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Predicting ionospheric Total Electron Content (TEC) variations associated with
seismic activity is crucial for mitigating potential disruptions in communication
networks, particularly during earthquakes. This research investigates applying
two modelling techniques, Autoregressive Moving Average (ARMA) and
Cokriging (CoK) based models to forecast ionospheric TEC changes linked to
seismic events in Indonesia. The study focuses on two significant earthquakes:
the December 2004 Sumatra earthquake and the August 2012 Sulawesi
earthquake. GPS TEC data from a BAKO station near Indonesia and solar
and geomagnetic data were utilized to assess the causes of TEC variations.
The December 2004 Sumatra earthquake, registering a magnitude of 9.1–9.3,
exhibited notable TEC variations 5 days before the event. Analysis revealed that
the TEC variations were weakly linked to solar and geomagnetic activities. Both
ARMA and CoK models were employed to predict TEC variations during the
Earthquakes. The ARMA model demonstrated a maximum TEC prediction of
50.92 TECU and a Root Mean Square Error (RMSE) value of 6.15, while the
CoK model predicted a maximum TEC of 50.68 TECU with an RMSE value of
6.14. The August 2012 Sulawesi earthquake having a magnitude of 6.6, revealed
TEC anomalies 6 days before the event. For both the Sumatra and Sulawesi
earthquakes, the GPS TEC variations showed weak associations with solar and
geomagnetic activities but stronger correlations with the earthquake-induced
electric field for the considered two stations. The ARMA model predicted a
maximum TEC of 54.43 TECU with an RMSE of 3.05, while the CoK model
predicted a maximum TEC of 52.90 TECU with an RMSE of 7.35. Evaluation
metrics including RMSE, Mean Absolute Deviation (MAD), Relative Error, and
Normalized RMSE (NRMSE) were employed to assess the accuracy and reliability
of the prediction models. The results indicated that while both models captured
the general trend in TEC variations, nuances emerged in their responses to
seismic events. The ARMAmodel demonstrated heightened sensitivity to seismic
disturbances, particularly evident on the day of the earthquake, whereas the
CoK model exhibited more consistent performance across pre- and post-
earthquake periods.
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1 Introduction

The ionosphere plays a focal role in the propagation of radio
signals and communication systems. Understanding its behaviour,
especially during seismic events like earthquakes, is of paramount
importance for mitigating potential disruptions in communication
networks. The Ionosphere is divided into four layers D, E, F1, and
F2. The particles present in the Ionospheric layer are ionized due to
solar activity and other factors. Due to ionization, the free electrons
will increase in the region. Total ElectronContent (TEC) is the count
of charged free electrons particles scattered all over the atmosphere.
Other than solar activity, seismic activity in the lithospheric region of
the earth causes high-pressure air to be released into the atmosphere
which causes an increase in the TEC value. This phenomenon is
called as positive hall effect. In this research, we have attempted
to predict the Ionospheric TEC changes above the Indonesian
region during earthquake events. Figure 1 shows the location of the
epicentre of the earthquake and BAKO station.

For the benefit of human life, satellites were launched and
placed in the region outside of the atmosphere of Earth. These
satellites help in many ways but one of the very effective and
useful fields is navigation. The leading navigation systems of the
world are affected by TEC variations. If a higher amount of TEC
is present in a particular region, the increased TEC causes errors
in the signals that are transmitted through the Ionosphere. This
error causes a delay in the delivery of signals at the required
time which is commonly referred to as Ionospheric Time Delay
(ITD). The seismo-ionospheric phenomena are considered to be
a result of the lithosphere–atmosphere–ionosphere coupling and a
signal of the forthcoming earthquake.The seismic ionospheric effect
is shown in Figure 2.

A connection between earthquakes and the ionosphere has
been proposed by several researchers. Theories suggest that faults
release electrical energy in the days leading up to an earthquake.
The hypothesis on the possible internal or acoustic gravity wave
generation before earthquakes was proposed by many authors.

Acoustic gravity waves are said to be a possible source of the
disturbances observed in the ionosphere before strong earthquakes
and as a mechanism of seismo-ionospheric coupling. Research has
shown that the value of TEC is usually lowest at midnight and before
sunrise and highest in the afternoon. But in the case of any activities
which affect TEC, the TEC variations are shown unnaturally. Such
kinds of activities often show some kind of pattern from the past and
if examined systematically then the value of TEC could be predicted
a few days ago. The aim of the study is that if the TEC could be
predicted even 1 day ahead of the erratic events occurring then
the positional accuracy of the satellite signals could be increased
drastically henceforth enhancing the accuracy of navigation and
also it will be useful for safeguarding the people from EQ if the
ionospheric variations happened due to EQ. Rigorous study is done
in the field of ionospheric modelling to develop the most suitable
prediction model. The literature survey on recent developments in
this field is essential to understand the efficiency of different models
under different conditions. Some of the literatures that discuss
similar types of research are given in this section.

Akyol et al. (2020) address the challenging task of earthquake
prediction, focusing on the detection of precursory signals
using ionospheric data and Earthquake Precursor Detection
technique (EQ-PD). The EQ-PD technique proposed in this study
leverages support vector machine (SVM) classification to identify
spatiotemporal anomalies in ionospheric data that may indicate
earthquake precursors. The performance of the EQ-PD technique
is evaluated over a region covering Italy during a specified period,
demonstrating its ability to detect precursors for earthquakes with
magnitudes above four on the Richter scale. The paper discusses the
physical mechanisms underlying ionospheric anomalies preceding
earthquakes, including the Lithosphere-Atmosphere-Ionosphere
Coupling (LAIC) model, which suggests a connection between
seismic activity and ionospheric disturbances caused by phenomena
like radon gas emissions. The study conducted by Muhammad et al.
(2023) investigates the interplay between seismic activity, radon
gas, and ionospheric TEC to shed light on the LAIC phenomenon.

FIGURE 1
Location of Epicentre of earthquakes (Red dots) and BAKO IGS station (Red triangle).
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FIGURE 2
Seismo-ionospheric phenomenon.

By analyzing data from the North Anatolian Fault (NAF) region
between 2007 and 2009, the researchers employed statistical and
machine/deep learning methods like ARIMA, LSTMs, ANNs,
SVMs, and STUMPY to explore potential correlations and
anomalies. By analyzing earthquakes with magnitudes ranging from
4.0 to 5.0, the researchers identified instances where Rn anomalies
were deemed seismically induced based on specific criteria related
to the earthquake preparation radius.

Maltseva and Mozhaeva (2016) explained that the Local,
regional and global model can be created using the TEC data
to correct the ionospheric delay by increasing the accuracy of
positioning. In this paper, the analysis of investigation, utilization
of Equivalent Slab Thickness of the ionosphere and construction
of the Emperial model is attempted. Venkata Ratnam and Sarma
(2012) developed a spherical harmonic-based ionospheric delay
model by considering data from 17 GAGAN TEC stations and

IGP delay variations are estimated and investigated for quiet and
disturbed days over the Indian region. It is observed that delays
are more during the autumn equinox compared to the summer
season. SHFmodel is compared with other standardmodels. Hence,
these techniques could be considered in satellite-based navigation
systems for better accuracy. Liu et al. (2022) implemented the Four
convolutional long short-term memory (convLSTM)-based ML
algorithms to predict daily global TEC maps using CODE data
that maps with up to 24 h of lead time at a 1-h interval over a
period of nearly 7 years. Huang and Yuan (2014) developed an
RBF neural network improved by the Gaussian Mixture Model for
forecasting ionospheric 30 min TEC. Data obtained from ground
stations at different latitudes are pre-processed which can lead to
good prediction. Comparison with the BP network indicates that
the RBF network offers a powerful and reliable tool for the design
of ionospheric TEC forecasts.

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2024.1415323
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Kiruthiga and Mythili 10.3389/fspas.2024.1415323

Han et al. (2022) discussed the use of machine learning models
like artificial neural networks, long short-term memory networks,
adaptive neuro-fuzzy inference systems and GBDT for forecasting
TEC. Three IGS stations at low latitude regions were considered
and data from 2012–2015 were used for the study. SZA, F10.7, Dst,
Kp, and TEC values were the five features used for the machine-
learning-based algorithm.The training dataset is from 2012 to 2014
and the testing dataset is from the year 2015. It was observed that
the new GBDT gives the best results out of the four models. It
was also observed that during varying space weather, machine-
learning-based methods performed better than the standard model
like IRI-2016. Cander (1998) explained the use of artificial neural
networks to model and predict the variations of TEC and f0F2
at mid-latitude ionosphere during different solar and geomagnetic
conditions. Faraday rotation observations at Florence using the
signal of the OTS-2 satellite were used to determine the TEC data.
The modified f0F2 neural network forecasting model was used to
introduce the TEC prediction 1 h ahead. The results show that
the data obtained from neural networks agree with the actual
data most times, but some discrepancies were observed. Tang et al.
(2022) used Machine machine-learning model for the prediction
of global ionospheric TEC. Harmonic coefficients are used for
calculations. The prediction is done using sets of data of 15 and
30 days. The results provided by the model are good for both the
high and low solar activity periods. Sur et al. (2015) did research
on the equatorial region, where the TEC values are high and much
volatile. Three artificial neural network models are developed for
real-time low-latitude TEC data. It predicts more accurate VTEC
than standard models like IRI, Parameterized Ionospheric Model,
and NeQuick as the neutral wind effects are used as input for the
ANNmodel. Tebabal et al. (2018) discussed themodel used for TEC
prediction constructed based on neural networks where solar and
geomagnetic parameters were taken into account. The value of TEC
is taken fromGPSmid- and low-latitude stations from the years 2011
to 2014. The Model predicted well in low latitudes and 1 day ahead
prediction can be done.

Sivavaraprasad et al. (2020) explained the performance of TEC
forecasting models based on Neural Networks (NN). The NN has
been trained and evaluated over equatorial low latitude Bengaluru,
India for 7 years (2009–2015). The performance of NN-based TEC
forecast models and International Reference Ionosphere, IRI- 2016
global TEC model has been evaluated during the testing period,
2016. The NN-based model (NNunq) driven by all the inputs has
shown better accuracy. Draz et al. (2023) investigated the changes
in the atmospheric parameters and ionospheric TEC during the
13.2.2021 Japan Earthquake. Wavelet, ANN, NARX, and LSTM
methods were used to predict the anomalies based on the data
obtained from the HYDE, USUD, and MTKA stations. The results
show the importance of machine learning techniques for detecting
the anomalies related to the earthquake. Mukesh et al. (2024)
predicted TEC using RNN during 10 earthquakes that happened in
Indonesia region from 2004 to 2024. The RNN model was trained
with the data obtained from the IGS BAKO station. The predicted
results were compared with the IRI-2020model and the comparison
analysis shows that the RNN model performed well during the
considered periods. Reddybattula et al. (2022) applied the LSTM
model for forecasting TEC during the 24th solar cycle. 8 years
(2009–2017) of GPS TEC data obtained from the IISC station were

utilized for training and validation of the model.The TEC predicted
results during the year 2018 were compared with the IRI 2016
model.The results show that the LSTMmodel performed well when
compared with the IRI model. Vankadara et al. (2023) forecasted
the TEC during quiet and disturbed days using Bi-LSTM based on
the data obtained from the KLEF campus. The forecasted results
were compared with the LSTM, ARIMA, IRI-2020, and GIMs. The
results show that Bi-LSTM performed well when compared to the
other models. Apart from that, Bi-LSTM prediction capability is
also verified with IISC station results. Maheswaran et al. (2024)
predicted VTEC over Thanjavur GPS station by using Bi-LSTM.
The Deep learning model was trained with solar and geomagnetic
parameters for the prediction of TEC during solstice and equinox
periods. Statistical parameters likeMAE,MSE, and RMSEwere used
to analyze the performance of the model. The results show that Bi-
LSTM produced good results when compared to the LSTMmodel.

The authors analyzed the TEC variations that happened before
the Baja California Earthquake (EQ). GPS TEC data were collected
from six IGS stations. The results show that EQ-related TEC
variations occurred before the EQ event (Ulukavak and Yalcinkaya,
2016). Nayak et al. (2023) used the crustal stress (b) values along
with the TEC as a precursor for the detection of EQ that occurred
in Mexico on 19.9.2022. The results show that TEC anomalies were
found before the EQ and also it reveals that whenever the b values
were less, the TEC values also reduced. The author discussed the
effects on the ionosphere during the 2004 EQ that occurred in
Indonesia based on the data obtained from the IRImodel.The results
revealed that the anomaly was caused 1 day before the EQ (Koklu,
2023). Ke et al. (2015) analyzed the TEC variations during EQs that
happened during the years from 2003 to 2013 over China based
on the TEC data obtained from the IGS network. TEC variations
for 20 days before and after the EQs were analyzed, and the results
show that anomalies were found before the EQs. The authors used
the sliding interquartile range method for analyzing the variations
of TEC before the April 2014 EQ occurred in Chile. Positive TEC
anomalies were found before the EQ which was due to the electric
fields produced in the EQ preparation area (Jiang et al., 2017).

Saqib et al. (2021) used the ARIMA method to predict TEC
anomalies during the EQs that occurred in India and Turkey.
The result shows that the developed model detects the anomalies
well. Thomas et al. (2022) used three stations GPS TEC values
to analyze the seismo-ionospheric anomalies by using statistical
techniques before the Haiti EQ which happened on 14.8.2021.
The results revealed that 82% of anomalies were related to EQ.
Another study investigates earthquake precursors in the Himalayan
region, focusing on ionospheric perturbations using GNSS data
analyzed through IONOLAB-TEC. The study examines TEC data
from 15 GNSS stations before five random Himalayan earthquakes,
employing IONOLAB-TEC with a 30-s temporal resolution.
Selected earthquakes include the 2015 Nepal quake (Mw 7.3) and
the 2020 Manipur quake (Mw 5.2). The study area encompasses
various lithologies, faults, and fractures, contributing to seismic
activity. Analysis of GNSS data revealed TEC anomalies preceding
the earthquakes by up to a month, followed by perturbations in the
earthquake preparation zones (Joshi et al., 2023).

Research by Sergey Pulinets (2004) provides a comprehensive
overview of recent advancements in understanding seismo-
ionospheric coupling and its practical implications for earthquake
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prediction. The paper discusses how anomalous electric fields
penetrate the ionosphere, creating irregularities and disturbances
in electron concentrations. These disturbances manifest as sporadic
E-layers and large-scale irregularities in the F2 region, observable
through satellite and ground-based monitoring. Zhu et al. (2018)
focuses on the statistical analysis of ionospheric TEC anomalies
preceding large earthquakes with magnitudes greater than or equal
to 6.0. Covering the period from 2003 to 2014, the researchers aim
to investigate whether there are differences in the morphological
characteristics of TEC anomalies between daytime and night-time
before seismic events. Using data from the global ionosphere map
(GIM), the study examines the spatial-temporal distribution of
TEC anomalies before and during M6.0+ earthquakes worldwide.
The findings indicate that apart from a higher occurrence rate of
pre-earthquake ionospheric anomalies (PEIAs) at night compared
to daytime, there are no statistically significant differences in
the spatial-temporal distribution of PEIAs between the two time
periods. Another research by Zhu et al. (2023) provides a thorough
examination of the accuracy of the GIM in China.The study utilizes
high-precision Regional IonosphericMaps (RIMs) based on Crustal
Movement Observation Network of China (CMONOC) GNSS
data as reference values for comparison with the IGS GIM. This
approach allows for a detailed assessment of the actual accuracy
of the GIM over the China region, which is particularly important
given the dense and continuous GNSS network in China and its
high seismic activity. Statistical measures such as RMS, bias, and
standard deviation are employed to assess the accuracy of the GIM.
The results indicate that the average RMS of the GIM over China is
less than 2 TECu, and the bias and STD of the difference between
the GIM and RIM are generally within 2 TECu, except for some
low latitude areas. After a thorough study of the literature, this
research work uses the ARMA and CoK models to predict TEC
during the Earthquake that happened in Indonesia during the years
2004 and 2021.

2 Methodology

This section explains the method of approach incorporated
in this work. The flow chart for the methodology employed in
forecasting TEC for the Earthquake-prone region of Indonesia
is shown in Figure 3.

In this paper, the GPS TEC data, and the forecast TEC data
for 8 days are considered for the analysis of model performance.
The GPS TEC data is obtained from the IONOLAB website (http://
www.ionolab.org/) for the low latitude BAKO station, Indonesia
which is located at −6.45˚N and 106.85˚E. The BAKO station
belongs to the International GNSS Service. IONOLAB provides
robust, automatic and near-real-time TEC for the IGS stations.
IONOLAB developed a novel automatic routine for checking the
pseudorange and phase delay values. The cycle slips were corrected
by using a special algorithm and also inter-frequency receiver bias
was computed by the IONOLAB-BIAS routine. The TEC values
were estimated from pre-processed RINEX files.The estimated TEC
provided by IONOLAB is accurate and reliable (Sezen et al., 2013).
Geomagnetic and Solar indices were taken from the OMNIWEB
DATA server [https://omniweb.gsfc.nasa.gov]. The GPS TEC data
from 30 days before the prediction day is fed to the ARMA model

as training data to obtain the TEC forecast. The GPS TEC data,
geomagnetic parameters like Planetary K and A indices (Kp and
Ap), Disturbance Storm Time (DST) index and solar parameter
Radio Flux at 10.7 cm (F10.7) of 6 days before the prediction day is
fed to the CoK model as training data to obtain the TEC forecast.
The Auto Regressive Moving Average (ARMA) model combines
Auto Regression (AR) and Moving Average (MA) methods for time
series forecasting (Ratnam et al., 2019). AR models involve a time-
varying process where output variables exhibit linear correlation
with lagged observations through coefficients (φ), whileMAmodels
express the current value as a linear combination of the mean
(c) and past error terms (ε) with coefficients (θ) indicating the
impact of past errors on the current value. An ARMA model
integrates both past observations and past innovations, denoted
as ARMA (x,y), where “x” represents the AR degree and “y” is
the MA degree. The form of the ARMA (x,y) model is given in
Equation 1.

Ft = c+φ1Ft−1 + ...... +φxFt−x + εt + θ1εt−1 + ...... + θyεt−y (1)

where εt is an uncorrelated innovation process with mean zero.
Cokriging is amethod that uses two sets of related data to predict

values at specific points. Combining cokriging with surrogate
modelling yields a cokriging-based surrogate model suitable for
Total Electron Content (TEC) prediction (Mukesh et al., 2020).This
model utilizes 6 days of past data collected at various resolutions
to predict TEC for a given day, employing a multivariate system
with matrix cross-semi variogram operators. The Cokriging-based
Surrogate Model (CoK) algorithm, as described, employs weighted
parameters (λ) to distribute between primary (m) and secondary (n)
variables, where primary variables are essential for TEC prediction
and secondary variables include Kp index, Ap index, F10.7
radio-flux, DST index and equivalent TEC values. The algorithm
utilizes cross-correlated data (Y variable) to minimize prediction
errors and is implemented in MATLAB software. (Mukesh et al.,
2020). The governing mathematical formula for CoK is given in
Equation 2.

Λ∗(xp) =∑
m
i=1

λiΛ(xi) +∑
n
j=1

λ
‵

j .Ψ(x
‵

j) (2)

whereas λ is the weight parameters distributed between primary (m)
and secondary (n) variables of order (i, j) andΛ∗ (xp) is the predicted
value at location xp.

3 Results and discussion

Accurately predicting ionospheric changes before earthquakes
is vital for effective communication during disasters. To forecast
TEC variations, models like ARMA and CoK are used. Evaluating
how well these models perform is crucial to ensure dependable
predictions and improve our grasp of how the ionosphere reacts
to seismic events. The performance metrics used in the study offer
numerical assessments of the models’ precision, reliability, balance
in prediction errors, and the degree of linear associations between
predicted and actual TEC values. Root Mean Square Error (RMSE),
Mean Absolute Deviation (MAD), Relative Error, and Normalized
Root Mean Square Error (NRMSE) are common performance
metrics used to evaluate the accuracy of predictive models. RMSE is
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FIGURE 3
Prediction of TEC over Indonesia using ARMA and COKSM.

a measure of the differences between predicted values and observed
values. It calculates the square root of the average of the squared
differences between predicted and observed values. RMSE provides
a measure of the typical magnitude of the prediction errors without
considering the direction of the errors. It is calculated using the
formula. Mean Absolute Deviation measures the average absolute
differences between predicted and observed values. It provides a
more robust measure of prediction accuracy compared to RMSE
as it is less sensitive to outliers. MAD is calculated as the average
of the absolute differences between predicted and observed values.
Relative Error (Erel) is a measure of the prediction error relative to
the magnitude of the observed values. It is calculated as the ratio
of the absolute difference between predicted and observed values
to the observed value. Normalized Root Mean Square Error is a
standardized version of RMSE, which accounts for the scale of the
observed values. It is calculated by dividing the RMSE by the range
of the observed values. RMSE, MAD, Relative Error, and NRMSE
are important metrics for assessing the accuracy and reliability
of predictive models, providing insights into the magnitude and
direction of prediction errors relative to the observed values. The
mathematical formula for the statistical parameters is given in

Equations 3–6.

RMSE = √ 1
N
∑N

i=1
(TECGPS −TECpred)

2 (3)

MAD = 1
N
∑N

i=1
(TECGPS −TECpred)

2 (4)

Erel =
|TECpred −TECGPS|

TECGPS
(5)

NRMSE = 1
N
RMSE (6)

The four statistical parameters give different criteria of goodness
of fit of the predicted values to the observed values. For example,
RMSEmeasures the square deviances hence it is sensitive to outliers.
NRMSE has the same properties as RMSE since it is just the RMSE
divided by sample size. Lower values of RMSE and NRMSE indicate
better accuracy and performance. Thus, we also tried MAD which
is less sensitive. Lower MAD values indicate higher precision. The
relative error measure gives an effective measure of fit which also
considers the magnitudes of TEC values. The lower relative error
indicates the accuracy of the prediction model.
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FIGURE 4
TEC, Geomagnetic and Solar parameters variations for December 2004.

3.1 Prediction of TEC variation during
Sumatra earthquake

The earthquake struck the western coast of Northern Sumatra,
Indonesia, occurring at UTC 07:00 on 26 December 2004. It
registered a magnitude ranging from 9.1 to 9.3 on the Moment
Magnitude Scale (Mw) and had a focal depth of 30 km.The epicentre
of the earthquake was situated at 3.316° North and 95.854° East.

Figure 4 represents valuable insights into TEC, geomagnetic
and solar parameter variations for December 2004. The x-axis
represents time in days, ranging from December 1st to 31st, 2004.
The y-axis shows TEC values in TEC Units (TECU), F10.7 (Solar
Radio Flux at 10.7 cm) wavelength, a measure of solar activity,
Kp (Geomagnetic Planetary K-index), Ap (Geomagnetic Activity
Index), Dst (Disturbance Storm Time) index indicating the level
of geomagnetic activity. The TEC data exhibits a generally wave-
like pattern throughout December, with several peaks and troughs
with peaks generally occurring around every 5–6 days. The highest
TEC value is around 58.75 TECU, while the lowest value is close to
1.33 TECU. The Dst index generally remains negative throughout
December, indicating calm geomagnetic conditions.There are a few
brief periods where the Dst dips below −50 nT, which suggests
moderately enhanced geomagnetic activity. Similar to the Dst index,
the Ap index also suggests calm to moderately active geomagnetic
conditions throughout December. There are a few instances where
the Ap index goes above 30, indicating moderate geomagnetic
activity. The F10.7 solar flux values fluctuate throughout December,
with a general increasing trend from around 70 × 10−22 W/m2 at the
beginning of the month to around 120 × 10−22 W/m2 by the end.

Figure 5 shows a comparison of two different methods for
measuring TEC over 8 days from 21 December 2004, to 28
December 2004. The two methods used are the ARMA and CoK
models. The predicted TEC obtained from the two models are

compared with the GPS TEC. Both ARMA and CoKmodels capture
the general increasing trend in TEC values observed throughout
the plotted period. The ARMA model closely follows the GPS
TEC values until December 24th. The ARMA model shows a
significant underestimation of TEC compared to the GPS TEC,
with a difference of around 20 TECU. This discrepancy persists
for December 27th. The ARMA model gradually recovers and
starts aligning with the GPS TEC values again by December
28th. The CoK model generally tracks the GPS TEC values with
some deviations throughout the period. The CoK model exhibits
a smaller underestimation of TEC compared to the ARMA model,
with a difference of around 5–10 TECU. Similar to the ARMA
model, the CoK model gradually recovers and aligns with the
GPS TEC values by December 28th. The observed discrepancies
between the predicted and GPS TEC values, particularly around
the day of the earthquake, could be indicative of ionospheric
disturbances potentially triggered by the Sumatra earthquake. The
larger underestimation by the ARMA model suggests it might be
less sensitive to capturing these earthquake-induced TEC variations.
The CoK model, with its smaller underestimation, might be slightly
more responsive to the earthquake’s influence on the ionosphere.

Figure 6 depicts the variations in Total Electron Content (TEC),
a measure of ionization in the Earth’s ionosphere, over several dates
in December 2004. All three plots (GPS TEC, ARMATEC, and CoK
TEC) show a gradual increase in TEC values (indicated by warmer
colours like light green and parrot green, corresponding to 20–30
TECU) in the days leading up to December 26.This pre-earthquake
ionospheric anomaly is consistent with the potential response of the
ionosphere to the impending seismic event. Around December 26,
the TEC values in all three plots exhibit fluctuations or sudden drops
(represented by cooler colours like light blue and sky blue). This
suggests ionospheric disturbances coinciding with the earthquake
itself. Following the earthquake, the plots show varying patterns.The
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FIGURE 5
Comparison of GPS TEC and predicted TEC for the Sumatra Earthquake.

GPS TEC plot suggests a gradual decrease in TEC values (cooler
colours), while the ARMA TEC and CoK TEC plots show a mix of
increases, decreases, and stable TEC values.These variations suggest
complex and potentially model-dependent ionospheric behaviour
following the earthquake.

Figure 7A represents the comparison between ARMA-predicted
TEC and GPS TEC as a linear regression scatter plot. The data
points exhibit a relatively strong positive correlation, indicating
a general alignment between ARMA-predicted TEC and GPS
TEC values. However, there’s a moderate degree of spread,
suggesting that the ARMA model does not perfectly capture
all the nuances in the data. The slope of the best-fit line is
slightly less than 1, indicating that the ARMA model tends to
slightly underestimate TEC values, especially at higher magnitudes.
The y-intercept is positive, signifying a potential small positive
bias in the ARMA model predictions. The R-squared value of
0.844 indicates that the ARMA model explains about 84% of the
variation in the GPS TEC data, suggesting a reasonably good
fit. The linear regression analysis in Figure 7A reveals that the
ARMA model demonstrates a good overall ability to predict
the GPS TEC values. The high correlation and R-squared values
support this.

Figure 7B shows the comparison between predicted CoK TEC
and GPS TEC as a linear regression scatter plot. The data points
reveal a strong positive correlation between the CoK model
predictions and the GPS TEC values. The slope of the line is very
close to 1, indicating that theCoKmodel seems to capture the overall
magnitude of TEC variationswith less tendency for underestimation
compared to the ARMAmodel as seen in Figure 7A.The y-intercept
is a small positive value, suggesting a tiny positive bias in the CoK
model. The R-squared value of 0.867 indicates that the CoK model
explains approximately 87% of the variation in the GPS TEC data,

suggesting a very good fit. The CoKmodel shows a slightly better fit
to the GPS TEC data compared to the ARMA model, based on the
higher R-squared value and reduced tendency for underestimation.
Similar to the ARMAmodel, there’s a small positive bias observable
in the y-intercept; however, it is very minor relative to the range of
TEC values.

Table 1 provides an evaluation of the prediction method’s
performance metrics, including RMSE, MAD, Relative error,
and NRMSE for ARMA and CoK models. Employing statistical
significance tests will help determine if the differences between
the models are meaningful or likely due to random chance. In
the pre-earthquake days, the CoK model exhibits lower RMSE
values on most days, suggesting a slightly better fit to the GPS
TEC data during this period. The MAD values are relatively close
for both models, indicating similar-sized errors on average. On
the earthquake day, the ARMA model shows notably lower error
metrics on the day of the earthquake across all measures (RMSE,
MAD, Relative Error and NRMSE). This could suggest increased
accuracy for ARMA during a potentially disturbed period. After
the earthquake day, RMSE/NRMSE: The CoK model regains its
advantage with lower error values, indicating a potential return
to a more regular ionospheric pattern for RNSE and NRMSE
values. Similar to the pre-earthquake period, MAD values are
comparable for both models, which suggests similar overall error
magnitudes once the potential quake-induced disturbance subsides.
The CoK model seems to perform slightly better in capturing
general TEC trends in the days leading up to and immediately
after the earthquake. The ARMA model’s outperformance on the
specific day of the earthquake might be significant. This could
potentially indicate it was more sensitive to earthquake-related
ionospheric disturbances. Incorporating geomagnetic indices (Kp,
Dst, Ap) during this period would help determine if increased solar
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FIGURE 6
GPS TEC, ARMA, and CoK Predicted TEC variation contour during Sumatra Earthquake.

activity or geomagnetic storms could contribute to the observed
fluctuations and model differences. The CoK model demonstrates
slightly better overall performance in the analyzed timeframe based
on lower RMSE and NRMSE values for most days before and after
the earthquake.

3.2 Prediction of TEC variations during
Sulawesi earthquake

An earthquakewith amagnitude of 6.6 hit 56.23 km southeast of
Palu on Sulawesi Island in Indonesia with 6.5 magnitude. The focal

depth of the earthquake was 20.11 Km. Figure 8 represents valuable
insights into TEC, geomagnetic and solar parameter variations for
December 2004. The x-axis represents time in days, ranging from
August 1st to 31st, 2012. The y-axis shows TEC values in TECU,
F10.7, Kp, Ap, andDst. TEC exhibits a diurnal pattern, characterized
by higher values during the daytime and lower values at night. The
graph exhibits a general upward trend in TEC values throughout
the month, with some fluctuations.The highest TEC value is around
77.05 TECU, while the lowest value is close to 1.37 TECU.There are
a few notable dips in TEC throughout themonth, particularly visible
around August 12th. The Dst index is generally negative with a few
dips below 50 nT, suggesting brief periods of moderately elevated
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FIGURE 7
(A) Linear regression Analysis of ARMA TEC and GPS TEC. (B) Linear regression Analysis of CoK TEC and GPS TEC.

TABLE 1 Performance parameters for the Sumatra earthquake.

Date RMSE MAD Relative error NRMSE

ARMA CoK ARMA CoK ARMA CoK ARMA CoK

21-12-2004 5.67 4.29 4.13 3.58 0.20 0.14 0.26 0.20

22-12-2004 10.74 6.23 9.70 5.11 0.37 0.16 0.52 0.30

23-12-2004 7.91 2.51 6.30 1.94 0.23 0.10 0.38 0.12

24-12-2004 7.76 3.74 6.46 2.79 0.23 0.11 0.34 0.16

25-12-2004 8.55 3.44 6.86 2.42 0.24 0.10 0.40 0.16

26-12-2004 6.16 6.15 5.28 5.20 0.38 0.48 0.22 0.22

27-12-2004 2.69 3.19 2.35 2.95 0.15 0.16 0.10 0.12

28-12-2004 2.42 2.80 2.01 2.37 0.10 0.12 0.09 0.10

AVERAGE 6.49 4.04 5.39 3.30 0.24 0.17 0.29 0.17

geomagnetic activity. The Ap generally stays below 30, indicating
relatively calm conditions, with a few spikes reaching above 30.
The solar flux values display a gradual decline over the course
of the month. Figure 9 represents a comparison of two different
methods for measuring TEC over an eight-day period from 13
August 2012, 20 August 2012.

Both ARMA and CoK models track the overall variations in
the GPS TEC reasonably well. Their predictions capture the diurnal
pattern in TEC behaviour throughout the plotted period. In the days
leading up to the quake (August 13th – 17th), both models exhibit
some minor deviations from the GPS TEC but largely follow the
trend. The ARMA slight underestimation of TEC by the ARMA
model compared to the GPS TEC on the earthquake day. The
difference appears small, perhaps 5–10 TECU. The CoK model

prediction also deviates, potentially even more so than the ARMA
model, showing a slightly larger underestimation. Bothmodels seem
to realign with the GPS TEC relatively quickly in the days following
the earthquake, although theremay be some lingering discrepancies,
especially with the CoK model. The observed deviations around
the earthquake, especially by the CoK model, might suggest subtle
ionospheric disturbances potentially associated with the Sulawesi
earthquake.

Figure 10 depict variations in TEC, a measure of ionization in the
Earth’s ionosphere, over several dates in August 2012. Examining all
three figures, which showcase GPS TEC, ARMA TEC, and CoK TEC
variations, alongside theprovided colour scale revealingTECUvalues,
reveals intriguing insights into the potential relationship between
seismic activity and the Earth’s ionosphere. All three figures depict
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FIGURE 8
TEC, Geomagnetic and Solar parameters variations for August 2012.

FIGURE 9
Comparison of GPS TEC and predicted TEC for the Sulawesi Earthquake.

a gradual rise in TEC values (represented by warmer colors like light
green and parrot green, corresponding to 20–30 TECU) in the days
leading up to the 18 August 2012, earthquake. This pre-earthquake
ionospheric anomaly, observed across all models, suggests a potential
response of the ionosphere to the impending seismic event. Following
the earthquake, the Figure 10 exhibit fluctuations in TEC values,
with slightly varying patterns between the models, yet all indicating
ionospheric disturbances after the seismic activity.

Figure 11A represents the comparison between ARMA
predicted TEC and GPS TEC as a linear regression scatter plot. The
data points exhibit a relatively strong positive correlation, indicating
a general alignment between ARMA predicted TEC and GPS TEC
values. R-squared value of 0.8364 indicates that the ARMA model
explains approximately 83.64% of the variance in the GPS TEC data.
This suggests a moderately strong positive relationship between
the predicted and GPS TEC values. R-squared value of 0.8364 is
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FIGURE 10
GPS TEC, ARMA, and CoK Predicted TEC variation contour plot during Sulawesi Earthquake.

lower than the R-squared observed in Figure 6A, suggesting that
the ARMA model explains a smaller percentage of the variation in
the GPS TEC data for this specific period. The linear regression
analysis in Figure 11A depicts a generally positive correlation
between the ARMAmodel’s predictions and GPS TEC values.

Figure 11B shows the comparison between ARMA predicted
TEC and GPS TEC as a linear regression scatter plot. The
data points reveal a positive correlation between CoK-predicted
TEC and GPS TEC values. There’s less scatter compared to the
ARMA model (Figure 11A), suggesting a stronger association
between the predicted and actual TEC values. A higher R-squared

value than Figure 11A indicates the CoK model explains a greater
proportion of the variance in the GPS TEC data, suggesting a
better fit compared to the ARMA model. The CoK model exhibits
a stronger positive correlation between predicted and GPS TEC
values, as evidenced by the tighter clustering of data points in the
scatter plot compared toARMAmodel.This suggests theCoKmodel
performs better than theARMAmodel in capturing the overall trend
and variations in the GPS TEC data within this specific timeframe.

The performance evaluation parameters for the models during
the Sulawesi EQ are given in Table 2. On the Pre-Earthquake
days between 13-08-2012 to 17-08-2012, the CoK model exhibits
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FIGURE 11
(A) Linear regression Analysis of ARMA TEC and GPS TEC. (B) Linear regression Analysis of CoK TEC and GPS TEC.

TABLE 2 Performance parameters for the Sulawesi earthquake.

Date RMSE MAD Relative error NRMSE

ARMA CoK ARMA CoK ARMA CoK ARMA CoK

13-08-2012 9.36 9.58 7.81 7.41 0.62 0.50 0.36 0.37

14-08-2012 9.70 7.40 7.16 5.92 0.33 0.32 0.42 0.32

15-08-2012 8.83 9.00 7.23 6.00 0.48 0.40 0.39 0.40

16-08-2012 6.19 5.68 4.95 4.34 0.30 0.23 0.23 0.21

17-08-2012 6.69 3.81 5.64 3.26 0.62 0.42 0.26 0.15

18-08-2012 3.06 7.36 2.49 4.25 0.26 0.20 0.12 0.29

19-08-2012 4.30 3.95 3.68 2.63 0.23 0.16 0.18 0.16

20-08-2012 9.61 9.75 7.10 7.16 0.36 0.36 0.39 0.40

AVERAGE 7.22 7.07 5.76 5.12 0.40 0.32 0.29 0.29

lower errors across all metrics (RMSE, NRMSE, MAD, Relative
Error), suggesting superior performance. The ARMA model has
a noticeably lower RMSE/NRMSE, potentially indicating better
handling of sudden fluctuations. The CoK model maintains its
advantage in the MAD and Relative Error metrics. On post-
earthquake days 19-08-2012 to 20-08-2012, the CoK generally
regains its usual lower error values across the board. This pattern
suggests that the earthquake might have temporarily disrupted
the CoK model’s predictions, but it recovers quickly. The CoK
model seems to perform slightly better in capturing general TEC
trends in both the lead-up to and after the earthquake. This aligns
with the concept that co-kriging techniques often excel in spatial
modeling, which can translate to improved TEC predictions over

time. The ARMA model’s outperformance on August 18th with
lower RMSE/NRMSE is noteworthy. This could potentially indicate
a greater sensitivity or responsiveness to ionospheric disturbances
associated with seismic events. The ARMA model shows notably
lower RMSE and NRMSE values on the specific day of the
earthquake, potentially highlighting increased sensitivity to TEC
changes during this period.

4 Conclusion

The study investigated the feasibility of using Autoregressive
Moving Average (ARMA) and CoKriging (CoK) models to forecast
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ionospheric Total Electron Content (TEC) variations preceding
seismic events in Indonesia. Through analysis of two significant
earthquakes–the December 2004 Sumatra earthquake and the
August 2012 Sulawesi earthquake–along with associated TEC data,
solar activity and geomagnetic indices, this research aimed to
enhance our understanding of ionospheric dynamics and improve
predictive capabilities for mitigating communication disruptions
during seismic events. The analysis revealed distinct TEC variations
preceding both earthquakes, with weak correlations to solar and
geomagnetic activities but stronger associations with seismic-
induced electric fields. The December 2004 Sumatra earthquake
exhibited TEC variations 5 days prior to the event, while the August
2012 Sulawesi earthquake displayed variations 6 days before. The
ARMAandCoKmodels were employed to predict TECfluctuations,
with evaluationmetrics including RootMean Square Error (RMSE),
Mean Absolute Deviation (MAD), Relative Error, and Normalized
RMSE (NRMSE) used to assess model accuracy. For the Sumatra
earthquake, the ARMA model predicted a maximum TEC of 50.92
TECU with an RMSE of 6.15, while the CoK model predicted 50.68
TECUwith an RMSE of 6.14. Similarly, for the Sulawesi earthquake,
the ARMA model forecasted a maximum TEC of 54.43 TECU with
an RMSE of 3.05, whereas the CoK model predicted 52.90 TECU
with an RMSE of 7.35. Overall, both models captured the general
trend in TEC variations preceding seismic events, but nuances
emerged in their responses to seismic disturbances.

The ARMA model demonstrated heightened sensitivity to
seismic disturbances, particularly evident on the day of the
earthquake, indicating its potential for detecting short-term TEC
anomalies associated with seismic events. Conversely, the CoK
model exhibited more consistent performance across pre- and post-
earthquake periods, suggesting its reliability in capturing long-term
TEC variations. The comparison of evaluation metrics highlighted
the strengths and limitations of each model, underscoring the
importance of selecting appropriate modelling techniques based
on specific application requirements. This research contributes to
advancing our understanding of ionospheric behavior preceding
seismic events and underscores the potential of predictivemodelling
in mitigating communication disruptions. The findings offer
valuable insights into the complex interactions between seismic
activity and ionospheric dynamics, informing the development
of robust forecasting tools for enhancing navigation system
resilience to seismic disturbances. Moving forward, further research
endeavoursmay explore the integration of additional environmental
factors, such as atmospheric conditions and Earth’s magnetic field

variations, to refine predictive models and improve TEC forecasting
accuracy. Additionally, investigations into the applicability of
machine learning algorithms and ensemble modelling techniques
could enhance the predictive capabilities of TEC forecasting
systems, ultimately facilitating more effective mitigation strategies
for communication disruptions during seismic events.
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