted) has a vector,
which is then input into a fully connected layer to obtain the
predicted results.

A detailed explanation of the Informer architecture is given by
Zhou et al. (2021). The specific model composition of the Informer
for the foF2 prediction is shown in Table 1.

The LSTM-based model and IRI will appear as contrast models
to demonstrate the advantages of the Informer-based model. The
LSTM model is a widely used time-series forecasting model in
various fields. In previous studies, LSTM has been shown to
significantly improve model prediction RMSE (root mean squared
error) over empirical models such as IRI and pure time-series
models such as ARIMA. LSTM is an excellent model for time-
series problems with multivariate effects, especially for time-series
data prediction tasks such as foF2, where the fluctuations are
severe and perturbations are diverse. The principle of the BiLSTM
model is similar to that of the LSTM model, and the improvement
is less significant than that of the Informer. This work mainly
discusses the effect of the self-attention model on the long-
term time-series prediction of foF2, so LSTM is chosen as the
representative model to verify the effect of the Informer. The LSTM
used in this comparison has been tuned for several experiments
and can basically reach the average level of the LSTM prediction
models for low-latitude regions, as found in previously published
results by several researchers. In order to better demonstrate the
model enhancement, we also compare the model outputs with the
commonly used empirical model, IRI-2016. We trained 1-h, 5-h,
12-h, 24-h, and 48-h models based on LSTM and Informer. In
addition, we perform the same procedure for the corresponding
IRI output for foF2 values at the Haikou station (20.0o N and
110.1o E), China, and use these outputs for comparisons with the
actual foF2 measurements from Haikou.
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TABLE 1 Specific model composition of the Informer.

Encoder N

Inputs 1×3Conv1d Embedding (d = 512)

4

ProbSparse
Self-attention

Block

Multi-head ProbSparse attention (h =
8)

Add, LayerNorm, dropout (p = 0.05)

Pos-wise FNN (dinner = 2048), GELU

Add, LayerNorm, Dropout (p = 0.05)

Distilling
1×3Conv1d, ELU

Max pooling (stride = 2)

Decoder N

Inputs 1×3Conv1d Embedding (d = 512)

2

Masked PSB Add mask on attention block

ProbSparse
Self-attention

Block

Multi-head ProbSparse attention (h =
8)

Add, LayerNorm, Dropout (p = 0.05)

Pos-wise FNN (dinner = 2048), GELU

Add, LayerNorm, Dropout (p = 0.05)

Batch-Size 32

Epochs 50

4 Data and model inputs

The ionospheric foF2 measurements are manually scaled from
the ionograms of the Haikou station (20.0o N and 110.1o E) in 1-
h resolution. The solar radio flux F10.7 is available from the Space
Weather website https://www.spaceweather.gc.ca/index-en.php in
1-day resolution. The geomagnetic indices such as Dst and Kp
are available from the Kyoto World Data Center, https://wdc.kugi.
kyoto-u.ac.jp/dstae/index.html, having resolutions of 1 h and 3 h,
respectively.

The foF2 data from 1 January 2006 to 31 May 2014 are the
input and target of the Informer–foF2 model. In order to ensure
the input data continuity of the time-series model, the missing data
of foF2 have been interpolated by the linear interpolation method.
The model output at the time of the geomagnetic disturbances
is generated considering F10.7, Dst, and Kp indices. The data
have been processed at 1-h intervals and are shown in Figure 2.
Due to foF2 exhibiting outstanding time-auto correlation, the 24-
h prediction window was chosen for the study. We use the foF2 of
the past 96 h to predict the foF2 of the future 48 h, which are all
multiples of 24.

In order to make the Informer–foF2 model fit better with
the prepared training datasets, we changed the numbers of
the encoder and decoder layers, multi-head attention, dropout,

minimum batch size, and embedding to optimize the configuration
of the proposed model. The total number of foF2 samples is
split as 70% for training, 10% for validation, and 20% for testing
and prediction.

To quantitatively evaluate the performance of our model,
we calculated the RMSE (root mean square error), MAE (mean
absolute error), MSE (mean square error), MAPE (mean absolute
percentage error), and MSPE (mean squared percentage error)
as evaluating indicators. The calculation methods are as follows:

RMSE = √ 1
n

n
∑
i=1
(ŷi − yi)

2, MSE = 1
n

n
∑
i=1
(ŷi − yi)

2, MAE = 1
n

n
∑
i=1
|ŷi − yi|,

MAPE = 100%
n

n
∑
i=1
| ŷi−yi

yi
|, andMSPE = 100%

n

n
∑
i=1
( ŷi−yi

yi
)
2
. Here, yi is the

ground truth and ŷi is the model prediction. The primary reference
metric is RMSE.

5 Results

Table 2 summarizes the performance of the models used in the
study. The Informer–foF2 model achieves the best performance
among different models. The results have shown that the
Informer–foF2 model shows better predictive performance for
lower RMSE by approximately 17%, 47%, 29%, 35%, and 27%
compared to the LSTM–foF2 model. Moreover, the Informer
model significantly outperforms the best level of LSTM models,
as shown in Table 2. Figure 3 shows the RMSE of LSTM–foF2 and
Informer–foF2 models. Informer has a significant improvement in
prediction accuracy and is more accurate for long-term (5–48 h)
forecasting. It is more suitable for long-term forecasting than
LSTM and is far superior to the IRI-2016 model. Therefore the
IRI-2016 model will not be referenced for comparison in the
latter picture.

Figure 4 shows theRMSEof Informer–foF2 for each hour during
the entire 48-h prediction. The forecast errors corresponding to
the 24th hour and 48th hour are marked in red, with a significant
decrease compared to other points in the forecast. It is obvious
that as time goes on, the errors increase gradually but not linearly;
after approximately 15 h, the increase in RMSE becomes gentle. It
shows that the Informer–foF2 model has enormous advantages in
long-term time-series prediction, andwe believe that the correlation
among foF2 data also plays an important role in this work. The
results have also shown clear 24-h diurnal periodicities at the
Haikou station.

Figure 5 shows that the diurnal variations of foF2 are contained
within 2-day forecasts for the low-latitude region, where the
predictive output of the Informer and LSTMmodels is benchmarked
against actual measurement values. The blue solid line denotes
the forecasts by the Informer model, the black dashed line
indicates LSTM outputs, and the red dotted line is the actual foF2
measurements. During the spring equinox, the prediction curve
of the Informer-48 model aligns more closely with the actual
values. At the summer solstice, the LSTM-48 model prediction
deviates significantly at approximately 10 h, and in the latter
half of the prediction window, both model prediction curves
diverge from the actual values to some extent; however, the
difference curve shows that the Informer-48 model performs
relatively better. Around the autumn equinox, both models perform
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FIGURE 2
Actual values of (A) foF2, (B) Dst, (C) Kp, and (D) F10.7 to the Informer–foF2 model input during January 2006–May 2014.

TABLE 2 Accuracy of foF2 forecasting compared to the IRI-2016 model and other LSTM observations.

Model Predict time MAE MSE RMSE MAPE MSPE

IRI-2016 1 h 1.21 2.62 1.62 0.16 0.045

Informer–foF2

1 h 0.61 0.71 0.84 0.07 0.011

5 h 0.91 1.54 1.24 0.10 0.023

12 h 1.01 1.86 1.36 0.11 0.032

24 h 1.04 1.98 1.41 0.12 0.035

48 h 1.09 2.12 1.45 0.13 0.038

LSTM–foF2

1 h 0.75 1.06 1.03 0.09 0.022

5 h 1.23 2.81 1.67 0.14 0.047

12 h 1.29 3.01 1.73 0.15 0.052

24 h 1.24 2.79 1.67 0.14 0.053

48 h 1.32 3.17 1.78 0.16 0.064

similarly for the initial 36 h, but beyond this point, the LSTM-
48 model prediction curve noticeably deviates from the actual
data, demonstrating the Informer-48 model’s advantage in longer-
term predictions. During the winter solstice, it is observed that
the model performance deteriorates, starting approximately 36 h
toward the end of the prediction window, with the LSTM-48
model exhibiting significantly more fluctuations than the Informer-
48 model. Thus, the Informer-based ionospheric F2 layer critical

frequency prediction model exhibits superior performance in
low-latitude ionospheric foF2 forecasting, showing substantial
advantages over the LSTMmodel.

In order to show the performance of the Informer–foF2 model
in the storm period, two storm events have been selected, which
occurred on 17 March 2013 and 28 March 2013 (Figures 6, 7).
The storm on 17 March had a Dst minimum of −131 nT (03 LT,
19 March), while the storm on 28 March had −59 nT (20 LT, 28
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FIGURE 3
RMSE score of each model. The white dots represent different time
span prediction models based on Informer, while the black dots
represent LSTM-based models.

FIGURE 4
Informer–foF2 RMSE of each predicts step. 1 to 48 represent each
predicted value for the next 48 h, marked in red at 24 and 48 h.

March) (Shim et al., 2018). The blue line represents the results of
the Informer 48-h prediction model of the event (the labels in the
figures is Informer-48); the (Rao et al., 2021) black line represents the
results of the LSTM 48-h prediction model (the labels in the figures
is LSTM-48); the pink and green lines represent the results of the
Informer and LSTM 1-h prediction models (the labels in the figures
are Informer-1 and LSTM-1), respectively; and the red line is the real
foF2 value (the labels in the figures is REAL). The gray region needs
special attention as it can more clearly distinguish the performance
differences of the models.

As shown in Figure 6, the measured foF2 values at the Haikou
station are presented alongside the predicted foF2 values by both
the Informer–foF2 and LSTM–foF2 models. During the intense
geomagnetic storm, the Dst index plummeted to approximately
−120 nT and persisted for an extended period, inducing fluctuations
in foF2, which in turn affect the performance of predictive models,
particularly those spanning longer durations. It is evident that

prior to the storm, the actual measurements closely align with
the predictions from the Informer–foF2 model. As the storm
commences, both models continue to approximate the actual foF2
values well, and upon examining the differences between the
predicted and measured values, the results from the Informer-48
and LSTM-48 models are remarkably similar, suggesting that both
the LSTM and Informer models provide a good fit for the data
to be forecasted in the initial phase of long sequence time-series
predictions.

Notably, as the Dst index hovers at approximately −100 nT
for approximately 10 h before continuing its descent, a significant
deviation is observed in the LSTM 48-h prediction model from the
actual values during this period, as shown in the gray-shaded area
1, whereas the Informer-48 model maintains a good performance.
A shortcoming of the 48-h models is their inability to accurately
grasp fluctuations that oscillate within smaller time intervals; the
attention-based Informermodel exhibits a pronounced advantage in
unpredictable fluctuation events such as geomagnetic storms. As the
storm gradually abates, a brief resurgence in the predictive accuracy
of both models is observed. However, it is clear that the predictions
from the Informer-48 and LSTM-48 models begin to diverge from
the actual ionospheric foF2 values, particularly toward the end of
the forecasting window, as depicted in gray-shaded area 2, where
both models’ predictions substantially veer off the true foF2 curve,
with the discrepancies significantly increasing. In addition to the
objective influence of time and the cumulative effect of predictive
errors, the persistent impact of the storm’s incomplete recovery
should be considered, with all three factors contributing to the
substantial divergence in the predictivemodels.The aforementioned
temporal objective influence refers to the noticeable decline in
model performance during nighttime (Feng et al., 2021). Both gray
areas 1 and 2 occur during the local time interval of approximately
22:00 to 4:00, where a considerable drop in model performance
is evident. Overall, the Informer-48 ionospheric foF2 prediction
model exhibits a certain superiority over the LSTM-48model, clearly
closer to predicting the true values.

Figure 7 shows that, compared with the characterization of
the strong magnetic storm described in Figure 6, the prediction
accuracy of the model for the moderate magnetic storm is
significantly closer to the measured value. In the 10 h preceding
the forecast, both the Informer-48 and LSTM-48 models exhibit
deviations from the actual foF2measurements, with the Informer-48
predictions more closely mirroring the actual data. At the minimum
of the Dst index within gray-shaded area 1, the Informer-48’s
forecasted values are seen to align almost congruently with the
actual foF2 measurements, whereas the LSTM-48’s forecasts display
a discernible discrepancy, highlighting the LSTMmodel’s difficulties
in capturing the abrupt shifts associated with geomagnetic activity.
In the waning hours of this event, as denoted by gray-shaded area
2, the Informer-48 model’s performance remains superior to that of
the LSTM-48 model. This advantage in the predictive capability at
the end of the forecast window further underscores the Informer-
48model’s proficiency in accurately undertaking long-duration foF2
forecasting tasks.

Figure 8 describes the performance of the low-latitude
forecasting model during a geomagnetic quiet period, providing a
lucid illustration of the model’s capabilities when the perturbations
of magnetic storms are absent. At the inception of the forecast, as
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FIGURE 5
Figure shows the comparison between the Informer-48 and LSTM-48 model predictions against the actual values around the spring equinox, summer
solstice, autumnal equinox, and winter solstice. (A) shows the comparison of the Informer model with the actual observations of foF2. (B) shows the
comparison between the predicted values of the LSTM model and the measured values of foF2. (C) shows the difference between the predicted and
measured values of the two models.

highlighted by the gray-shaded area 1 in the diagram, the LSTM-48
model’s predictions manifest a notable deviation from the actual
measurements. Similarly, within gray-shaded area 2, the LSTM-
48 model continues to demonstrate suboptimal performance,
starkly contrasted by the Informer-48 model’s precise mirroring
of the actual foF2 trajectory. These specific intervals correspond
to the periods of gradual decline from the day’s peak foF2 values,
where the LSTM’s retention of historical temporal data may be the
culprit of the observed predictive inaccuracies.This underscores the
advantage of utilizing the one-step generative decoder inherent to
the Informer-48 model.

We calculate the RMSE of models, as shown in Figures 6–8,
to more visually display the performance of the mode during
geomagnetic storm events and quiet period. The results
are shown in Table 3. The calmer the geomagnetic activity, the

smaller the model prediction error will be. This is because the
occurrence of geomagnetic storms is very sudden, and their effects
are difficult to predict, and even introducing many parameters to
assist in prediction will inevitably have a certain lag, affecting the
model prediction results.

Combining various factors, the Informer model demonstrates
great performance in the foF2 prediction task, while showing good
stability and prediction accuracy in the long duration time series,
and it captures general trends of variations during the storm.

6 Conclusion

In this paper, the Informer long-term time-series architecture
is implemented to forecast the ionospheric foF2 variation in the
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FIGURE 6
Comparison between the observed values and predicted foF2 values during the intense geomagnetic storm on 17 March 2013.

FIGURE 7
Comparison between the observed values and predicted foF2 values during the moderate geomagnetic storm on 28 March 2013.

low latitude. The model input is the ionospheric foF2 data at
the Haikou station, China, along with space weather parameters
Kp, F10.7, and Dst from 2006 to 2014. Prediction results are
compared with the output values of traditional LSTM models and
are analyzed in detail during moderate and intense geomagnetic
storm events, separately. The overall performance of the model
for all the events was discussed, and the conclusion was drawn
that the prediction performance of the model is degraded at
night. The analysis of events also demonstrated the superior
advantage of the informer model in long-term (from hours to
within 2 days) sequence prediction tasks. In the measurement
examples used for verification, the Informer–foF2–48 h model

predicts foF2 parameters with the RMSE of 1.245 MHz and shows
that the prediction accuracy maintains stability as the prediction
window expands. The RMSE demonstrates that the proposed
method performed well in long-term time-series prediction
compared with other models and captured some variations in
the ionospheric foF2. The prediction results of the proposed
Informer–foF2 model provide insights into ionospheric foF2
prediction at low latitudes and long-term time-series prediction
from hours up to 2 days. The Informer-based ionospheric foF2
prediction model proved that it can forecast the continuous
change in ionospheric foF2 more accurately and more reliably than
existing methods.

Frontiers in Astronomy and Space Sciences 08 frontiersin.org

https://doi.org/10.3389/fspas.2024.1418918
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Qiao et al. 10.3389/fspas.2024.1418918

FIGURE 8
Comparison between the observed values and predicted foF2 values during the geomagnetic quiet period.

TABLE 3 RMSE score of 48-h models in events.

Model RMSE—strong storm RMSE—medium storm RMSE—quiet period

LSTM-48 1.68 2.28 1.08

Informer-48 1.46 1.45 0.96

LSTM-1 0.81 0.63 0.71

Informer-1 0.80 0.58 0.69
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