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According to the hypothesis that strange quark matter may be the true ground
state of matter at extremely high densities, strange quark stars should be stable
and could exist in the Universe. It is possible that pulsars may actually be strange
stars, but not neutron stars. Here we present a short review on recent progresses
in the field of strange quark stars. First, three popular phenomenological
models widely used to describe strange quark matter are introduced, with
special attention being paid on the corresponding equation of state in each
model. Combining the equation of state with the Tolman-Oppenheimer-Volkov
equations, the inner structure and mass-radius relation can be obtained for the
whole sequence of strange stars. Tidal deformability and oscillations (both radial
and non-radial oscillations), which are sensitive to the composition and the
equations of state, are then described. Hybrid stars as a special kind of quark
stars are discussed. Several other interesting aspects of strange stars are also
included. For example, strong gravitational wave emissionsmay be generated by
strange stars through variousmechanisms, whichmay help identify strange stars
via observations. Especially, close-in strange quark planets with respect to their
hostsmay provide a unique test for the existence of strange quark objects. Fierce
electromagnetic bursts could also be generated by strange stars. The energy
may come from the phase transition of neutron stars to strange stars, or from
the merger of binary strange stars. The collapse of the strange star crust can
also release a huge amount of energy. It is shown that strange quark stars may
be involved in short gamma-ray bursts and fast radio bursts.

KEYWORDS

stars: neutron, dense matter, equation of state, gravitational waves, gamma-ray bursts,
fast radio bursts

1 Introduction

Strange quark matter, which is a mixture consisting of almost equal numbers of
deconfined up, down, and strange quarks, may be true ground state of densematter (Witten,
1984; Farhi and Jaffe, 1984). If such a strange quark matter hypothesis is correct, then
the observed pulsars may actually be strange quark stars (also shortened as strange stars).
Strange quark stars (SQS), which involve extraordinarily high densities, intense gravitational
fields and strong electromagnetic fields (Alcock et al., 1986; Colpi andMiller, 1992), provide
ideal natural laboratories for exploring physics under extreme astrophysical conditions.
However, the nature of the strongly interacting matter under such extreme densities is still
quite unclear, leading to large uncertainties in the internal structure of strange stars. A lot of
efforts have been devoted to the theoretical and observational aspects of strange stars, but
many issues still remain unsolved in the field.
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Strange quark matter is inherently self-bound by the strong
interactions of quarks. As a result, compact stars composed of
strange quark matter could be bare strange stars whose density
reduces to zero abruptly at the surface. However, a strange star
can also have a thin crust composed of normal nuclear matter
(Glendenning and Weber, 1992). Because the maximum density of
the crust is five times lower than the neutron drip density (Huang
and Lu, 1997), the light crust has an almost negligible effect on
the internal structure of strange stars (Zdunik, 2002). However,
it could significantly change the characteristics of electromagnetic
emissions from such compact stars. Also, collapse of the crust could
lead to some kinds of electromagnetic bursts or even emission of
gravitational waves.

Interestingly, according to the strange quark matter hypothesis,
strange quark dwarfs and even strange quark planets could also
exist. They may be produced due to the contamination of white
dwarfs/planets by strange nuggets in the Universe. While the
stability of these low-mass strange objects is still highly debated
(Glendenning et al., 1995; Fraga et al., 2001; Vartanyan et al., 2012;
Vartanyan et al., 2014; Alford et al., 2017; Di Clemente et al., 2023;
Gonçalves et al., 2023), they could provide valuable opportunities
for identifying strange stars due to their significant difference from
normal matter white dwarfs and planets (Huang and Yu, 2017;
Kuerban et al., 2020; Wang et al., 2021; Kurban et al., 2022b).

The study of strange stars is an active and rapidly developing
field. In the past few decades, various observational aspects of
strange stars have been studied. In this review, we are going to
present a brief description on some recent progresses concerning
strange stars. Hybrid stars, in which quark matter and hadronic
matter may coexist, are also discussed. The structure of our paper
is organized as follows. The properties and internal structure
of strange stars are introduced in Section 2. Especially, several
popular phenomenologicalmodels describing the strong interaction
among quarks are presented. Tidal deformability and oscillations,
which are closely related to the internal structure, are also
introduced. As a special kind of quark stars, hybrid stars are
discussed in Section 3, paying special attention on the transition
between different phases. In Section 4, gravitational wave (GW)
emissions from various strange quark objects are discussed. Possible
connection between some violent electromagnetic bursts (e.g.,
gamma-ray bursts and fast radio bursts) and strange stars are
introduced in Section 5. Finally, Section 6 presents the conclusions
and some further discussion.

2 Internal structure of strange stars

While thousands of pulsars have been observed, the internal
composition and structure of them are still controversial. This
enigma is closely connected with the interaction and properties
of matter under extreme densities and temperatures, thus is
an important issue involving fundamental physics. Theoretically,
pulsars could be neutron stars or quark stars. In the quark star
case, they could either be three-flavor (u, d, s) strange stars, or
could even be two-flavor (u, d) quark stars. The existence of the so
called hybrid stars is also suggested, which usually include a quark
matter core encompassed by normal nuclear matter (Ivanenko and
Kurdgelaidze, 1965; Annala et al., 2020; Menezes, 2021).

Equation of state (EOS), which gives the relation between
pressure and energy density, is an important factor that determines
the structure and overall properties of compact stars. EOS is
generally dependent on the composition and temperature of the
dense matter. In principle, EOS could be derived by considering the
strong interaction of microscopic particles that constitute the dense
matter. However, due to the complexity of strong interaction and
our poor understanding on it, an accurate derivation of the EOS
is still impossible. Various models have been proposed to describe
the strong interaction of quarks. In this section, we will introduce
several widely used quark interactionmodels.The internal structure
of compact stars based on these models will also be addressed. Note
that some further complicated ingredients such as themagnetic field
and the spin of the star should also be included when they play a
non-negligible role in some extreme cases.

2.1 MIT bag model

The MIT bag model, initially proposed in the 1970s by
Chodos et al. (1974a, 1974b), is a phenomenological theoretical
description aiming at explaining the structure of hadrons. In this
framework, the finite space containing hadrons is regarded as a
“bag.” Hadrons in the bag are composed of free quarks, including
up, down, and strange quarks in case of strange stars. Such a
confinement is not a dynamical outcome of any underlying theory
but rather a feature imposed by hand, achieved through the
imposition of particular boundary conditions (Buballa, 2005).

The general form of the EOS of this model is
(Shafeeque et al., 2023; Lohakare et al., 2023)

P = k(ϵc2 − 4B) , (1)

where P denotes the pressure within the bag, ϵ represents the energy
density, and c is the velocity of light. The parameter k is a constant
that depends upon themass of strange quarks (ms) and the quantum
chromodynamics (QCD) coupling constant. Specifically, for ms =
0, k = 1/3. B signifies the pressure of the bag, corresponding to
the energy density when the bag is in a vacuum state. It is a free
parameter that could be determined by considering the hadron
spectra or other experimental data.

The bag constant is also equivalent to the critical pressure of
deconfinement, resulting in a pressure differential across the surface
of the bag.The characteristics of quark confinement can be described
qualitatively by the bag constant. However, it is too simple to
describe asymptotic freedom at increasing energy scales, a crucial
property associated with QCD. Anyway, themodel has only one free
parameter (B), making it the simplest theory to compute the EOS of
strange quark matter.

2.2 NJL model

The Nambu-Jona-Lasinio (NJL) model is initially proposed by
Nambu and Jona-Lasinio (1961a, 1961b) to describe the interaction
between nucleons. It was extended by Eguchi and Sugawara (1974)
to include up and down quarks. Kikkawa (1976) further developed
the theory to encompass three flavors of quarks, including up,
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down, and strange quarks. In this review, we utilize the three-
flavor NJL model to describe quark matter inside strange stars. The
model exhibits spontaneous breaking of chiral symmetry, which is
essential for understanding the large nucleon mass and the dynamic
generation of fermionmasses. Additionally, themodel is noteworthy
for its solvability, allowing for simple analytical results obtained in
certain limiting cases.

The Lagrangian of three-flavor NJL model is generally
expressed as

L = ψ̄(iγμ∂μ −m)ψ+L(4) +L(6),

where ψ = (ψu,ψd,ψs)
T represents the quark field, γμ denotes the

Dirac matrix, m = diag(mu,md,ms) is the fluid quark mass matrix,
and ∂μ is the partial differential operator in four-dimensional
spacetime.L(4) andL(6) correspond to four-fermion interaction and
six-fermion interaction terms, respectively, representing two-body
and three-body interactions. The isospin symmetry indicates that
mu =md, but ms differs from both mu and md, thereby manifesting
the SU(3) symmetry breaking in the three-flavor NJL model.

Since quark confinement is not directly reflected in the NJL
model, it is often used in conjunction with the bag constant (B)
to derive the EOS. Comparing with the MIT bag model, the
confinement is a dynamical outcome in the NJL model rather than
being imposed by hand. However, similar to the MIT bag model,
the NJL model also fails to explain the characteristics of asymptotic
freedom.Additionally, in thismodel, the interaction between quarks
is regarded as point-to-point interaction without the inclusion of
gluons. Consequently, it is not a renormalizable field theory, and
a regularization scheme must be specified to address the improper
integrals that arise (Klevansky, 1992). For more details, readers can
refer to the review articles by Klevansky (1992) and Buballa (2005).

2.3 Quasi-particle model

The quasi-particle model is another phenomenological
approach for strange quark matter. Peshier et al. (1994) and
Gorenstein and Yang (1995) initially employed this model to
describe the quark-gluon plasma with strong interactions. Here
we present a short introduction to the model. First, the pressure at
zero temperature and finite chemical potential can be expressed
as a model-independent formula (He et al., 2007; Zong and
Sun, 2008b; Zong and Sun, 2008a),

P(μ) = P(μ) |μ=0 +∫
μ

0
dμ′ ρ(μ′) ,

where μ denotes the chemical potential, P(μ)|μ=0 signifies the
pressure at zero chemical potential, and ρ(μ) is the number
density of quarks.

To calculate the pressure, the primary challenge lies in
computing the number density of quarks, which relies on the quark
propagator. However, calculating the quark propagator directly from
the first principles of QCD is impractical. Therefore, we have to
employ approximations and then use the quasi-particle model.
In this model, particles are treated as an ideal gas composed of
non-interaction quasi-particles, with their masses depending on
the temperature and density. This model simplifies the calculation

of particle interactions, making computations more tractable. In
this way, the EOS is derived in the framework of the quasi-
particle model as (Zhao et al., 2010)

P(μ) = P(μ) |μ=0 +
3
π2∫

μ

0
dμ′ θ(μ′ −m(μ′))((μ′)2 −m(μ′)2)3/2,

wherem(μ) is the effectivemass and θ is the Heaviside step function.
Here, three colors and three flavors have been considered for quarks.

In view of quark confinement, the energy density in the vacuum
is lower than that of free quarks. Consequently, the vacuum pressure
at zero chemical potential (P(μ)|μ=0) is negative. Using the MIT bag
model for reference, we can set P(μ)|μ=0 = −B. In this framework,
quarks are treated as Fermi gas at high chemical potentials, which
to some extent reflects the asymptotic freedom property of QCD.
It also matches well with the results of Lattice QCD (Peshier et al.,
2000; Peshier et al., 2002; Rebhan and Romatschke, 2003).

2.4 Tolman-Oppenheimer-Volkoff
equation

Due to the extremely high density of strange stars accompanied
by strong gravity, the effects of spacetime curvature cannot
be ignored. Consequently, the structure of strange stars has to
be studied in the context of General Relativity. The Tolman-
Oppenheimer-Volkoff (TOV) equation (Oppenheimer and Volkoff,
1939; Tolman, 1939), should be employed to infer the structure
of such compact objects, which assumes that the interior of
the star is composed of spherically symmetric ideal fluid. Using
spherical coordinates of (x0,x1,x2,x3) = (t, r,θ,ϕ), the generalized
Schwarzschild metric is (Oppenheimer and Volkoff, 1939)

ds2 = −eσ(r)dt2 + eη(r)dr2 + r2dθ2 + r2sin2θdϕ2, (2)

where σ(r) and η(r) are functions of radial coordinates. Comparing it
with the spacetime interval, ds2 = gabdx

adxb, the nonzero covariant
components of the metric tensor gab can be obtained as

gtt = −e
σ(r), grr = e

η(r),  gθθ = r
2,  gϕϕ = r

2sinθ2. (3)

The energy-momentum tensor of such a ideal fluid is given by

Tab = (p+ ϵ)uaub + pgab, (4)

where p is the pressure and ϵ is the energy density. For a static
spherically symmetric star, the pressure and energy density are
functions of the r-coordinate, i.e., p(r) and ϵ(r). ua and ub are four-
dimension velocities. Equation 4 can be rewritten as

Ta
b = (p+ ϵ)u

aub + pδ
a
b.

Since the star is static, there are no spatial components for the
four velocities, i.e., ui = 0(i = 1,2,3),u0 = ut = 1/√−gtt. Considering
the normalization condition of uaub = − 1, we have (Tolman, 1934)

T0
0 = −ϵ,

Ta
a = p (a = 1,2,3) .
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The Einstein’s field equation is

Rab −
1
2
Rgab +Λgab =

8πG
c4

Tab, (5)

where Rab is the Ricci curvature tensor, R is the scalar curvature, Λ is
the cosmological constant, G is Newton’s gravitational constant and
c is the speed of light. For simplicity, we take c = 1 hereinafter. The
cosmological constant Λ is negligible for compact stars.

The Ricci tensor is expressed as (Glendenning, 1996)

Rab = Γ
α
aα,b − Γ

α
ab,α + Γ

α
aβΓ

β
bα − Γ

α
abΓ

β
αβ, (6)

where the Christoffel symbol is defined as

Γλab =
1
2
gλκ (gκa,b + gκb,a − gab,κ) .

Using the metric tensor of Equation 3, we can obtain the non-
zero Christoffel symbols as (Glendenning, 1996)

4Γ1
00 =

1
2
σ′eσ−λ, Γ0

10 =
1
2
σ′,

Γ1
11 =

1
2
η′, Γ2

12 = Γ
3
13 =

1
r
,

Γ1
22 = −re

−η, Γ3
23 = cotθ,

Γ1
33 = −rsin

2θe−η, Γ2
33 = −sinθcosθ.

Here the primes denote differentiation with respect to the r-
coordinate. Then the nonzero components of the Ricci tensor in
Equation 6 is derived as (Glendenning, 1996)

R00 = eσ−η(−
σ″

2
− σ
′

r
+ σ
′

4
(η′ − σ′)) ,

R11 =
σ″

2
−
η′

r
+ σ
′

4
(σ′ − η′) ,

R22 = e−η(1+
r
2
(σ′ − η′)) − 1,

R33 = R22sin
2θ.

Furthermore, we have

Ra
b = g

aaRab.

The scalar curvature is obtained from the trace of the
Ricci tensor,

R = gabRab = R
a
a.

The Einstein’s field Equation 5 can be rewritten as,

Ra
b −

1
2
Rδab = 8πGT

a
b.

Substituting Ra
b, R and Ta

b into the equation, we have

R0
0 −

1
2
Rδ0

0 = e
−η( 1

r2
−
η′

r
)− 1

r2
= −8πGϵ,

R1
1 −

1
2
Rδ1

1 = e
−η( 1

r2
+ σ
′

r
)− 1

r2
= 8πGp,

R2
2 −

1
2
Rδ2

2 = e
−η(σ
″

2
−
σ′η′

4
+ σ
′2

4
+ σ
′

2r
−
η′

2r
) = 8πGp,

R3
3 −

1
2
Rδ3

3 = e
−η(σ
″

2
−
σ′η′

4
+ σ
′2

4
+ σ
′

2r
−
η′

2r
) = 8πGp.

Note that the last two equations are identical, hence there are
only three independent equations.

The boundary conditions can be taken as the Schwarzschild
metric vacuum solution, which gives (Tolman, 1939)

−eσ(r) = 1− 2GM
r
, eη(r) = −(1− 2GM

r
)
−1
,

where M is the mass of the whole star. The TOV equation can then
be derived as (Oppenheimer and Volkoff, 1939)

dp (r)
dr
= −

G (ϵ+ p) (m+ 4πr3p)
r (r− 2Gm)

. (7)

Here the mass included inside a sphere of radius r is

m (r) = 4π∫
r

0
ϵ (x)x2dx,

which can be equivalently expressed in the differential form of

dm (r)
dr
= 4πr2ϵ. (8)

Given the pressure and energy density at the center of the star,
i.e., p(0) or ϵ(0), we can calculate the mass and radius of a compact
star by solving Equations 30, 32.

Typical mass-radius curves of bare strange stars derived by
using the MIT bag model are shown in the left panel of Figure 1
(Deb et al., 2017). On the other hand, the mass-radius curves of
crusted strange stars are shown in the right panel of Figure 1 (Huang
and Lu, 1997). This mass-radius relationship help us understand the
maximum and minimum limits of mass, the upper limit of radius,
the density distribution and even the stability condition of strange
stars. We can also compare the theoretically predicted parameters
with observational data to test the model and gain insights into the
nature of matter under extreme conditions.

2.5 Tidal deformability and love numbers

In the framework of General Relativity, an external tidal field
perturbs the spacetime geometry around a star, leading to changes in
the metric coefficients. These changes can be analytically expressed
in the asymptotic region far from the star. For a spherically
symmetric static star with a mass of m, the metric coefficient gtt in
the local rest frame (which is asymptotically Cartesian and mass-
centered coordinates) at a distance of r can be given by solving the
Einstein’s field equation, which is (Thorne, 1998)

−
1+ gtt

2
= −m

r
−
(3ninj − δij)Qij

2r3
+O (r−4)

+
Eij
2
r2ninj ++O (r3) , (9)

where ni = xi/r. This expression is in units of G = c = 1. The first
term on the right hand is a general relativistic correction for the
classical Newtonian gravitational potential. The symmetric and
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FIGURE 1
Mass (normalized in solar masses) versus radius (km) for strange stars. Left panel: bare strange stars. Three different values are taken for the bag
constant, i.e., 83, 100 and 120 MeV/fm3. The filled circle on each curve represents the maximum-mass star (Deb et al., 2017). Right panel: crusted
strange stars. The solid and dashed lines represent the bottom density of neutron drip density (ρdrip) and ρdrip/5, respectively (Huang and Lu, 1997).

traceless tensors Qij and Eij represent the quadrupole moment and
the external quadrupolar tidal field, respectively.

The distortion of an object caused by external gravitational
forces can be described by a linear function between the quadrupole
moment Qij and the external quadrupolar tidal field Eij (Flanagan
and Hinderer, 2008; Hinderer, 2008),

Qij = −λEij,

where the coefficient λ is the so called tidal deformability. It
represents the extent to which the star deforms under the influence
of a specific tidal force. A commonly used dimensionless tidal
deformation parameter is then defined as,

Λ = λ
m5 .

Another useful dimensionless tidal Love number (k2) connected
with the coefficient λ as

k2 =
3
2
λR−5,

where R is the radius of the star. k2 is called the Love number, which
represents the second spherical harmonic function (for the angular
quantumnumber l = 2) used in calculating themetric in Equation 9.
It can be calculated as Hinderer (2008)

k2 =
8C5

5
(1− 2C)2 [2+ 2C (y− 1) − y]

× {2C [6− 3y+ 3C (5y− 8)]

+ 4C3 [13− 11y+C (3y− 2) + 2C2 (1+ y)]

+3(1− 2C)2 [2− y+ 2C (y− 1)] ln (1− 2C)}−1,

where C =m/R is the compactness of the star. The function y = y(r)
satisfies the differential equation of (Postnikov et al., 2010; Takátsy
and Kovács, 2020)

y (r)
dy (r)
dr
+ y(r)2 +Q (r) r2

+ y (r)eη(r) [1+ 4πr2 (p (r) − ϵ (r))] = 0,

where p(r) and ϵ(r) are the pressure and energy density, respectively.
Q(r) is expressed as

Q (r) = 4πeη(r)(5ϵ (r) + 9p (r) +
p (r) + ϵ (r)

c2s (r)
)

− 6 e
η(r)

r2
− (σ′ (r))2,

where cs(r) = √dp/dϵ is the sound speed. σ(r) and η(r) are metric
functions defined in Equation 2. Taking the boundary condition as
y(0) = 2 (Damour andNagar, 2009), the tidal Love number k2 can be
conveniently calculated by solving the TOV equation.

The tidal Love number k2 is strongly dependent on the EOS
of a star. Different EOSs of neutron stars and strange quark stars
result in different k2. Thus the tidal deformability could be a
useful probe that could help distinguish between neutron stars and
strange stars (Postnikov et al., 2010).

2.6 Oscillations and quasi-normal modes

Oscillations are closely relevant to the stability of stars and are
sensitive to the equation of state and the composition. In this aspect,
quasi-normalmodes are usually discussed instead of normalmodes,
because the stars are practically in a systemwith energy losses due to
gravitational radiation and other dissipative effects.The frequency of
a quasi-normal mode is usually expressed as a complex number, in
which the real part represents the actual oscillation frequency and
the imaginary part indicates the decay rate.

Quasi-normal modes include two parts, the radial oscillation
and non-radial oscillation. Radial oscillation refers to the oscillation
of the compact star in the radial direction. Non-radial oscillation
refers to the oscillation in a non-radial direction, which is usually
described by spherical harmonics. Quasi-normal modes of non-
radial oscillation are more complex and involve different mode
types, such as f-mode, p-mode, and g-mode. Studying these quasi-
normal modes can reveal oscillatory behaviors of compact stars
under gravitational wave emissions and other dissipative effects, and
help probe their internal structure.
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2.6.1 Radial oscillations
Radial oscillations of compact stars are investigated firstly by

Chandrasekhar (1964a, 1964b). Usually adiabatic oscillations are
considered: the whole star oscillates like a retractable spring to
expand and shrink periodically. Assuming a spherical symmetry and
considering small-amplitude radial oscillations, we can introduce a
time-dependent radial displacement δr(r, t) of a fluid element at r,
which is expressed as

δr (r, t) = X (r)eiωt,

where X(r) represents the oscillation amplitude and ω is the
oscillation frequency.

Under small perturbations, the contributions from nonlinear
terms can be ignored. The differential equation of the radial
displacement (X(r)) was derived by Chandrasekhar (1964b) as

Yd2X
d2r
+(dY

dr
−Z+ 4πrγpeη − 1

2
dσ
dr
) dX
dr

+[ 1
2
(dσ
dr
)
2
+ 2m

r3
eη − dZ

dr
− 4π (ϵ+ p)Zreη +ω2 eη−σ] X = 0,

where

Y (r) = γp/(ϵ+ p) ,

Z (r) = Y(−2
r
+ 1

2
dσ
dr
).

Here σ(r) and η(r) are again the functions defined in Equation 2.
γ is the adiabatic index determined by the equation of state,

γ =
ϵ+ p
p

dp
dϵ
.

Using the adiabatic index, Y can be expressed as

Y (r) =
dp
dϵ
≡ c2s ,

where cs is the sound speed.
To calculate X(r), two boundary conditions must be specified.

First, the fluid at the center of the star is assumed to remain at
rest, i.e.,

X (0) = 0.

Second, the pressure perturbation vanishes at the stellar surface,
which means the Lagrangian variation of the pressure should also
vanish, i.e.,

Δp = −eσ/2r−2γp d
dr
(r2e−σ/2X) = 0.

Under these conditions, the eigenvalue of ω2 and the
corresponding radial eigenfunction of X(r) can be solved. The radial
oscillation frequencies are directly linked to the mean density and
elastic properties, providing information about the internal pressure
and density distribution inside the star (Benvenuto and Horvath,
1991; Vaeth and Chanmugam, 1992; Jiménez and Fraga, 2019; Bora
and Dev Goswami, 2021; Rather et al., 2023).

In most cases, the stellar stability against radial oscillations
is investigated by applying the Bardeen-Thorne-Meltzer (BTM)

criterion (Bardeen et al., 1966). The BTM criterion is usually
expressed as follows: when moving toward the direction of
increasing central pressure along the mass-radius curve, at each
extremum, one previously stable radial mode becomes unstable if
the curve bends counterclockwise, while one previously unstable
radial mode becomes stable if the curve bends clockwise. For bare
strange quark objects which include the whole bare strange planet-
bare strange star series, the conclusion on the stability is quite
clear. All configurations before the mass-radius curve reaches its
maximum are stable, with stars of higher central pressure unstable.
It means that all the bare strange planets and bare strange dwarfs
are stable.

However, in the cases of crusted strange quark objects, things
become more complicated. At first glance, strange dwarfs seem to
be unstable according to the BTM criterion (see the right panel of
Figure 1). By contrast, Glendenning et al. (1995) solved the Sturm-
Liouville problemgoverning stellar stability and claimed that strange
dwarfs are in fact stable. They found that all the eigenvalues
of the radial oscillation mode are positive. It is argued that the
strange quark core stabilizes the strange dwarf. Nevertheless, the
detailed mechanism on how the strange quark core stabilizes the
strange dwarf is not addressed. Later, Alford et al. (2017) revisited
the problem and solved the Sturm–Liouville problem again. They
found that the lowest eigenvalue of the radial oscillation mode is
negative, whichmeans strange dwarfs are unstable.They argued that
the lowest eigenvalue was essentially omitted by Glendenning et al.
(1995). Recently, Di Clemente et al. (2023) and Gonçalves et al.
(2023) further examined the issue and found that the difference
between Glendenning et al. (1995) and Alford et al. (2017) is due
to the different matching condition used at the interface between
strange quark core and nuclear crust. Alford et al. (2017) have used
the so-called rapid conversion condition, while the calculations
of Glendenning et al. (1995) correspond to the slow conversion
condition. As a result, Di Clemente et al. (2023) andGonçalves et al.
(2023) concluded that strange dwarfs are “slow-stable” — being
stable only when the phase transition process between strange quark
matter and nuclear matter is slower than the radial perturbation.

In fact, the term “slow-stable” is generally used to describe
hybrid stars, where the central quark matter is encompassed by
nuclear matter and the two kinds of matter can transfer to each
other through phase transition. However, in the context of crusted
strange dwarfs and planets, the crust and strange core are separated
by a strong electric field. There is a “gap” (of several hundreds
fermis) between strange quark matter and nuclear matter so that
the two “phases” do not contact with each other. As a result, inside
strange dwarfs and strange planets, phase transition essentially
cannot proceed between the quark matter and the hadronic matter
at the bottom of the crust. In other words, these light strange quark
objects generally satisfy the slow conversion condition and they are
in the “slow-stable” state. To conclude, the electric field between
strange core and the crust guarantees the stability of strange dwarfs
and strange planets against usual radial perturbations. However,
note that a too large perturbation may still be able to cause the crust
of a strange dwarf to collapse.

2.6.2 Non-radial oscillations
Non-radial oscillations of neutron stars was initially studied by

Thorne and Campolattaro (1967), which are especially important
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for gravitational wave emissions (Price and Thorne, 1969). For
simplicity, we adopt the Cowling approximation (Cowling, 1941;
McDermott et al., 1988) and ignore the gravitational perturbations
in spacetime. Denoting the deviation of the fluid element from its
equilibrium position as ξi, we have (Sotani et al., 2011),

ξi = (e−η/2W,−V∂θ,−Vsin−2θ∂ϕ) r−2Ylm,

where i = r,θ,ϕ in this subsection, W and V are perturbation
functions of t and r, and Ylm is the spherical harmonics. The
perturbation of the four-velocity δua can then be written as

δua = (0,e−η/2∂tW,−∂tV∂θ,−∂tVsin−2θ∂ϕ) r−2e−ϕYlm.

Note that the energy momentum tensor satisfies
(Sotani et al., 2011; Curi et al., 2022)

δ(∇bTab) = ∇bδTab = 0.

Assuming that the perturbations are harmonic functions of time,
i.e.,W(r, t) =W(r)eiωt andV(r, t) = V(r)eiωt, the oscillation equations
in the Cowling approximation can be simplified as

W′ = dϵ
dp
[ω2r2eη/2−σV+ 1

2
σ′W] − l (l+ 1)eη/2V,

V′ = σ′V− eη/2W
r2
.

To solve these equations, we again need to specify two boundary
conditions. First, the Lagrangian perturbation of pressure should
vanish at the stellar surface, i.e.,

Δp = ω2r2eη/2−σV+ 1
2
σ′W = 0.

Second, the perturbation functions of W(r, t) and V(r, t) satisfy

W (r) = Crl+1 +O (rl+3) ,

V (r) = Crl/l+O (rl+2) ,

at the star center (r = 0), where C is a constant.
Solving this eigenvalue problem, we can determine the

characteristic frequency ω and the corresponding characteristic
function ξi associated with the non-radial oscillations. The solutions
are classified into distinct oscillation modes according to the
nature of the characteristic frequencies and eigenfunctions, which
mainly include:

f-modes (fundamental modes): This is the lowest order mode
of non-radial oscillations. Their frequencies are typically high. They
are primarily driven by the global deformation of fluid dynamics,
reflecting the overall deformation of the star.

p-modes (pressure modes): For these modes, the frequency is
typically high and it increases with the increasing mode order.
They are primarily driven by pressure waves (sound waves) in the
fluid, reflecting the pressure distribution and the speed of sound
inside the star.

g-modes (gravity modes): The frequency is usually low. They are
primarily driven by buoyancy forces, reflecting the density gradients
and thermal gradients inside the star.

Note that under the Cowling approximation, the non-radial
oscillation equations cannot effectively describe the ω-modes
(gravitational wave modes) due to the ignoring of the metric

perturbations. ω-modes are driven solely by gravitational waves,
reflecting the spacetime undulations instead ofmaterial movements.
To investigate the gravitational emissions accurately, metric
perturbations in the framework of General Relativity should be
considered and the coupling between the fluid dynamics equations
and the Einstein’s field equations should be solved (Kokkotas and
Schutz, 1992; Andersson and Kokkotas, 1996; Andersson and
Kokkotas, 1998).

3 Hybrid stars

A compact star is conceptually divided into five parts, the
atmosphere, the outer crust, the inner crust, the outer core, and
the inner core (Weber, 2005). The atmosphere is a thin layer of
plasma, typically several centimeters in thickness. The outer crust is
composed of atomic nuclei and free electrons, with the density being
lower than 1011 g/cm3. In the inner crust, the density becomes higher
but is still less than 1014 g/cm3. Atomic nucleus are disintegrated
and neutrons overflow from the nucleus. In the outer core, the
density increases to exceed the nuclear saturation density so that the
matter is composed of neutrons, protons, electrons, and muons. In
this region, all plasmas are strongly degenerate, with electrons and
muons behaving like ideal Fermi gases, while protons and neutrons,
among other fermionic fluids, may exist in a state of superfluidity
or superconductivity. Many-body nucleon interaction models are
necessary to solve for the equation of state of matter in this section
under the conditions of beta equilibrium and electric neutrality.
When the compact star is massive enough, it will have a special
region at the center, the inner core. In this case, the density and
pressure will be high enough to transform hadronic matter into
quark matter (either with or without strange quarks). The transition
may occur at several times of the nuclear saturation density and
quark matter could coexist with hadronic matter at around the
transition region. We call these stars hybrid stars. Whether a strange
star or a hybrid star is more stable can be judged by comparing the
energy per baryon, which is defined as the ratio of energy density ϵ
to baryon number density nB

E/A = ϵ
nB
.

Currently, there is no ideal theory that can satisfactory describe
the hadronic phase and the quark phase jointly. So, different
models are employed to describe hadronic phase and quark phase
separately. The two phases are then connected at the transition
region, trying to match with each other through a particular
construction, i.e., either the Maxwell construction or the Gibbs
construction. Several popular models widely used to describe quark
matter have been introduced in Section 2. Similarly, we have many
models for hadronic matter, including the relativistic mean field
(RMF)models (Walecka, 1975; Alaverdyan, 2009; Dutra et al., 2014)
and the Brueckner-Hartree-Fock (BHF) approaches (Li et al., 2010;
Li and Schulze, 2012; Tong et al., 2022). For example, NL3, TM1,
DD-ME2, and FSU Gold models are popular RMF models, while
the Akmal-Pandharipande-Ravenhall (APR) model (Akmal et al.,
1998; Gusakov et al., 2005; Schneider et al., 2019), is a typical
BHF approach.

Here we will focus on the transition from the hadronic phase
to the quark phase. Due to unknown physics, the transition could
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FIGURE 2
The Maxwell construction between hadronic matter and quark matter (Matsuoka et al., 2018). The hadronic phase (NL3ωρ model) and quark phase (NJL
model) are represented by blue lines and orange lines, respectively. The green line illustrates the overall EOS. GT0 in the figure means the tensor
interaction is zero.

be a smooth crossover, a sharp first-order transition involving a
latent heat, or even a critical point signaling a second-order phase
transition. Two methods have been engaged to math the two phases
at the transition region, i.e., the Maxwell construction or the Gibbs
construction.

3.1 Maxwell construction

The Maxwell construction describes a fist-order transition from
hadronic matter to quark matter. In this case, the baryon number
is conserved and the two phases are in equilibrium. There could be
a sharp interface between the two phases so that the transition is a
definite phase transitio, as shown in the left panel of Figure 2. When
the pressure (P) is higher than the critical point (P0), the matter is in
the quark configuration, while when P is lower than P0, the matter is
in the hadronic phase. To avoid the instabilities caused by the long-
range nature of electromagnetic forces, each of the two phases have
to maintain electric neutrality independently, i.e.,

qquark = qhadron = 0.

Under this fist-order transition, three equilibrium conditions
should also be satisfied, i.e., the chemical potential equilibrium

μquarkB = μ
hadron
B = μ = μn,

the mechanical equilibrium

Pquark (μ,T) = Phadron (μ,T) ,

and the thermal equilibrium

Tquark = Thadron = T,

where μB is the chemical potential of baryons, μ is the chemical
potential of the whole system, μn is the chemical potential of
neutron, and T is temperature. The chemical potential equilibrium
andmechanical equilibriumconditions are also reflected in Figure 2.

The overall EOS of a hybrid star is shown in the
right panel of Figure 2. There is a “plateau” in the EOS curve, which
corresponds to the transition between the hadronic phase and the

quark phase. Note that the pressure is a continuous function inside
the star, but there is a discontinuity in the energy density at the
transition point. Such a jump in the energy density is also known as
“latent heat,” which is a hallmark characteristic of a first-order phase
transition.

3.2 Gibbs construction

The Gibbs construction is widely employed to describe the
complex mixed matter inside compact stars (Glendenning, 1992).
For the “complex” mixed phase possibly existed inside hybrid stars,
keeping local electric neutrality independently is unreasonable,
because the particles can interact with each other in a complicated
way. Therefore, charge is conserved and electric neutrality is
maintained only for the whole system, but not for each phase. This
is a much weaker constraint comparing to that in the Maxwell
construction.

According to the Gibbs construction, the chemical potential of
each component is still equal between different phases, i.e.,

μquarkB = μ
hadron
B = μ = μn,

μquarkQ = μ
hadron
Q = μe,

where the subscript B and Q represent the baryon phase and quark
phase, respectively. μe is the chemical potential of electrons, which
appears only in the quark phase. For the pressure and temperature,
we also have

Pquark (μ,T) = Phadron (μ,T) ,

Tquark = Thadron = T.

For simplicity, we could take the temperature as zero, i.e., T = 0.
In this way, hadrons and quarks can not only coexist but also mix
together in hybrid stars. So, the Gibbs construction is more flexible
than the Maxwell construction.

The global electronic neutral condition is expressed as

χqquark + (1− χ)qhadron = 0,
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where χ is the volume fraction of quarks that satisfies 0 ≤ χ ≤ 1. In
the mixed region, we have

χ = Vquark

Vquark +Vhadron
.

Then the energy density of the mixed region is

ϵmixed = χϵquark + (1− χ) ϵhadron,

and the baryon number density is

ρmixed = χρquark + (1− χ)ρhadron.

Comparing with the fixed parameters in the Maxwell
construction, the parameters in the Gibbs construction are decided
by the percentage of hadrons and quarks. In this case, the energy
density is a continuous function and the conversion is smooth rather
than a sharp phase boundary existed in the Maxwell construction.
It is possible that there is no critical point of any phase transition,
but only a crossover from hadronic matter to quark matter in the
transition region. Figure 3 illustrates a typical Gibbs construction
between hadronic matter and quark matter. The hadronic EOS
used in the figure is from Ghosh et al. (1995) and the quark EOS is
the effective mass bag model (Schertler et al., 1997; Schertler et al.,
1998). The pressure is plot as the function of two independent
chemical potentials (μn, μe). The intersection curve of the two
pressure surfaces shows the solution of the Gibbs condition, where
the mixed phase presents. In this transition region, all physical
parameters change continuously and the free energy of the mixed
phase is at a minimum.

The Gibbs construction is originally utilized to delineate the
multi-phase equilibrium. The chemical potentials of each species
are equal in the two phases when they coexist, which satisfies the
fundamental requirement for thermodynamic equilibrium. It is not
only pertinent to describe first-order phase transitions, but also can
be employed to depict higher-order phase transitions and crossover
phenomena under suitable circumstances.

4 GW emission from strange stars

GW emission was first proposed by Einstein as a prediction of
the General Theory of Relativity (Einstein, 1916; Einstein, 1918).
Any changes in the distribution of matter may lead to the variation
of the curvature of space-time, causing energy to be carried away in
the form of gravitational waves.The detection of GW signals in 2015
by the LIGO collaboration (Abbott et al., 2016)marks the beginning
of a new multi-messenger era in astronomy. Many efforts have been
made to explore various possible mechanisms that could generate
GWs efficiently. Compact stars, due to their extreme density and
dynamic motion, serve as crucial sources of GWs. In this aspect,
GW emission associated with strange stars may have some special
features since their internal composition and structure are different
from normal neutron stars. We thus could potentially use GW
observations to help identify strange stars.

4.1 GWs from binary strange star systems

Coalescence of binary systems is the most significant stellar
GW sources. BH-BH, BH-NS, and NS-NS binary systems are

FIGURE 3
The Gibbs construction between hadronic matter and
quark matter (Schertler et al., 2000). The pressure of the hadronic
phase (pHP) and the quark phase (pQP) is plot as a function of the two
independent chemical potentials of μn and μe. The intersection curve
of the two pressure planes corresponds to the Gibbs condition, where
the mixed phase exist. The white lines of HP and QP on the pressure
surfaces show the pressure of the hadronic phase and the quark phase
under the condition of charge neutrality, respectively.

common GW sources. Here we focus on binaries containing
strange quark stars, such as BH-SQS and SQS-SQS systems.
The detection of the controversial GW190814 event, which
involves a possible mass-gap compact object (2.5 – 2.67M⊙),
has drawn a wide attention in the community. Although most
researchers believe it could be a neutron star, the possibility
that it is a strange star has also been discussed in numerous
studies (Bombaci et al., 2021; Miao et al., 2021; Roupas et al.,
2021; Lopes and Menezes, 2022; Oikonomou and Moustakidis,
2023). Interestingly, two frequently mentioned GW events,
GW170817 and GW190425, are suggested to originate from
SQS-SQS systems by Miao et al. (2021), Kumar et al. (2022), and
Sagun et al. (2023). Furthermore, theoretical calculations of GW
radiation from SQS-SQS binary systems have been preformed by
Limousin et al. (2005), Gondek-Rosinska and Limousin (2008), and
Bauswein et al. (2010). Moraes and Miranda (2014) even studied
the possible existence of NS-SQS binaries and investigated their
GW emission.

It should be noted that binary systems containing low-mass
strange quark objects can also be strong GW sources. For instance,
Lü et al. (2009) investigated GW emission from a white dwarf
(WD)–strange dwarf system. Moreover, Perot et al. (2023) argued
that GW signal could serve as a better probe to distinguish between
strange dwarfs from white dwarfs in binaries. More interestingly,
strange quark planets could also stably exist. It is proposed that
the merger of a strange quark planet with a SQS can also lead
to strong GW emission (Geng et al., 2015; Zhang et al., 2024).
Generally, GW emission from merging SQS-strange quark planet
will be too weak to be detected if it happens at cosmological
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FIGURE 4
Strain spectral amplitude of GWs against frequency for coalescing
SQS-strange quark planet systems (Geng et al., 2015). Various masses
are assumed for the strange quark planet, and different distances are
taken for the system. The sensitivity curves of advance-LIGO and ET
are also shown for comparison.

distances. However, such events occurring in our Galaxy or in
nearby local galaxies is detectable for the Advanced LIGO (Harry
and LIGO Scientific Collaboration, 2010) and Einstein Telescope
(Hild et al., 2008). Figure 4 shows that the strain spectral amplitude
of GWs from coalescing SQS–strange quark planet systems is well
above the detection limit when they happen in our Galaxy or in
local galaxies. At the same time, we could also try to identify
strange quark objects by searching for close-in planets around
pulsars. The period of normal matter planet around a pulsar
cannot be less than 6,100s, since it would be tidally disrupted in
such a close orbit. On the contrary, the period of strange quark
planet could be much less than 6,100s due to its extreme high
density. Using this method, several extrasolar planetary systems
that contain a close-in planet have been argued to be possible
candidates of strange planetary systems (Kuerban et al., 2020). Since
these extrasolar planetary systems are all relatively close to us,
Figure 5 shows that if they merge, the GW emission will be well
above the detection limit of current and future GW experiments
(Kuerban et al., 2020).

Recently, Zou and Huang (2022) studied the GW emission
produced when a primordial black hole inspirals inside a strange
star. The black hole will grow when it swallows the matter
from the strange star. It will finally fall toward the center of
the strange star and convert the whole star into a stellar mass
black hole. During the process, strong GWs will be emitted,
whose frequence falls in the range of various ground-based GW
detectors, such as the Advanced Virgo, Advanced LIGO, LIGO
A+ upgrade, Einstein Telescope (ET), and Cosmic Explorer (CE).
More importantly, the GW signals will be different from that
produced when a primordial black hole inspirals inside a neutron
star, as illustrated in Figure 6. Observation of such GW events thus
could provide a useful discrimination between strange stars and
neutron stars.

FIGURE 5
Strain spectral amplitude of GWs against frequency for coalescing
strange quark matter planetary systems (Kuerban et al., 2020). The
names of the candidate strange quark planets are marked in the plot.
This figure shows the strain spectral amplitude of the GW emission
when they finally merge with their host in the future.

FIGURE 6
Strain spectral amplitude of GWs against frequency for a primordial
black hole inspiraling inside a strange star or a neutron star (Zou and
Huang, 2022). The system is assumed to be at 1 kpc from us. The
sensitivity curves of several GW experiments are shown for
comparison.

4.2 GWs from other mechanisms
concerning strange stars

Aside from merger events, the collapse of a neutron star
induced by a phase transition to a strange star can also lead
to strong GW emission. An increase in the central density of a
neutron star can trigger a phase transition from hadronic matter
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to deconfined quark matter within the core. This transition may
lead to the collapse of the whole neutron star into a more compact
strange star, accompanied by the emission of GWs. Lin et al. (2006)
and Abdikamalov et al. (2009) utilized hydrodynamic simulations
to investigate the phase transition process and computed the
GW emissions. Recently, Yip et al. (2023) incorporated magnetic
fields into their numerical studies to explore the formation
of a magnetized strange star and computed the GW signals
through general relativistic magnetohydrodynamics simulations.
These studies reveal that the emitted GW spectrum is primarily
dominated by two fundamental modes: the quasi-radial F mode
(l = 0) and the quadrupolar 2 f mode (l = 2). Additionally, Yip et al.
(2023) demonstrated that observations of these fundamental modes
can help measure the magnetic field strength of the interior toroidal
field and the baryonic mass fraction of matter in the mixed phase.

In addition to transientGWsproduced fromcatastrophic events,
continuous GW emission can also arise from global oscillations
of strange stars. Specifically, r-mode oscillations occurring in
rotating SQSs (Andersson et al., 2002; Rupak and Jaikumar, 2013;
Wang et al., 2019) are potential mechanisms to produce continuous
GWs. The r-mode instability leads to a gradual loss of angular
momentum from the compact star, causing it to spin down
and emit continuous GWs. Additionally, Gondek-Rosińska et al.
(2003) proposed that a triaxial, “bar shaped” strange star could
be an efficient source of continuous GW radiation, which is
called the bar-mode GW emission. Continuous GW emissions are
generally much weaker as compared with that of the catastrophic
GW events (Zou et al., 2022). However, with the improvement in
the sensitivity of future detectors, GWs from r-mode and bar-mode
instabilities may be detectable, which will provide a novel tool for
probing the dense matter in compact stars.

The number of detected GW events is increasing rapidly in
recent years. Although most of the observed GW events are
produced by mergering binary black holes and are not directly
related to neutron stars/strange stars, it is possible that more and
more GW events involving neutron stars/strange stars will be
detected in the near future. GW observations will be a powerful tool
to reveal the internal composition and structure of pulsars.

5 Electromagnetic bursts from strange
stars

With a strong gravity and magnetic field, a strange star can
accrete matter from the surrounding medium or from a companion
star. This will lead to some kinds of electromagnetic bursts, such as
gamma-ray bursts (GRBs) and fast radio bursts (FRBs).

5.1 GRBs from strange stars

GRBs are one of themost violent stellar explosions.The isotropic
equivalent γ-ray energy released in a typical GRB is in a range of
1050 – 1053 ergs. GRBs can be classified into two categories according
to their duration, i.e., long GRBs that last for longer than ∼ 2 s and
short GRBs shorter than ∼ 2 s. After more than 50 years of study,
it is now generally believed that long GRBs are produced by the
collapse of massive stars, while short GRBs are produced by the

merger of binary compact stars. However, the possibility that some
GRBs are produced by other mechanisms still cannot be expelled
(Levan et al., 2016; Zou et al., 2021). For example, strange stars could
be involved in some of these fierce bursts.

The conversion of neutron stars to strange stars through a
phase transition process will lead to the release of a huge amount
of energy, which would be large enough to produce short GRBs
(Cheng and Dai, 1996; Bombaci and Datta, 2000; Wang et al., 2000;
Shu et al., 2017; Prasad and Mallick, 2018). Many factors can trigger
the phase transition process. First, when a neutron star accretes
matter from the ambient environment, its mass increases and will
finally exceed a maximum value, beyond which the whole star
will collapse and be transferred to a strange star. For example,
Berezhiani et al. (2003) argued that the central object produced in
supernova explosion may be metastable. It could accrete the fall-
back matter and collapse to form a strange star. Second, nuclear
reactions inside neutron stars can change their internal structure.
When the pressure, density and temperature are high enough,
neutronmatter can transfer to formquarkmatter.Drago et al. (2004)
considered color superconductivity in strange stars and found that
diquark condensate could occur, which further increases the energy
release during the conversion process. Thirdly, sudden fluctuations
of density inside neutron stars can create a “seed” of strange quark
matter, which triggers the phase transition and propagates outward
to the stellar surface. Mallick and Sahu (2014) found that during
the spin down process, the central density of a massive neutron star
may increase significantly, triggering a phase transition. The effect
of magnetic field in the process is also considered. When a neutron
star is converted into a strange star, the energy released during the
process is of themagnitude of ∼1053 ergs, sufficient enough to power
cosmological short GRBs.

A strange star can be covered by a normal matter crust. The
collapse of the crust can also release a large amount of energy
and produce an electromagnetic burst. According to Equation 1,
the density is a finite value for strange quark matter when the
pressure is zero, indicating that it is self-bound. As a result, the
mass of strange stars can have a very wide range, i.e., from planetary
mass strange objects to nearly two-solar-mass strange stars. On
the surface of strange quark matter, quarks are confined by short-
range strong interactions, while electrons are confined by long-range
electromagnetic interactions. It leads to the formation of an electric
field on a lengthscale of hundreds of fermis. The intensity of the
electric field can be up to 1017 V cm−1. Due to the presence of
this strong electric field, normal nuclear matter are expelled and
accumulates over the surface to form a crust (Alcock et al., 1986;
Huang and Lu, 1997). Numerical simulations by Jia and Huang
(2004) shows that when a strange star accretes matter, the crust will
collapse to trigger a short burst. If the accretion continues, the crust
will be re-built and re-collapse again and again, resulting in periodic
explosive activities. This mechanism may account for some kinds of
soft gamma-ray repeaters.

5.2 FRBs from strange stars

FRBs are fast radio bursts that happen randomly from the sky,
typically lasting for a timescale of milliseconds (Lorimer et al., 2007;
Thornton et al., 2013). Despite their short durations, the energy
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FIGURE 7
Schematic illustration of periodic repeating fast radio bursts produced in the strange star crust collapse scenario (Geng et al., 2021). In the active state,
the accretion rate is high, leading to frequent burst activities. In the quiescent state, the accretion rate is low, and no burst will be generated.

released during the burst is immense. About seven hundred FRB
sources have been discovered to date, with nearly 30 of them
confirmed to exhibit repeating explosive activities. However, the
possibility that other FRB sources may also be repeating still cannot
be expelled yet. Comprehensive statistical analyses on the properties
of repeating FRBs have been extensively carried out based on current
astronomical observations, imposing various constraints on their
nature (Li et al., 2017; Li et al., 2021; Hu and Huang, 2023), but the
origin of FRBs still remains an open problem in need of further
investigations.

Variousmodels have been proposed to explain the observational
characteristics of FRBs. For non-repeating FRBs, Geng and Huang
(2015) and Geng et al. (2020) suggested that they could result from
the collision between a compact star and an asteroid. Subsequently,
for repeating bursts, researchers went further to argue that they
may arise frommultiple collisions as magnetized NSs travel through
asteroid belts (Dai et al., 2016). On the other hand, Kurban et al.
(2022a) and Nurmamat et al. (2024) proposed that repeating bursts
may originate from the tidal interactions in a highly elliptical
planetary system, in which either a neutron star or a strange star
could be involved. In their framework, a planet moves in a highly
elliptical orbit around the compact star. The planet will be partially
disrupted every time it passes through the periastron since it is very
close to the compact host star, generating smaller clumps that finally
collide with the host to produce periodically repeating FRBs. These
models can satisfactorily explain many of the observed features of
repeating FRB sources.

In the previous subsection, we have mentioned that GRBs
could originate from the collapse of the crust of a strange star.
Similarly, it is also plausible that FRBs may be triggered by such
processes, especially when the strange star is a strongly magnetized
object. Enormous energy is released during the collapse, giving birth
to a large amount of electron/positron pairs. The calculations by
Zhang et al. (2018) show that these electron/positron pairs would be
accelerated to relativistic velocities far above the polar cap region

of the strange star, streaming out along the magnetic field lines
and ultimately resulting in a short burst in radio waves. More
interestingly, Geng et al. (2021) found that the collapse of the crust
of a strange star could happen repeatedly, thus can also serve
as a potential mechanism for periodic repeating FRBs. In their
framework, the strange star accretesmatter from its companion.The
accretion flow streams along themagnetic field lines and accumulate
in the polar cap region. When the matter at the cap becomes too
heavy, the local crust will collapse, triggering an FRB. The crust
can be re-built when the accretion process continues and may
collapse again once it is overloaded. Periodically repeating FRBs are
generated in this way. It should be noted that the active window and
quiescent stage in one period could be governed by thermal-viscous
instabilities (see Figure 7).

6 Concluding remarks

Strange quark matter could be the true ground state of
matter at extreme densities. Such a hypothesis need to be tested
through astronomical investigations. Essentially, we should try
to discriminate between neutron stars and strange stars through
observations. In this article, we present a brief review on some
recent progresses in this field. Various models describing quark
confinement are introduced. The corresponding EOS derived from
these models are presented and compared. By combining these
EOSs with the TOV equations, we can calculate the inner structure
of strange stars, deriving the mass-radius relation for the whole
sequence of strange quark objects. The tidal deformability and the
Love number measured through gravitational wave observations
may help diagnose the EOS. Radial and non-radial oscillations
with different modes can also be used to probe the internal
structure of strange stars. The properties of hybrid stars, in
which quarks and hadrons may coexist, are also discussed.
Some special kinds of electromagnetic bursts could also be
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connected with strange stars and can be used as a probe of these
exotic objects.

GW observation is a hopeful tool to test the existence of
strange stars. The coalescence of binary compact systems which
includes at lease one strange object could lead to strong GW
emission. Previously, people mainly concentrate on relatively high
mass binaries, such as BH-SQS and SQS-SQS systems. In the past
decade, it is found that when a low mass strange quark planet
merge with its host strange star, strong GW emission will also
be generated and could be detectable to us if the merger event
happens in our Galaxy or in local galaxies (Geng et al., 2015).
Furthermore, strange quark planets revolving around their host
strange star in a close-in orbit could even be persistent GW sources
(Kuerban et al., 2020; Zhang et al., 2024), which could be potential
goals of space-based GW experiments in the future. Apart from
binary interactions, collapses induced by phase transitions (e.g.,
from hadronic matter to deconfined quark matter) and global
oscillations are also likely to generate GW emission, which could
also be tested by the next-generation GW detectors.

GRBs and FRBs are fierce events possibly connected to strange
stars. The merger of double strange stars can produce a short GRB,
which is very similar to that of binary neutron star coalescence.
Additionally, the conversion of neutron stars to strange stars may
also act as the energy sources for short GRBs. The total energy
released during this phase transition process is estimated to be
∼1053 ergs, which is large enough to power short GRBs occurring
at cosmological distances. Furthermore, the collapse of the crust
of strange stars could also act as a special mechanism to release a
large amount of energy, which could explain FRBs (either one-off
or repeating) or some weaker GRBs. The collapse may be triggered
by accretion process that makes the crust overloaded. Finally, the
collision of an asteroid with a strange star will also lead to some
interesting phenomena, which still need to be investigated in detail
in the future.
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