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Magnetohydrodynamical
modeling of star-disk formation:
from isolated spherical collapse
towards incorporation of
external dynamics

Michael Kuffmeier*

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

The formation of protostars and their disks has been understood as the result of
the gravitational collapse phase of an accumulation of dense gas that determines
the mass reservoir of the star-disk system. Against this background, the broadly
applied scenario of considering the formation of disks has been to model the
collapse of a dense core assuming spherical symmetry. Our understanding of
the formation of star-disk systems is currently undergoing a reformation though.
The picture evolves from interpreting disks as the sole outcome of the collapse
of an isolated prestellar core to a more dynamic picture where disks are affected
by the molecular cloud environment in which they form. In this review, we
provide a status report of the state-of-the-art of spherical collapse models
that are highly advanced in terms of the incorporated physics together with
constraints from models that account for the possibility of infall onto star-disk
systems in simplified test setups, as well as inmulti-scale simulations that cover a
dynamical range from the Giant Molecular Cloud environment down to the disk.
Considering the observational constraints that favor a more dynamical picture
of star formation, we finally discuss the challenges and prospects in linking the
efforts of tackle the problem of star-disk formation in combined multi-scale,
multi-physics simulations.
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1 Introduction

The by-now classical approach of modeling the formation of a star dates back to
more than half a century to the pioneering work of (Larson, 1969), who started from
the assumption of an isolated spherical core that collapses due to its own gravity. This
assumption has become the standard approach in modeling the formation of individual
stars and their disks that form as a result of conservation of angular momentum during
the collapse phase. However, in recent years it has become more and more clear that the
morphology of the precursors of stars, namely, prestellar cores, often deviates significantly
from spherical symmetry in turbulent filamentary Giant Molecular Clouds (André et al.,
2014). In addition, asymmetric features (‘streamers’) (see review by Pineda et al., 2023),
as well as strong indications for late infall (e.g., SU Ginski et al., 2021) challenge our
traditional view on disk formation. This review is an attempt to concisely summarize
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the developments made in developing state-of-the-art multi-
physics models of spherical collapse, and put those in context
to multi-scale models that account for the larger scale dynamics
of the molecular cloud environment. We emphasize that the
scope of the review is the formation process of disks. These
disks evolve over time and disperse. An overview of important
effects regarding disk dispersal through binary interactions (e.g.,
Kuruwita and Federrath, 2019; Offner et al., 2023), stellar flybys
(e.g., Cuello et al., 2023; Smallwood et al., 2023) or external
photoevaporation (e.g., Winter and Haworth, 2022) can be
found in the respective references. Note that developments
that later marked important advancements for modeling disk
formation were initially included in studies that focused on
binary/multiple formation. Examples are the use of adaptive
mesh refinement (AMR) (Truelove et al., 1998; Kratter et al., 2010)
or nested grids (Burkert and Bodenheimer, 1993; Matsumoto
and Hanawa, 2003) in spherical collapse simulations. The
focus on multiplicity rather than disk properties is not
surprising considering that disks easily form in hydrodynamical
simulations.

This review focuses on results obtained through modeling of
(proto-)star formation. The presented results are derived using
various codes that adopt different methodology. Traditionally,
star formation has either been modeled following a Lagrangian
approach, i.e., smoothed particle hydrodynamics (SPH), or an
Eulerian approach, i.e., a mesh/grid codes. In SPH codes, the gas
distribution is represented through particles and the properties of
the gas is computed through averaging over the nearest neighbors
of interacting particles. SPH codes that are used for modeling disk
formation are dragon (Goodwin et al., 2004), phantom (Price et al.,
2018), optimized versions of sphNG (Benz et al., 1990), as well as
Godunov SPH methods (Iwasaki and Inutsuka, 2011). In Eulerian
codes, the gas is discretized in form of a mesh or grid consisting
of cells, and the evolution of the gas is simulated by calculating
the flux through the cell boundaries to update the cell quantities.
The grid is typically assumed to be cartesian or spherical in
star formation models. Examples of grid codes used for disk
modeling are athena (Stone et al., 2008), athena++ (Stone et al.,
2020), dispatch (Nordlund et al., 2018), enzo (Bryan et al., 2014),
flash (Fryxell et al., 2000), Pluto (Mignone et al., 2012), Orion
(Klein, 1999), ramses (Teyssier, 2002; Fromang et al., 2006), sfumato
(Matsumoto, 2007) and zeus (Stone and Norman, 1992). While
SPH codes intrinsically adapt to resolve the higher densities during
the star formation process, many grid codes offer the possibility
to resolve the process by the use of a grid with flexible cell sizes.
The resolution of the grid can either be fixed at the beginning
of the simulation in form of static or flexible through AMR.
Static grids are often used for spherical or nested grids, where
the forming star is located at the center such that by construction
the gas close to the star is resolved with higher resolution
than the gas at larger radial distances. Nowadays, the traditional
distinction between SPH and grid codes has become increasingly
softened by the development of methods that contain properties
of both approaches such as moving mesh codes (arepo Springel,
2010a; Weinberger et al., 2020) and codes allowing for the use of
meshless methods (gizmo Hopkins, 2015). Each method has its
benefits and disadvantages. On the one hand for instance, it is by
construction straight-forward to handle advection of flowswith SPH

algorithms, while more care is required in grid codes. On the other
hand, the use of constrained transport in grid codes (Evans and
Hawley, 1988; Balsara and Spicer, 1999; Londrillo and del Zanna,
2004) guarantees the absence of unphysical magnetic monopoles
(∇ ⋅B = 0), whereas a careful implementation of divergence-cleaning
is required to achieve this condition in SPH (see for instance Tricco
and Price, 2012; Tricco et al., 2016).

For more details on the methods that are commonly used
in star formation modeling, we refer the reader to dedicated
reviews. For the technicalities of SPH, see for instance (Tricco,
2023, in this volume) or previous reviews (Rosswog, 2009;
Springel, 2010b; Price, 2012). For an overview of the numerical
methods in grid-based codes, we refer to Teyssier (2015);
Teyssier and Commerçon (2019) as well as to the respective
papers corresponding to the individual codes. Alternatives to
the more traditional methods are presented and discussed in
Hopkins (2015).

Section 2 of this review provides an overview of disk
formation in spherical collapse with a focus on how to
solve the magnetic braking problem. Section 3 focuses on
the dynamics beyond the prestellar core and how modeling
can be used to account for the effect of infall onto the disk
formation process. Section 4 summarizes the results and provides
an outlook on how multi-scale, multi-physics models can help
to understand the small-scale subtleties of disk formation that is
important for planet formation in the context of the larger-scale
dynamics.

2 Formation of disks in models of
isolated spherical collapse

In general, the assumption of spherical collapse is the obvious
first choice for modeling gravitational collapse. The assumption
of spherical symmetry simplifies the three-dimensional spatial
problem to a one-dimensional problem. Moreover, it allows to
study the effect of various parameters in a well-defined setup.
Over the years, more and more parameters were added to the
setup to test their effect on the collapse phase. An important
additional parameter of the setup was to initialize the sphere with
a net rotation rate. Theory predicts that during the collapse, the
vertical velocity components cancel out each other, but the net
rotational component remains such that the collapse leads to the
formation of a rotationally supported disk as a consequence of
angular momentum conservation. Purely hydrodynamical models
(i.e., models without magnetic fields) demonstrated the formation
of disks with smaller/larger disk sizes for initially weak/strong
rotation of the sphere using smoothed particle hydrodynamics
(SPH) (Bate, 1998; 2010; Walch et al., 2009; 2010), adaptive
mesh refinement (AMR) (Truelove et al., 1998; Banerjee et al.,
2004) or nested grid codes (Yorke et al., 1993; Saigo et al., 2008;
Machida et al., 2010).

To prevent very low time steps during the collapse, it is common
practice in many models to introduce a sink particle that is created
at the center once a critical density is exceeded and possible
additional criteria are fulfilled. During the further evolution, the
sink accretes mass from the surrounding gas according to a
prescribed recipe (for a detailed overview on numerical methods
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including sink particles, please refer to the review by Teyssier and
Commerçon, 2019).

As the next step, models started to account for the presence of
magnetic fields inmolecular clouds (Crutcher, 2012) by carrying out
magnetohydrodnamical simulations. To account for magnetic fields
in the setup, the sphere is typically initialized with a magnetization
defined by the ratio of enclosedmassM andmagnetic flux threading
the sphereΦ = πR2B, whereB = |B| is themagnitude of themagnetic
field strength. It is common practice to state the magnetization
relative to the magnetized mass

MΦ = cΦ
Φ
√G
, (1)

with a numerical constant cΦ and gravitational constant G in terms
of the normalized mass-to-flux ratio

μΦ =
M
MΦ
. (2)

According to theory, cores are magnetically supported against
collapse for μΦ < 1, whereas the core undergoes collapse for μΦ >
1. cΦ depends on the exact configuration of the field. In the case
of a sphere threaded by a uniform parallel magnetic field, cΦ is
0.126 (Mouschovias and Spitzer, 1976), and for the case of a field
with a constant-mass-to-flux ratio, cΦ = 0.17 (Tomisaka et al., 1988),
which is similar to cΦ = 1/(2π) for a uniformly magnetized sheet
(Nakano and Nakamura, 1978). In the latter case, the mass-to-flux
ratio becomes, using these values for Equation 2 the mass-to-flux
ratio (Equation 1) becomes

μΦ = 2π√G
M
Φ
, (3)

but in this section we focus on spherical collapse and therefore
refer to a scenario for which Equation 3 is not applicable. The
first generations of these collapse simulations considered the ideal
MHD case of sufficiently ionized gas such that the magnetic field
is well coupled to the bulk neutral gas. The induction equation
corresponding to ideal MHD is

∂B
∂t
= ∇× (v×B) (4)

with bulk velocity of the gas velocity v. As the magnetic field
lines are perfectly coupled to the gas motion, they are dragged
towards the center of mass during the collapse, which yields a
characteristic hour-glass shape. While the gas collapse, magnetic
pinching induces the formation of a flattened structure around
the forming protostar. In contrast to the Keplerian disk that is
forming around the star in the hydrodynamical cases, the flattened
structure is not rotationally supported and therefore referred to as
‘pseudodisk’ in the analytical (Galli and Shu, 1993a) and numerical
works by Galli and Shu (1993b). The pseudodisk is larger in size
than the rotationally supported disk, and in the classical picture,
it marks a transition zone between the protostellar environment
and the rotationally supported disk (e.g., Väisälä et al., 2023, for
a recent study exploring the properties of pseudodisks). In this
review, we focus on the formation of rotationally supported disks,
and for simplicity only refer to them as disks. When the magnetic
field lines get wrapped up in azimuthal direction, they exert
a torque opposing the rotation of the disk (Lüst and Schlüter,
1955). In other words, magnetic fields provide a form of angular

momentum transport to slow down rotation, and it is hence
referred to as ‘magnetic braking’ (Mestel, 1968). If the magnetic
torque is sufficiently high, it quenches the formation of the disk.
This scenario is referred to as ‘magnetic braking catastrophe’.
Analytical work by Joos et al. (2012) showed that this is the case
for μΦ ≲ 10 in good agreement with models adopting a 2D grid
(Allen et al., 2003; Mellon and Li, 2008), 3D grid (Machida et al.,
2005; Galli et al., 2006; Hennebelle and Fromang, 2008; Duffin
and Pudritz, 2009; Seifried et al., 2011; Santos-Lima et al., 2012)
and 3D SPH (Price and Bate, 2007). While these earlier MHD
simulations did not account for radiation of the forming protostar,
quenching of disk formation has proven to be a robust result
independently of incorporating radiative transfer schemes for
μΦ ≲ 10 in grid (Boss, 1997; 1999; 2002; Commerçon et al., 2010;
Tomida et al., 2010; 2013; 2015; Tomida, 2014; Vaytet et al., 2018) or
SPH codes (Bate et al., 2014; Tsukamoto et al., 2015b). Exemplarily,
the second column in Figure 1 illustrates the magnetic braking
catastrophe.

Until the late 2000s, including magnetic fields into the setup was
therefore considered catastrophic for disk formation, which was at
tension with the growing evidence of Keplerian disks in observations
(Brinch et al., 2007; Lommen et al., 2008; Jørgensen et al., 2009; Lee,
2011;Murillo et al., 2013;Codella et al., 2014;Harsono et al., 2014).At
the same time, magnetic fields are the most promising candidate for
producing these fast jets and low-velocity disk winds (Donati et al.,
2010; Bjerkeli et al., 2016; Lee et al., 2018; Moscadelli et al., 2022)
though winds especially at later stages of disk evolution might also
be launched by photoevaporation (Alexander et al., 2014).While part
of the material in the disk subsequently accretes onto the protostar, a
substantial amount of themass is ejected vertically from the system in
narrowprotostellar jets (Guszejnov et al., 2021; 2022), or indiskwinds
that have wider opening angles (Watson et al., 2016). Constraining
the role of magnetic fields is challenging because they are difficult to
observe. To get an idea of the magnetic field structure in star forming
regions, one canmeasure the linear polarization of non-spherical dust
grains as they tend to align with the underlying magnetic field due
to radiative torques (Sadavoy et al., 2019; Le Gouellec et al., 2020).
However, dust polarization in disks seems to be dominated by effects
of self-scattering within about 100 AU from the star (Kataoka et al.,
2016), (though dichroic extinction may be responsible for parts of
the polarization signal in disks, too) (Lee et al., 2021). That means
dust polarization is a good tracer of the structure (though not on the
strength) of magnetic fields on scales of the protostellar environment
beyond the disk, which allows us to at least obtain loose constraints on
the role of magnetic fields in the star formation process (Pattle et al.,
2023).As these observations informus about thepresenceofmagnetic
fields in the star-forming regions (Le Gouellec et al., 2020), there is
consensus that they are the important ingredient of magnetically
driven disks (Lesur et al., 2023).

The challenging question for modelers was therefore: ‘how to
avoid this catastrophe during spherical collapse?’ As of today, there
is consensus that magnetic braking can be sufficiently reduced to
allow disk formation even for spherical collapse setups with high
magnetization of μΦ ≲ 10 if at least one of the following ingredient
is considered in the models.

• non-ideal MHD, or
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FIGURE 1
Illustration of the effect of initial conditions on the collapse phase shown face-on (top panels) and edge-on (bottom panels). From left to right:
hydrodynamical case (no B-field), ideal MHD with B-field, non-ideal MHD (ambipolar diffusion and ohmic dissipation), and ideal MHD with turbulence.
The figure is adopted from (Santos-Lima et al., 2012).

• misalignment between magnetic field orientation and
rotational axis, or

• turbulence.

We emphasize that there are already reviews (e.g., Wurster and Li,
2018; Zhao et al., 2020b; Tsukamoto et al., 2023b) in the literature
available that summarize the progress made in overcoming the
magnetic braking catastrophe during the last ≈20 years. We refer
the reader to those reviews as well as to reviews in this issue
(e.g., Young, 2023) for a more in-depth coverage of the progress
made in accounting for additional physics in spherical collapse
models, especially related to non-idealMHD.The following sections
provide a more comprehensive review on those efforts and the
progress made.

2.1 Non-ideal MHD

One way of overcoming the magnetic braking catastrophe is
by accounting for resistive effects (commonly referred to as ‘non-
ideal MHD’) such that the magnetic field lines are no longer tightly
coupled to the bulk motion of the gas. In fact, dense cores in
molecular clouds are weakly ionized (Bergin and Tafalla, 2007)
and according to models the ionization rates can reach values
of ne/nH2

∼ 10−14 (Nakano and Umebayashi, 1986; Umebayashi
and Nakano, 1990; Nishi et al., 1991; Nakano et al., 2002). One
distinguishes between three non-ideal MHD resistivities η, ohmic

dissipation ηO, ambipolar diffusion ηAD and the Hall effect ηH.
Ohmic resistivity corresponds to the regime, where all charged
species (electrons, ions and charged grains) are entirely decoupled
from the magnetic field. Hall resistivity describes the regime in
which the electrons are coupled to the magnetic field, but the
ions and charged grains are not. In other words, Hall resistivity
represents the effect of ion-electron drift. Ambipolar diffusion is
active in the regime, where all three charged components are tightly
coupled to the magnetic field, and hence experience a drift force
induced by the neutrals that are decoupled from the magnetic
fields. Note that most generally, resistivities are tensor quantities
as each resistivity can have a directional component that differs
for each dimension. In practice, it is a fair approximation to
consider the resistivities as scalar values as the directional variations
are relatively small with respect to other uncertainties in dense
cores. Furthermore, it is common practice to study protostellar
collapse in models adopting the following additional assumptions.
As the mass density is typically dominated by the mass of the
neutral gas, and as collisions between charged and neutral particles
dominate the momentum equation, it is safe to ignore pressure and
momentum from the charged species. Considering, in addition, long
evolutionary timescales of themagnetic field and the flow of neutrals
compared to those of the charged ones, one can approximate the
continuity equation to be dominated by the total mass, and hence
only solve this equation as the continuum equation of the gas. (For
more details, see for instance Wardle and Koenigl, 1993; Ciolek and
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Mouschovias, 1994; Mac Low et al., 1995; Wardle and Ng, 1999).
Under these assumptions, the major change is in the induction
equation (Equation 4), which can be written in its modified form
for non-ideal MHD
∂B
∂t
= ∇× (v×B) −∇× [ηO (∇×B)]

−∇{ηH[(∇×B) ×
B
|B|
]} −∇{ηAD

B
|B|
× [(∇×B) × B

|B|
]} .

(5)

Moreover, the energy equation for the time evolution of internal
energy u becomes

∂u
∂t
= −P

ρ
∇ ⋅ v+ ηO

|∇×B|2

ρ

+ ηAD
1
ρ
{|∇×B|2 −[(∇×B) ⋅ B

|B|
]
2
}. (6)

If expressed in terms of total energy Etot = ρϵ+
1
2
ρv2 + 1

2
|B|2 with

specific internal energy ϵ and using total pressure Ptot = (γ− 1)ρϵ+
1
2
|B|2 with adiabatic index γ, the energy equation becomes

∂Etot

∂t
= −∇ ⋅ {(Etot + Ptot)v− (v ⋅B)B

− ηAD
[(∇×B) ×B] ×B
|B|2

×B− ηH
(∇×B) ×B
|B|
×B

− ηO (∇×B) ×B} . (7)

Note that the Hall resistivity does not affect the internal energy
equation because in contrast to ohmic dissipation and ambipolar
diffusion, it is a dispersive, non-dissipative process. Using the
modified induction equation (Equation 5), and a modified equation
for internal (Equation 6) or total energy (Equation 7), one can carry
out single-fluid non-ideal MHD simulations.

2.1.1 Ohmic resistivity
Reflecting the complexity in accounting for the effects

numerically, the first non-ideal effect included in models was ohmic
dissipation, followed by ambipolar diffusion and at last the Hall
effect. In the early approaches, ohmic resistivity was set to constant
values (Shu et al., 2006; Krasnopolsky et al., 2010) with the goal to
test which values of ηO would be required to allow disk formation
despite the presence of strongmagnetic fields. Inutsuka et al. (2010),
Machida and Matsumoto (2011) and Machida et al. (2011) found
the formation of large disks with ohmic resistivity only at late stages
of the collapse phase when most of the envelope material had
accreted onto the protostar already. The physical explanation for
this was first laid out by Mellon and Li (2008). Angular momentum
transport became less efficient in thesemodels at later stages because
there was almost zero gas available at larger scales to transport the
material to, making magnetic braking less efficient. The results
are also qualitatively consistent with semi-analytic results (Dapp
and Basu, 2010; Dapp et al., 2012) and 3D models (Wurster et al.,
2016). The smaller disk sizes of ∼10 au derived by the latter groups
instead of ∼100 au (Inutsuka et al., 2010; Machida et al., 2011) are
explained by the assumption of lower resistivities and a larger sink
particle by Wurster et al. (2016). While it was found that disks can
form with high ηO, those values can typically only be reached
very close to the center of the first hydrostatic core (see papers
by (Marchand et al., 2016) and Wurster et al. (2016). However,
the values at lower densities and temperatures prevalent during
protostellar disk formation are expected to be significantly smaller.

2.1.2 Ambipolar resistivity
The low probability of obtaining the right conditions for

circumventing strong magnetic braking solely through ohmic
resistivity gave rise to a revival of seriously accounting for ambipolar
diffusion as it is the dominant process at lower densities present
in prestellar cores. The idea of considering ambipolar diffusion as
an important process of individual star formation dates back to the
1970s (Mouschovias, 1976; 1977; 1979), when it was studied in the
context of redistributing the magnetic field to avoid the pile-up of
magnetic pressure at the center due to magnetic-flux freezing that
would prevent protostellar collapse (see Das and Basu, 2021, for
a more recent linear instability analysis of magnetized sheets with
ambipolar diffusion). Against this background, Hennebelle et al.
(2016) estimated that disks form with typical disk sizes around
18 au based on analytical calculations that account for ambipolar
diffusion.

Early 2D models by Mellon and Li (2009) did not find evidence
for disk formation induced by including ambipolar diffusion, but
their setup disallowed disk formation on radii less than ∼10 au
because of the sink accretion recipe. Later studies that did not
introduce a sink particle found the formation of disks enabled
by ambipolar diffusion. 3D models by Tsukamoto et al. (2015b)
demonstrated the increase in angularmomentum for themodel case
with ambipolar diffusion compared to the model case without it,
which resulted in the early formation of a small ∼1 au disk, which
is in good agreement with results obtained by Tomida et al. (2015);
Machida and Basu (2019). Similarly, conducting very detailed
collapse simulations of the early collapse stage, Vaytet et al. (2018)
discovered the formation of an even smaller Keplerian disk of
less than 0.1 au in radius briefly after the first collapse phase.
It is important to point out that these disks form at a very
early stage of star formation associated with the first collapse,
and that this evolutionary stage is very short-lived (∼103 kyr).
The review by Young (2023) presents the state-of-the art of this
phase in detail.

As anticipated in previous models (Tomida et al., 2013), a
follow-up study by Tomida et al. (2017) that introduced a sink
particle, demonstrated the formation of significantly larger disks
∼100 au in size due to dissipation of both the envelope and the
magnetic field. This result is in agreement with 3D models by
Masson et al. (2016), who found the formation of relatively large
disks of about 80 au for collapse simulations initialized with 50
times higher gravitational to rotational energy and a mass-to-flux
ratio of μ = 5. Other studies that evolve the collapse to later times
find a similar trend of larger disks at later phases (Marchand et al.,
2020; Lee Y.-N. et al., 2021; Tu et al., 2024) for initial core masses
∼1 to ∼10 M⊙, as well as studies that consider the collapse of a
more massive spherical core with a mass of ∼100 M⊙ (Rosen et al.,
2019; Mignon-Risse et al., 2021; Commerçon et al., 2022; Oliva and
Kuiper, 2023). Comparing the results of ideal MHD with results
obtained accounting for ambipolar diffusion, Masson et al. (2016)
find a sharp upper limit of B-field strength of 0.1 G even at high
densities of ρ > 10−12 g cm−3 in the ρ-B phase space induced by
ambipolar diffusion, whereas in the ideal MHD case the field
strength exceeds 1 G at these higher densities. Such a plateau
value is consistent with the theoretical analysis by Hennebelle et al.
(2016) of a collapsing singular isothermal sphere (Shu, 1977)for the
assumption of a commonly assumed cosmic-ray ionization rate of
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∼10−17 s−1, and similar plateau values around 0.1 G were also found
in other studies by (Tsukamoto et al., 2017; Hennebelle et al., 2020;
Xu and Kunz, 2021; Zier et al., 2024b).

2.1.3 Hall effect
The Hall effect is the most difficult resistivity to implement

and therefore the one that has been less studied although its
possible influence on protostellar collapse was previously pointed
out and studied (semi-)analytically (Wardle and Ng, 1999; Wardle,
2004; Braiding and Wardle, 2012). Today there is a decent number
of papers presenting the results of spherical collapse simulations
that incorporate the Hall effect in 2D grid simulations using
zeus (Krasnopolsky et al., 2011; Li et al., 2011; Zhao et al., 2020a;
Zhao et al., 2021), 3D SPH simulations using a Godunov SPH
code (Tsukamoto et al., 2015a; 2017) as well as (Wurster et al.,
2016; Wurster et al., 2018a; Wurster et al., 2018b; Wurster et al.,
2019; Wurster et al., 2022), 3D AMR simulations with ramses
(Marchand et al., 2018; 2019), and 3D moving mesh simulations
using arepo (Zier et al., 2024a) that incorporate Hall resistivity. In
theory, the Hall resistivity can adopt positive or negative values, but
in practice it is typically negative during the protostellar collapse
as shown in SPH (Tsukamoto et al., 2015a; Wurster et al., 2016) as
well as in cartesian grid simulations (Marchand et al., 2016). In
contrast to ohmic dissipation and ambipolar diffusion, the Hall
effect depends on the direction of the magnetic field. In the case of
anti-parallel alignment of magnetic field and angular momentum,
it can cause spin up of the gas and lead to the formation of a
larger disk. Contrary, in the case of parallel alignment of B-field
and initial rotation, the disk is small. For high values of ηH the
outer envelope can even become counter-rotatingwith respect to the
rotation of the inner disk (Krasnopolsky et al., 2011; Li et al., 2011;
Zhao et al., 2020a; 2021). One would therefore expect a bimodal
distribution of disk sizes under conditions were the Hall-effect is
dominant (Tsukamoto et al., 2015a; Wurster et al., 2016), if only the
two extreme scenarios of parallel or anti-parallel alignment were
possible. Reflecting the key constraints obtained from non-ideal
MHD models, Lee et al. (2021) expanded the analytical model of
disk formation by Hennebelle et al. (2016) to additionally cover
the effects of ohmic dissipation and the Hall effect in addition to
ambipolar diffusion.

2.1.4 Misalignment between magnetic field and
rotational axis

The relative orientation of initial rotational axis and B-field
direction affects the collapse phase also in other ways than the
Hall effect. Early studies by Matsumoto and Tomisaka (2004)
investigated misalignment of initial magnetic field orientation with
respect to the angular momentum vector of the core in ideal MHD
simulations. They find that, during core collapse, the orientation
of the angular momentum vector, the magnetic field, and the
pseudodisk converge to align in the central region of the cloud core
due to angular momentum transport through magnetic braking.
Moreover, misalignment between initial rotational axis and B-field
direction can reduce the efficiency of magnetic braking as first
pointed out by Hennebelle and Ciardi (2009). In fact, models
showed that misalignment can enable disk formation in ideal MHD
models, where disk formation is quenched when the axes are
initially aligned (Joos et al., 2012; Krumholz et al., 2013; Li et al.,

2013; Gray et al., 2018). Tsukamoto et al. (2018) investigated the
effects of misalignment between rotational and magnetic field axis
considering the cases of perpendicular and parallel orientation.
They find three possible mechanisms in which the misalignment
can affect disk formation, namely, selective accretion of material
with high angular momentum in the perpendicular case and
vice verse, magnetic braking during the isothermal collapse
phase and magnetic braking of the disk. The authors point out
that magnetic braking during the collapse phase would yield
to the opposite effect on disk formation as reported by the
aforementioned groups. Therefore, the consensus is that this effect
is negligible for disk formation. In the recent review chapter,
Tsukamoto et al. (2023b) emphasize that the differences in disk
braking is primarily responsible for enhanced disk formation in the
misalignment scenario because the magnetic field acts on longer
time scales to transport angular momentum in a disk that is
supported by centrifugal forces compared to the much shorter free
fall time corresponding to the collapse phase. Analyzing results
obtained in the models by Li et al. (2013), Väisälä et al. (2019)
and Wang et al. (2022) emphasized the formation of time-variable
features extending from the disk such as spiral features in the
pseudodisk. In summary, the combination of models allowed to
increasingly cover the parameter space of spherical collapse. The
recently updated analytical model by Lee et al. (2024) incorporates
these constraints on misalignment between B-field and rotational
axis, in addition to non-ideal MHD effects.

2.1.5 Turbulence
While it is consensus that magnetic braking quenches disk

formation in ideal MHD models of spherical collapse with
alignment between rotational and B-field axis, it is also clear
that these are highly idealized initial conditions. A mechanism
of circumventing catastrophic braking in ideal MHD models of
spherical collapse is by introducing turbulence. Several studies
of spherical collapse demonstrated that disks can form when
initializing the spherical core with a turbulent velocity field (Santos-
Lima et al., 2012; Seifried et al., 2012; Seifried et al., 2013; Joos et al.,
2013). While in theory, there is no diffusivity in the ideal MHD
limit, it is in practice a common feature that occurs at the resolution
limit when solving the ideal MHD equations numerically. Santos-
Lima et al. (2012) therefore proposed that the random motions
intrinsic to turbulence induce an effective magnetic diffusivity on
the smallest scales via so-called turbulent reconnection. Adopting
a resolution of about one au, this artificial resistivity therefore
quenches the pile-up of magnetic fields during the collapse at values
below ∼1 G, which leads to a similar effect as reported for ambipolar
diffusion. In agreement with the occurrence at the resolution limit,
it is also clear that it is less efficient in simulations with higher
resolution of less than one au (Joos et al., 2013) because higher
magnetic field strengths are reached during the collapse, which
implies more efficient magnetic braking. This means there is no
numerical convergence in spherical collapse ideal MHD models
down to sub-au resolution, while there is in models with ambipolar
diffusion, where the B-field strength reaches a characteristic plateau
value that depends on the assumed ionization rate. Collapse models
with turbulence find that the effect of turbulence is reduced
when non-ideal MHD effects are incorporated as well (see results
found by (Lam et al., 2019; Wurster and Lewis, 2020), which is
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interpreted as turbulent diffusion being a secondary effect for disk
formation (Tsukamoto et al., 2023b).

However, it has also been pointed out by Seifried et al. (2012),
who considered a larger (≈50000 au) andmoremassive core (50M⊙)
with the adaptive mesh refinement code code FLASH that turbulence
leads to the formation of filaments and intrinsically induces
misalignment between B-field axis and rotational axis. Considering
the fundamental role of turbulence in the star formation process
in the Giant Molecular Cloud, Seifried et al. (2012) therefore
emphasize that turbulence is the cause for deviations from symmetry
such as the relative orientation between rotational and B-field
axis, which reduces the braking efficiency and helps to circumvent
the magnetic braking catastrophe. Results obtained from SPH
simulations by Wurster et al. (2019), who carried out a parameter
study of a turbulent collapsing core with 50 M⊙ in mass, varying
mass-to-flux ratios of 3, 5, 10 and 20 and even all three non-
ideal MHD effects included are in good agreement with that. In
Wurster et al. (2019), the core was initialized with a random velocity
distribution such that the initial mean sonic Mach number wasM =
6.4. The major conclusion of this work is that there is no magnetic
braking catastrophe and disks form frequently. In agreement with
Seifried et al. (2012), this even holds true for the case of ideal MHD
without any non-ideal MHD resistivities included. Taking into
account for turbulence within the core and ohmic dissipation at high
densities, AMR simulations with the SFUMATO code (Matsumoto,
2007) also showed the formation of warped disks on timescales of
∼1000 yr as a result of misalinged infall induced by the underlying
turbulence Matsumoto et al. (2017).

2.1.6 The role of the ionization rate
Today, it is consensus that non-idealMHDeffects can resolve the

magnetic braking problem of disk formation in spherical collapse
simulations. The bigger question today is how much they affect
the collapse and disk formation phase. Especially, early models
assumed resistivities relatively crudely only roughly accounting
for the dependency on density. The individual resistivities depend
on the underlying physical conditions and current state-of-the-art
models account for this dependency by using pre-computed values
that are assigned to the local density, magnetic field strength and
temperature. The computation of the table of resistivities is done by
using chemical equilibrium models. For instance, Marchand et al.
(2016) illustrated the differences compared to the values assumed
in previous studies by Duffin and Pudritz (2009) and Machida et al.
(2007). Apart from that there are some differences depending on the
chemical model that was used to compute the tables. In the table
by Zhao et al. (2016) the Hall resistivity is lower than the ambipolar
resistivity for a cosmic-ray ionization rate of 10−17 s−1 at any density,
whereas the Hall resistivity exceeds ambipolar resistivity and ohmic
dissipation in the range of number densities of n = 106 cm−3 to n =
1010 cm−3 in the table by Marchand et al. (2016).

While these differences between the tables are generally more
subtle, another physical effect is more crucial. It is common
practice to assume non-ideal MHD coefficients that were computed
for a fixed cosmic-ray ionization rate ζ. Typical values that are
assumed for non-ideal MHD models are in the range of ζ ∼
10−18 s−1 to ζ ∼ 10−17 s−1. The latter value is often referred to as the
canonical value dating back to estimates by Spitzer and Tomasko
(1968). While early measurements of the cosmic-ray ionization

rate in dense cores (Caselli et al., 1998; Padovani et al., 2009) are in
broad agreement with these values, there has been an increasing
number of observations that report significantly higher values in
cores at higher densities (Ceccarelli et al., 2014; Podio et al., 2014;
Fontani et al., 2017; Favre et al., 2018; Cabedo et al., 2023) together
with observations of significant scatter of ionization rates between
different cores (Indriolo and McCall, 2012). Such an increase
towards higher densities was initially hard to explain as cosmic-
rays were expected to be shielded and mirrored at the relatively
densities in dense cores (e.g., Padovani and Galli, 2013). It is,
however, consistent with more recent modeling results that predict
an enhancement of cosmic-ray ionization rates through protostellar
accretion shocks (Padovani et al., 2016; Gaches and Offner, 2018).
In fact, first maps of the cosmic-ray ionization rate of a low-
mass star-forming region (NGC1333 Pineda et al., 2024) and of two
massive clumps (AG351 and AG354 Sabatini et al., 2023) confirm
the variation and show enhanced cosmic-ray ionization values
toward some of the denser gas. It has therefore become more and
more clear that cosmic-ray ionization rates can vary by orders of
magnitude depending on the protostellar stage as well as on the
environment in which the star is forming.

Wurster et al. (2018c) carried out a parameter study of the very
early protostellar collapse phase with all three non-ideal MHD
effects using resistivities corresponding to cosmic-ray ionization rate
in the range of ζ ∼ 10−30 s−1 to ζ ∼ 10−10 s−1. For ζ ≳ 10−14 s−1, the
models evolve similar to the ideal MHD models, while the outcome
becomes diminishingly different from pure hydrodynamical models
for ζ ≲ 10−24 s−1. Similarly, Kuffmeier et al. (2020) demonstrated that
the assumption of a higher (smaller) cosmic ray ionization rate
leads to stronger (weaker) magnetic braking, and thereby to smaller
(larger) disks. Considering the various environments in which star-
formation occurs, the effect of non-ideal MHD is expected to
differ significantly between the regions (see also discussion and
speculation about starburst galxies or theGalactic Center byWurster
and Li, 2018).

2.2 Dust

2.2.1 The role of dust on the resistivities
The resistivities are also affected by the assumed dust

distribution (Zhao et al., 2018; Koga et al., 2019; Marchand et al.,
2020). For a distribution with a large number of small grains (≲
10 μm), the resistivities become smaller as the grains adsorb charged
particles. Early studies by (Mellon and Li, 2009; Li et al., 2011)
assumed a distribution in which such small grains were present.
However, grains are expected to grow efficiently beyond 10 μm
in dense cores, which implies that higher resistivities are expected.
Considering dust growth during the collapse, Lebreuilly et al. (2023)
showed how the resistivities can drastically change. Models by
Tsukamoto et al. (2023a) also show the effect of dust growth on
the resistivities, but they also find a convergence towards a more
steady distribution once the grains have grown beyond 1 mm in size,
such that the resistivities for ambipolar diffusion can be described by
density-dependent power-laws of ηAD ∝ n−0.5 for densities ρ ≲ 10−13

g cm−3. Studying the relative importance on the resistivities of the
size distributionwith the cosmic-ray ionization rate, Kobayashi et al.
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(2023) find that the size distribution is a less significant factor
compared to the cosmic-ray ionization rate.

2.2.2 Incorporation of dust dynamics and growth
in collapse models

In the context of planet formation, essential ingredients to
incorporate in themodels are dust dynamics and dust growth.This is
particularly important considering the growing evidence for an early
onset of planet formation. Some (magneto-)hydrodynamicalmodels
started to include the dynamics of dust in young forming disks
in spherical collapse simulations. Vorobyov et al. (2019) and Bate
(2022), independently carried out hydrodynamical simulations of
disk formation inwhich they included the dynamics of dust particles
during disk formation. Consistent with analytical predictions, they
find size-dependent radial drift of dust particles. Lebreuilly et al.
(2020) demonstrated that dust drifts toward the inner part of
the disks with larger grains accumulating in the inner parts of
the disk, where they cause an enhanced dust-to-gas ratio. More
recently (Vorobyov et al., 2024), followed up on their earlier work
that already included dust growth and drift, by also accounting for
the back-reaction of the dust on the gas (Stoyanovskaya et al., 2018).
They concluded that the dust-to-gas ratio becomes high enough for
the onset of planetesimal formation after only ∼20 kyr. Considering
the different properties of dust particles depending on their size
and the underlying gas density in this context, Stoyanovskaya et al.
(2020) highlighted the importance of the underlying Mach number
on the assumption of the drag coefficients.

Tsukamoto et al. (2021) also modeled the drift of dust particles
during the collapse, but also considered grain growth. In contrast
to Lebreuilly et al. (2020), they find that a fraction of the dust
particles can be elevated by an outflow in the inner part of the disk,
become entrained in the envelope, and eventually fall back onto the
outer part of the disk. This idea is conceptually similar to earlier
scenarios suggested to explain the transport of the oldest solids in
the Solar System, namely, CAIs and chondrules (Shu et al., 1996;
1997). Tsukamoto et al. (2021) envision a scenario of multiple cycles
that contribute to grain growth. The dust grains drift through the
disk, grow during the drift phase, are ejected through an outflow
in the inner disk and fall back onto the outer disk as a larger
grain. Considering multiple cycles of this mechanism, this could
lead to a grain size distribution in the disk that is shifted towards
larger grains and which should be imprinted in the dust opacity
spectral index of the envelope around the forming star-disk system.
Considering the meteoritic record, the transport mechanism could
potentially explain the imprints of reprocessing reported for some
chondrules. Recently, Cacciapuoti et al. (2024) followed up on this
transport scenario by measuring the dust opacity spectral index in a
few cores with outflows. Their results do not reveal an unambiguous
correlation of dust growth with outflow strength though and future
observations are required to further test the scenario.

3 Beyond isolated spherical collapse

While variations in disk sizes between different models with
non-idealMHDare often solely explained as a sign of the underlying
non-ideal MHD resistivities, another aspect tends to be overlooked,
namely, the role of the initial and boundary conditions. It is a

challenge to draw conclusions about the importance of individual
effects from results that were obtained using different model setups
codes. Some groups start from initial conditions assuming a density
profile according to a Bonnor-Ebert (BE) sphere, whereas others
start with a uniform density distribution. Considering this general
issue, the parameter study by Machida et al. (2014) stands out in
terms of constraining the role of various effects.They adopted several
model setups that were previously used by groups (Hennebelle and
Ciardi, 2009; Li et al., 2011; Machida et al., 2011; Joos et al., 2012;
Krasnopolsky et al., 2012; Seifried et al., 2012) and recomputed
those models with their own code. Activating the same non-ideal
MHD effects and starting from similar initial mass-to-flux ratios,
they found significant differences in disk formation depending on
the assumption of the initial density profile. Models starting with a
uniform density distribution led to disk sizes of the order of 10 au,
while models starting with a density distribution of a Bonnor-Ebert
sphere yield larger disk sizes of about 100 au. They also emphasized
the role of the accretion recipe onto a sink. Under identical initial
conditions, allowing the sink to accrete from a smaller region in its
vicinity favors the formation of larger disks compared to a sink that
is allowed to accrete from a larger region.

These results point to a more fundamental issue of modeling
individual star formation as the outcome of the collapse of an
isolated sphere. In fact, Larson (1969) stated already that they
assumed ‘the simplest assumptions’ on the boundary condition
and they ‘again adopted the simplest assumptions’ for the initial
conditions in the spherical collapse scenario. While the assumption
of spherical collapse has proven to be very helpful in constraining the
effect of various physical parameters during collapse, it is important
to keep inmind that reality candiffer significantly from this idealized
approximation. It seems that the assumption of spherical symmetry
is a fair assumption for the earliest phase of protostellar collapse
corresponding to the formation of the first and second core, and
model predictions about the properties of protostars during the first
few thousands of years are likely to be very accurate - except for the
uncertainty of the ionization rate at these early stages.

However, (almost) all of the observed disks are significantly
older than 103 yr–even those associated with protostars that are
classified as Class 0 objects. Observations revealed that stars are
embedded in filamentary molecular clouds, and that they, at most,
rarely form in isolation. Their formation and evolution is influenced
by the environment in which they form and evolve. Variations of the
magnetic field strength, the level of turbulence or the cosmic-ray
ionization are factors that determine disk formation. These effects
can be incorporated in spherical collapse models by varying the
initial conditions within the core, relying on the crucial assumption
that once a core has formed with specific initial conditions it can be
considered as being detached from the dynamics and processes in
the molecular cloud.

We know, however, from observations that the morphology
of prestellar cores is significantly affected by the underlying
dynamics in filamentary Giant Molecular Clouds (André et al.,
2014; Kainulainen et al., 2017; Hacar et al., 2023; Pineda et al.,
2023).This implies to investigate the process of disk formationwith a
different approach than the spherical core setup has become timely.
As of today, there are relatively few studies compared to the large
number of classical collapse models that account for larger-scale
dynamics, such as infall or binary interaction, in the context of
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disk formation. Both stellar encounters as well as infall have been
modeled in computing-intense zoom-in simulations as well as in
simplified model setups that allow to carry out cheaper models in
terms of computing-time. In the following, we will summarize the
efforts made in recent years distinguishing between the progress
made in models that were configured to model specific scenarios
through parameter studies and compute-intensemodels that aim for
resolving the processes in multi-scale simulations.

3.1 The role of infall

Considering the presence of accretion streamers even around
presumably evolved stars, it is becoming increasingly evident
that disk formation models need to take into account for the
possibility of infall that is often anisotropic (Kuffmeier et al., 2017;
Kuznetsova et al., 2019; 2020). Currently most of the numerical
constraints on infall are frommodels thatmodel the cloud dynamics,
but do not resolve the formation of disks. Padoan et al. (2014)
demonstrated that infall through Bondi-Hoyle accretion can induce
accretion bursts that are a prominent explanation for the luminosity
problem. Moreover, in line with the interpretation of the inertial
flow model proposed by Padoan et al. (2020), Pelkonen et al. (2021)
showed that a significant amount of the material accreting onto
the star was initially not gravitationally bound to the core, and the
relative mass fraction of accreting material scales with the final mass
of the star. This is also consistent with earlier results by Smith et al.
(2011), who reported a prolonged accretion history of the more
massive stars in their hydrodynamical simulations of a turbulent
cloud. Following up on these results, Kuffmeier et al. (2023) also
showed that a Class II young stellar object can return to Class I or
evenClass 0 phase in the event ofmassive infall. It remains to be self-
consistently modeled how the disk reacts to such events. However,
there are parameter studies that considered the effect of individual
infall events on the properties of star-disk systems.

Starting from spherical collapse models, several groups
considered the case of infall from the envelope onto an existing
disk (Bae et al., 2015; Lesur et al., 2015; Vorobyov et al., 2015;
Kuznetsova et al., 2022). They all find that the infall can trigger
instabilities in the disk. Carrying out hydrodynamical simulations,
Vorobyov et al. (2015) showed that infall can trigger gravitational
instabilities that trigger accretion bursts of the star. Bae et al. (2015)
and Kuznetsova et al. (2022) find that these infall events trigger
Rossby-wave instabilities, which Kuznetsova et al. (2022) attribute
as possible seeds for gap, ring and structure formation in disks.
Considering the possibility of misaligned infall from the envelope,
Thies et al. (2011) demonstrated in hydrodynamical simulations
of a collapsing sphere with differences in the angular momentum
orientation of the outer infalling radial layer that such infall can
induce the formation of an outer disk that is misaligned with respect
to the primordial inner disk. Considering the indications for late,
post-collapse infall, Dullemond et al. (2019) developed a model of
cloudlet capture, in which a low-mass gaseous cloudlet encounters
a star modeled as a point mass with an impact parameter. As a
result of the encounter the hydrodynamical simulations carried
out with the PLUTO code showed the formation of extended arm
features similar to structures seen around Herbig stars such as
for instance AB Aurigae. The formation of such an extended

arm (streamer) was also reported in the cloudlet capture models
by Hanawa et al. (2022, 2024). Kuffmeier et al. (2020) followed
up on the cloudlet capture scenario by carrying out simulations
with the AREPO code, in which they showed that such encounters
cannot only lead to the formation of extended arms, but also to
the formation of a second-generation disk. In the presence of an
already (or still) existing primordial disk, such an event can lead
to the formation of a system consisting of misaligned inner and
outer disk (Kuffmeier et al., 2021), which is observable as shadows
in the outer disk in scattered light observations (Krieger et al., 2024).
SU Aur is the most prominent candidate that might undergo such
an event today (Ginski et al., 2021). The cloudlet capture scenario
has also been adopted by Unno et al. (2022), who considered an
encounter of a magnetized cloudlet. They showed that the event
can lead to magnetic acceleration of the existing inner disk for a
favorable orientation of the magnetic field of the cloudlet compared
to the field orientation in the disk.

3.2 Clump to disk

Bate (2018) carried out 3D hydrodynamical simulations with
3.5× 107 particles to produce the first disk population synthesis
study. As an initial condition of the simulation, they assumed a
sphere with radius 0.404 pc. The mass of the cloud was set to 500
M⊙, which corresponds to a density of 1.2× 10−19 g cm−3. Simulating
the extended range of scales came at the cost of reduced physics
compared to state-of-the-art simulations of spherical collapse
simulations. Radiative transfer was included, but magnetic fields
were not taking into account such that magnetic braking is not
accounted. The cloud was initialized with a supersonic velocity field
to account for turbulence in the cloud by generating a divergence-
free random Gaussian velocity field with a power spectrum scaling
with wave number k as P(k) ∝ k−4, which is the same recipe as used
in previous works by Ostriker et al. (2001) and Bate et al. (2003).
The resultingmeanMach number wasM = 13.7.The simulationwas
run for 1.2 free-fall times, which corresponds to about 220 kyr. By
the end of the simulations, it showed a diverse distribution of more
than 100 disks. Interestingly, there sample shows a non-negligible
distribution of more exotic configurations such as misaligned or
even counter-rotating disks that are the result of infalling material
after the initial formation phase or form via interaction with other
stars through stellar encounters. Moreover, the cloud dynamics led
to the formation of circumbinary and circummultiple disks. Using
the same setup as Bate (2019), Elsender and Bate (2021) investigated
the role of the metallicity on the disk distribution. They used
metallicities of 0.01, 0.1, 1, and 3 times the solar metallicity, and they
find that disk sizes decrease for decreasingmetallicities in the clump.
In a further follow-up study, Elsender et al. (2023) investigated the
frequency of circumbinary disks and they find that 90% of close
binaries (separation less than one au) host disks. Their distribution
of circumbinary disks is bimodal with a second enhanced fraction
of about 50 % for binaries with a separation of about 50 au.

In the case of Bate (2018), simulating the extended range of
scales came at the cost of reduced physics compared to state-of-the-
art simulations of spherical collapse simulations. Radiative transfer
was included, but magnetic fields were not taking into account
such that magnetic braking is not accounted. Lebreuilly et al. (2021)
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followed a similar approach of modeling the formation of stars
dynamics of a massive turbulent sphere with an initial mass of 1,000
M⊙ and radius ofR0 ∼ 0.38 pc, butwithmagnetic fields included.The
cloud is initialized with a ratio of thermal-to-gravitational energy
of α = 5R0kBT0

2GM0μgmH
with Boltzmann constant kB, a defined temperature

T0, clump mass M0, mean molecular weight μg and the mass of a
hydrogen atom mH. The simulations include magnetic fields and
they account for ambipolar diffusion using the adaptive mesh-
refinement MHD code RAMSES. The initial average Mach number
is set seven and the mass-to-flux ratio is set to μ = 10. Overall,
Lebreuilly et al. (2021) draw a similar conclusion to Wurster et al.
(2019) that disk formation is a frequent outcome of star formation
regardless of idealMHDornon-idealMHD. Interestingly, there is no
significant difference in mean disk size between the ideal and non-
ideal MHD run, the mean disk size for the ideal MHD runs are even
slightly larger.

The authors caution nonetheless state that non-ideal MHD
is important for disk formation. Based on the results of collapse
simulations with higher resolution (Joos et al., 2013) they expect
that magnetic braking will be more efficient and the disks therefore
smaller if the resolution at the highest levels was higher than
∼1 au. In a follow-up study, Lebreuilly et al. (2024a) extended the
parameter space by carrying out five additional simulations with
similar setups. In one simulation, they carried out the identical
simulation, but increased the accretion luminosity efficiency of
sink particles from 0.1 to 0.5. The result is an increase of
radiative feedback, which leads to more thermal support and less
fragmentation in the clump. The resulting number of sink particles
in the run with increased accretion luminosity efficiency is very
similar to the result obtained for the ideal MHD run, but accretion
luminosity efficiency of 0.1. As expected, an increase of the initial
mass-to-flux ratio from 10 to 50 results in an increase of the final
number of stars by more than 50%. The star-formation efficiency
increases by more than a factor 2 for runs with half the initial
mass (500 M⊙ instead of 1,000 M⊙), and hence twice the initial
thermal-to-gravitational energy ratio. Finally, the authors report
an increase in star-formation by about 40%, when adopting a
barotropic equation-of-state instead of treating the radiative transfer
with the flux-limited-diffusion recipe (Commerçon et al., 2011;
2014). Regarding the disk population, the authors conclude that
disk formation is ubiquitous for all setups. In addition, the disk
population is practically the same regardless of account for outflows
or not although outflows reduce the accretion rate, and hence the
luminosity of the protostar (Lebreuilly et al., 2024b). Similarly to the
hydrodynamical models by Bate (2018) the derived disk sizes are in
approximate agreementwith observations regardless of ideal or non-
ideal MHD (e.g., Maury et al., 2019; Sheehan et al., 2022), while the
diskmasses are systematically higher in themodels compared to disk
masses derived from observations (Sheehan et al., 2022).

Comparing the ambipolar diffusion runs with mass-to-flux
ratios of μ = 10 and μ = 50, the study shows that the disk sizes in the
less magnetized run are significantly larger by about 30% to 50%,
which confirms the effect of magnetic fields on the disk size during
their formation.Considering the difference between themodelswith
idealMHD and ambipolar diffusion, the authors point out, however,
that the conditions in the disks are significantly different. In the ideal
MHD case, the magnetic field strength in the disk is significantly
higher implying plasma-beta values of β < 1 in the disk, while the

disks in the ambipolar diffusion case are generally dominated by
thermal pressure with 1 < β < 100.

3.3 Giant Molecular Cloud to disk

While the clump-models by Bate (2018); Elsender and Bate
(2021) as well as Lebreuilly et al. (2021, 2024a) allowed to derive disk
population synthesis, the models starting from an initial spherical
clump of < 0.5 pc cannot truly account for the Giant Molecular
Cloud dynamics. While it is common practice to study star
formation in molecular cloud simulations, almost all models do not
have the resolution to resolve the scales necessary to form disks. The
zoom-in simulations by Kuffmeier et al. (2017) mark an exception
in this regard. They modeled the dynamics of a Giant Molecular
Cloud including supernova feedback from massive stars that drives
the turbulence in 3D simulations of a cubical box with 40 pc in
length and assuming periodic boundary conditions.The simulations
included magnetic fields and solved the equations of ideal MHD.
Using the zoom-in technique, they then resolved the formation of six
stars with highest resolution of two au, and of three additional stars
with highest resolution of eight au. The temperature in the cloud is
computed using tables for heating and cooling, though the gas at
highest densities corresponding to the inner ∼100 au is treated as
quasi-isothermal with a temperature of 10 K. The study showed a
diversity of the disk formation process and demonstrated that star
formation is a heterogeneous process depending on the parental
environment. In fact, the models predicted the frequent occurrence
of filamentary accretion channels that feed the young disk with fresh
material from the environment. On scales of 10 to ∼100 au, this
filamentary mode of accretion through streamers is consistent with
results from previous protostellar collapse models with turbulence
as first prominently reported by Seifried et al. (2013) and as also
seen by other groups (Offner et al., 2010; Joos et al., 2013; Li et al.,
2014; Heigl et al., 2024). On larger scales, the star-disk systems
forming in more turbulent and massive environments are also fed
with additional material through filamentary arms on core scales
and beyond ∼1000 au to 10,000 au. Independently, He and Ricotti
(2023) carried out zoom-in simulation for massive cores of ∼10 M⊙
to ∼100 M⊙ in size starting from a Giant Molecular Cloud down to
a disk forming around a massive star using radiative transfer MHD
simulations. The dynamical range is similar in the high resolution
case (≈7 au) and the study also reveals a connection of the forming
disks to themolecular cloud environment through filamentary arms
of ∼1000 to ∼10000 au in length. Considering bridge structures
of ∼1000 au in length similar to those observed for IRAS16293,
Kuffmeier et al. (2019) showed and Lee et al. (2019) independently
confirmed that such structures can occur as transient phenomena
during protostellar multiple formation in a turbulent environment.

Kuffmeier et al. (2018) also carried out a zoom-in simulations
for one of the stars with a resolution as high as 0.06 au
for a time interval of 1,000 years at about 50 kyr after star
formation. These simulations resolved the infall of a gas blob
onto the disk that triggered a gravitational instability that was
responsible for an accretion burst. While the dynamical range
of the simulation allowed to take into account for the larger
scale environment, important physical effects such as non-ideal
MHD and/or a more realistic treatment of the thermodynamics
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FIGURE 2
Illustration of heterogeneous star formation and possible outcomes of
disk formation in a Giant Molecular Cloud. The upper panel shows the
density fluctuations in a filamentary cloud based on
data from (Kuffmeier et al., 2017). The remaining part sketches
different stages of the disk. The left inset shows a young disk with a
strong magnetically-induced outflow enclosing a jet, the middle inset
shows infall through a streamer solely delivering material, while the
right inset shows the scenario where infall leads to the formation of a
misaligned outer disk during a late infall event. The cartoons were
made by Martine Lützen, a former Master student at the Niels Bohr
Institute.

was lacking in these models compared to state-of-the-art models
of spherical collapse. The challenge for the upcoming decade
will be to fill the gap between spherical collapse models with
advanced multi-physics treatment, but highly idealized initial and
boundary conditions, and multi-scale models that self-consistently
account for the GiantMolecular Cloud dynamics, but lack advanced
treatment of relevant physical processes. The improvements of
infrastructure of more powerful supercomputers together with
optimized numerical codes that enable more efficient computing
(e.g., Hopkins, 2017; Nordlund et al., 2018; Price et al., 2018;
Stone et al., 2020; Weinberger et al., 2020) allow us to accept this
challenge. This also includes the possibility to account for stellar
feedback mechanisms that can shape and affect disk formation.
For instance, UV radiation feedback plays an important role for
the overall cloud dispersal as shown in radiation hydrodynamics
models (Kim et al., 2018; Fukushima et al., 2020). Together with
implementations of protostellar outflows, e.g., Guszejnov et al.
(2021) or Lebreuilly et al. (2024b), these are potentially important
effects shaping the accretion process of stars and thereby their disks.
More recently, as part of the STARFORGE initiative (Grudić et al.,
2021), Guszejnov et al. (2022) already demonstrated the possibility
to study supernova feedback, stellar radiation, protostellar jets and
winds together in one simulation. Continuing these efforts while
applying high enough resolution will allow us to test the frequency
and properties of various outcomes of infall-induced features such as
misaligned disks or disk instabilities that are possible outcomes of a
heterogeneous star formation process happening inGiantMolecular
Clouds (see illustration in Figure 2).

4 Reflections and outlook

Since the first models of protostellar collapse of a
spherical core (Larson, 1969), there have been a lot of successful
efforts in improving our understanding of protostellar formation. It
is possible to resolve the collapse with a resolution that even allows
to model the dynamics within the inner one au of the forming
protostar, while there also as has been systematical incorporation
and testing of additional physical effects. Starting from the crucial
assumption for disk formation of initial rotation, models have
improved to a degree where it is possible to account for more
subtle effects such as the role of the ionization rate or the dust
size distribution on the resistivities, which modify the efficiency of
magnetic braking of the forming disk.

Regarding initial and boundary conditions, the assumption
of spherical collapse of an isolated prestellar core has proven to
be successful as a the commonly used, fiducial assumption to test
and compare the parameter space. In fact, the early ALMA images
of dust continuum (Partnership et al., 2015; Andrews et al., 2018),
despite their substructures and diversity, gave the impression as
if the disks are indeed isolated entities that can be considered
detached from the environment in which they are embedded
in. However, today we know that there is a severe observational
bias in observing dust emission at relatively large wavelength
of about 1 mm. Gas observations of disks, reveal a different
picture (Öberg et al., 2021) than dust continuum images obtained
at ∼1 mm wavelength. First, the gaseous parts of disks are
significantly larger and less structured. The smaller size of the
dusty parts of disks can be explained by radial drift of dust
particles (Weidenschilling, 1977). Second, and of fundamental
importance for our assumptions on the initial and boundary
conditions of our models, there is clear evidence of filamentary
arms, nowadays commonly referred to as streamers (Pineda et al.,
2023). It is especially striking that HL Tau, the prime target of
ALMA, hosts a prominent streamer (Yen et al., 2019) that impacts
the disk (Garufi et al., 2022). By now, observations of various
chemical tracers confirmed streamers on multiple scales ranging
from small spiral-like features of a few 10 to 100 au in length
around young disks with ongoing dust growth (Oph IRS63)
(Segura-Cox et al., 2020; Flores et al., 2023; Segura-Cox, 2023) to
arcs that are several 1,000 au in length associated with prestellar
cores (Per-emb-2) (Pineda et al., 2020). There is also observational
evidence for streamers associated with ongoing simultaneous star
and planet formation in the cases of [BHB2007]-1 (Alves et al.,
2020), and (Per-emb-50) (Valdivia-Mena et al., 2022). A systematic
search of streamer candidates in NGC 1333 revealed a fraction
of ≈40% associated with young protostellar sources (Valdivia-
Mena et al., 2024). The detection of large-scale streamers that
are supposed to replenish the mass reservoir for star and disk
formation is consistent with modeling results that predict infall
of a substantial fraction of the accreting mass that was initially
not bound to the prestellar core (Smith et al., 2011; Pelkonen et al.,
2021; Kuffmeier et al., 2023). In addition, models of star formation
in a Giant Molecular Cloud show that for many stars a significant
amount of the final stellar mass accretes late (i.e., > 100,000 years
after stellar birth) and it is considered as a probable solution to
the luminosity problem of protostars (Padoan et al., 2014). It is
consistent with observations of streamers around more evolved
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Class II Young Stellar Objects such as AB Aur (Grady et al.,
1999), SU Aur (Akiyama et al., 2019; Ginski et al., 2021), GM
Aur, (Huang et al., 2021), Elias 2-27 (Paneque-Carreño et al.,
2021), DR Tau (Mesa et al., 2022; Huang et al., 2023), RU Lup
(Huang et al., 2020), DO Tau (Huang et al., 2022) as well as strong
indications of late infall from statistics of reflection nebulae (Gupta
et al., 2023).

As elaborated in Section 3.1, the late addition of gas with
substantial angular momentum even offers an additional path
to disk formation beyond the initial protostellar collapse phase.
In agreement with earlier suggestions by Padoan et al. (2005),
Kuffmeier et al. (2023) demonstrated that the larger contribution
of late infall can explain the subtle trend of larger disk sizes
for increasing mass of the corresponding host stars seen in CO
observations (Long et al., 2022). Furthermore, the infall of material
is typically misaligned with respect to the orientation of the
star-disk system (Kuffmeier et al., 2024), especially at later stages
(Pelkonen et al., 2024), leading to a more chaotic pathway of star-
disk formation (Bate et al., 2010). Most recently, conceptual papers
followed up on the possibility of post-collapse disk formation
arguing that a significant amount of observed Class II disks are
in fact the result of prolonged Bondi-Hoyle like accretion in the
turbulent interstellar medium (Padoan et al., 2024; Winter et al.,
2024). If this mode of second-generation disk formation proves
to be significant, it also implies that interpreting surveys of stellar
age-dependent disk fractions (Haisch et al., 2001; Mamajek, 2009;
Richert et al., 2018) solely as an outcome of the evolution of either
viscous or wind-driven disks (e.g., review by Manara et al., 2023,
and references therein) is misleading. In the post-collapse infall
picture, the lower fraction of disks around more evolved stars
instead reflects the decreasing probability of experiencing mass
replenishment through late gas encounters. Disks around older
stars should instead be considered as either disks that experience
prolonged mass replenishment or as second-generation disks that
formed several million years after the initial protostellar collapse
phase through post-collapse gas encounters.

Considering the compelling observational evidence, we have
recently started to consider filamentary accretion via streamers
as part of the disk formation process. The effect of infall on the
processes in the disk and their impact on planet formation has
only been poorly investigated yet, though infall through streamers
may be of key importance (Bae et al., 2015; Lesur et al., 2015;
Kuffmeier et al., 2018; Kuznetsova et al., 2022). In particular, infall
likely plays an important role in.

• regulating the disk size,
• triggering instabilities in young disks and thereby initiating

substructures,
• inducing misaligned disks visible as shadows in scattered light

observations,
• seeding finite amplitude pressure traps,
• potentially modifying the chemical composition of

planetary systems,
• resetting the disk entirely.

Also we commonly use the term ‘streamer’ regardless whether
it describes filamentary infall on scales of ∼10 au onto a very
young disk or a ∼103 au elongated arm associated with an

evolved YSO Class II object. All streamers, to some extent, reflect
the turbulent nature of Giant Molecular Clouds, but there are
indications from modeling that there are differences in their origin.
While small-scale accretion streamers around young stars were
already seen in spherical collapse models of individual protostars,
larger scale arms around more evolved stars were best described
by a star capturing material during an encounter with dense
gas, for simplicity assumed as a cloudlet of gas in early models
(Dullemond et al., 2019; Kuffmeier et al., 2020). This suggests that
the small-scale streamers might be a direct outcome of gravitational
collapse with perturbations induced by turbulence, whereas the
latter is analogous to Bondi-Hoyle like accretion with an impact
parameter.This interpretation would be consistent with the scenario
that star formation is a two-stage process (Kuffmeier et al., 2023), or
three-phase when including the process leading to core formation
in the sequence (Padoan et al., 2020), consisting of an early collapse
phase followed by an optional post-collapse phase of material
that is initially not gravitationally bound to the collapsing core.
Apart from that, the majority of stars is associated with stellar
multiples (Duquennoy and Mayor, 1991; Connelley et al., 2008;
Raghavan et al., 2010), and multiplicity is already common among
young, deeply embedded protostars (Chen et al., 2013; Tobin et al.,
2015). In this context, it will be important to consider the
possible effects and perturbations through stellar interactions that
may well affect the properties of disks, too (see for instance
reviews by Offner et al., 2023; Cuello et al., 2023, and references
therein).

What is lacking at the current stage is a model that allows us to
distinguish between the relevance and occurrence of the different
modes without an intrinsic bias in the model setup that favors or
even excludes possibly important scenarios. A self-consistent model
of the accretion process of star-disk systems with high resolution
together with the molecular cloud dynamics for long enough times
(i.e., beyond ∼1 Myr) would fill this gap. Developing such models
is particularly timely considering the progress in the field of planet
formation. While it has been broad consensus that planets form
in protoplanetary disks that themselves are a byproduct of the
star formation process happening in Giant Molecular Clouds, the
traditional understanding of considering disk formation isolated
from the molecular cloud dynamics still is the leading paradigm
when considering planet formation. This picture has been and is
increasingly disrupted in recent years, such that we are moving to a
more dynamic interconnected picture of star and planet formation.
Since the advent of Herschel, it is clear that molecular clouds are
filamentary in nature with cores generally forming associated with
these filaments.This implies that the individual cores are less isolated
than in the traditional illustration of a protostar that forms at the
center of a symmetrical core. Moreover, observations of rings and
gaps in dust continuum images of disks are commonly interpreted
as signs of ongoing dust growth, which is a necessary precursor of
planet formation. This led to a paradigm shift towards an onset of
planet formation in embedded disks as it is reflected by a change
in terminology from referring to circumstellar disks as ‘planet-
forming’ rather than ‘protoplanetary’. Accepting the revised picture
implies that planet formation already occurs at a time when the disk
is still in its formation phase and prone to infall. Nowadays, star
and planet formation are therefore considered as processes that are
much more interlinked than we used to think for many decades.
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From a technical point of view, the challenge for the upcoming
years will be to connect state-of-the-art multi-physics models with
multi-scale models that currently lack parts of the physics that
is important for disk formation on smaller scales. Future models
will allow us to fill the currently existing gap in understanding to
what extent the properties of disks are governed by the protostellar
environment and how frequent various outcomes such as infall-
induced misaligned disks and instabilities are. The prospects in
succeeding with this task are bright. Some models have already
succeeded in resolving young disks with a resolution of less than
0.1 au in the context of a magnetized Giant Molecular Cloud that
is ∼10 au in scale. Others provided first synthetic disk populations
based on disk formation in a star-forming clump with non-ideal
MHD. The increasing necessity to account for the star formation
process against the background of a presumably early onset of
planet formation in embedded disks together with the tremendous
development of computational resources and techniques for the
exascale era of supercomputing, will presumably lead to rapid
progress in our understanding of disk formation and evolution by
the end of the decade.
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