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Multi-messenger observations and theories of astrophysical objects are rapidly
becoming a critical research area in the astrophysics scientific community. In
particular, point-like objects such as BL Lacertae (BL Lac) objects, flat-spectrum
radio quasars (FSRQs), and blazar candidates of uncertain type (BCUs) are of
distinct interest to researchers studying the synchrotron, Compton, neutrino,
and cosmic ray emissions sourced from compact objects. Notably, there is
also much interest in the correlation between multi-frequency observations of
blazars and neutrino surveys on source demographics. In this review, we look
at such multi-frequency and multi-physics correlations of the radio, X-ray, and
γ-ray fluxes of different classes of blazars from a collection of survey catalogs.
This multi-physics survey of blazars shows that there are characteristic cross-
correlations in the spectra of blazars when considering their multi-frequency
and multi-messenger emission. In addition, a review of cosmic ray and neutrino
emissions from blazars and their characteristics is presented.
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high-energy astrophysics, multi-messenger astrophysics, supermassive black holes,
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1 Introduction

Active galactic nuclei (AGN) are the largest, most luminous, and persistent extragalactic
objects observed in the Universe. These sources feature emissions across the full gamut of
electromagnetic spectra, from radio to γ-ray up to ultra-high-energy cosmic rays. AGN,
in general, encompass a large population of the high-energy γ-ray sources in the known
Universe, comprising nearly 61.4% of the 5,064 γ-ray sources in the most recent completed
update to the Fermi-LAT 4FGL catalog (Abdollahi et al., 2020). Blazars and other point-
like objects such as misaligned AGN or radio galaxies (Abdo et al., 2010a) and Narrow-
Line Seyfert 1 galaxies (D’Ammando, 2019), which feature similar emission patterns and
mechanisms, play an essential role in our understanding of the high-energy Universe,
potentially revealing crucial information about the evolutionary process of itself and the host
galaxy. Blazars are of particular interest as they allow for direct observations of the relativistic
jet emission and the resulting luminosity amplification due to the Doppler boosting of the
emission. They are characterized by their extreme variability, high polarization, radio-core
dominance, and superluminal velocities (Liu, 2009; Fan et al., 2016) and vary widely in
time scales ranging from minutes to hours (intra-day variability), weeks to months (short-
term variability), and months to years (long-term variability) (Wagner and Witzel, 1995;
Gupta et al., 2016). They are known to show two prominent broad-spectral features: the
first peak is the result of synchrotron radiation, and the second bump is potentially the
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result of inverse-Compton emission (Gupta et al., 2016;
Valverde et al., 2020) that dominates leptonic models.
The corresponding hadronic models in blazar spectral
energy distributions (SEDs) result from the higher-energy
proton–synchrotron emission resulting from cascades of protons
and pions in photo-meson productions (Böttcher, 2007; Cerruti,
2020). Blazars are categorized into two main subclasses, BL
Lacertae (BL Lac) objects and flat-spectrum radio quasars (FSRQs)
(Fan et al., 2016; Zhang and Fan, 2018; Kramarenko et al., 2021;
Prandini and Ghisellini, 2022; Mohana A et al., 2023), along with a
somewhat chameleon type of subclassification called changing-look
blazars (Kang et al., 2024). The most notable differences between
the two classes are the contrasts in emission lines. BL Lacs produce
weakly peaked emission lines, while FSRQs produce very strong
emission lines (Liu, 2009). The history of blazar unification has been
a long-standing problem in AGN observations (Urry and Padovani,
1995; Fossati et al., 1998; Padovani et al., 2017; Rieger, 2019).

The Fermi-LAT collaboration (Atwood et al., 2009) has
generated one of the most extensive catalogs of AGN in the high-
energy regime (Ajello et al., 2020; Abdollahi et al., 2020; Ballet et al.,
2023). A growing number of developing probe and mission
concepts are dedicated to the multi-messenger aspects of observing
these energetic objects with variable emissions. Additionally,
when considering correlations of higher-energy observations
with radio emissions of blazars, the joint Monitoring Of Jets in
Active galactic nuclei with VLBA Experiments (MOJAVE)–FERMI
(Lister et al., 2011) catalog correlates these emission regimes
observed by Fermi-LAT and MOJAVE collaborations. Similarly,
on the lower end of the frequency spectrum, the MOJAVE
(Lister et al., 2009) is stated as being a long-term program that
observes the brightness and polarization of radio jets in AGN.
Furthermore, sources are continuously added to the joint MOJAVE-
FERMI AGN catalog (Kramarenko et al., 2021). Recommendations
from the Pathways to Discovery in Astronomy and Astrophysics
for the 2020s (Astro2020) (National Academies of Sciences and
Medicine, 2023) have generated a number of products and

initiatives that prioritize science gaps for time-domain and multi-
messenger (TDAMM) (ESA/ATG medialab, 2023) astrophysics.
The γ-ray Transient Network Science Analysis Group (GTN
SAG) (Burns et al., 2023) and various workshops and conferences
solicit community synergy like that of the TDAMM workshop:
The Dynamic Universe: Realizing the Science Potential of Time
Domain and Multi-Messenger Astrophysics, was held following the
recommendations from the National Academies of Sciences and
Medicine (2023).

The remainder of this review is organized as follows: Section 2
provides a focused description of state-of-the-art physical
characteristics of blazars and their emitted jets across amulti-physics
regime looking at the intersecting physics of jet launching; Section 3
reviews current efforts that explore multi-spectral correlations and
variability in blazars; and lastly, we end this paper with a discussion
on multi-messenger science gaps, making parallels with other high-
energy point-like objects that show similar emission characteristics
as blazars. This section also highlights ongoing efforts and projects
that attempt to reveal new areas of scientific interest in relation to a
central black hole.

2 Multi-physics characteristics of
blazars

2.1 Power spectrum

Relativistic jets comprise non-thermal emissionwithin the AGN
spectra, ranging from synchrotron sources of radio emission to
higher-energy γ-ray and even cosmic ray emissions as can be seen
in Figure 1. The power spectrum associated with synchrotron and
self-synchrotron emission can be determined using Eq. 1 below

P (ν) =
√3e3B sin α

mec
2 ( ν

νc
)∫
∞

ν/νc
K5/3 (η)dη, (1)

FIGURE 1
Properties of relativistic jet spectra and their corresponding radiation transfer phenomena (Gamble, 2022).
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where the critical frequency, νc, is given by

νc =
3
2
γ2νG sin α, (2)

with νG as the gyrofrequency. The parameters B,α, and ν are
the magnetic field strength, pitch angle, and emission frequency,
respectively. The integral in the synchrotron power function
here is characterized by the modified Bessel function of the
second kind K5/3(η), where η is defined as the ratio of the
frequency to critical frequency νc. Additionally, their spectra
can be determined using various observational data analysis
methods and SED correlation schemes (Homan et al., 2021).
Current data analyses from observational missions have shown
that the SEDs of BL Lacs and FSRQs exhibit significant continuum
variability in their observed frequency bands (Harris and
Krawczynski, 2006; Abdollahi et al., 2020; Valverde et al., 2020;
Mohana A et al., 2023). These spectral data can be connected
back to the black hole–disk system to infer the local properties of
the surrounding accretion disk (i.e., matter content, dust/plasma
temperature, and particle accelerations/scatterings) but are
limited in describing the gravitationally induced dynamics of the
relativistic jet (Gamble, 2022).

2.2 Jet emission mechanisms

Currently, the mechanisms for relativistic jet emissions
associated with AGN and other high-energy astrophysical objects
like γ-ray bursts (GRBs) and microquasars are of interest in
the astrophysics scientific community. Jet formation theory and
emission is a major problem yet to be solved in high-energy
astrophysics. One of the most widely argued models for describing
this type of emission has been the Blandford–Znajek (BZ) process
(Blandford and Znajek, 1977). This process describes the rotational
energy extraction from black holes involving the torsion ofmagnetic
field lines, resulting in Poynting flux-dominated outflows parallel to
the rotation axis of the central object (Blandford and Znajek, 1977;
Znajek, 1977).

LBZ = f (αH)B2
ϕr

2
s c8π−1, (3)

where Eq. 3 provides the BZ luminosity. Here, we define the
parameters αH,Bϕ,andrs as the spin parameter of the black hole
horizon, magnetic field strength in the ϕ-direction, and the
corresponding Schwarzschild radius, respectively. The nature of
such highly complex energetic emission mechanisms from these
systems, which feature event horizons in rotating spacetimes, has
been studied extensively over the last few decades (Williams,
2004; 1995; Pei et al., 2016; Toma and Takahara, 2016; King and
Pringle, 2021; Gamble, 2022). Recent numerical and observational
models incorporating magnetohydrodynamic (MHD) and general
relativistic magnetohydrodynamic (GRMHD) methods have shown
that a major contribution to jet outflows is from the poloidal
magnetic field configurations from relativistic matter accreting onto
the central object (Komissarov, 2005; Nathanail and Contopoulos,
2014; Koide, 2020; Akiyama et al., 2022). Unanswered questions on
the relativistic nature of these jets involve figuring out how particles
that make up the jet content are accelerated to ultra-relativistic
speeds, of which the Lorentz factors are ΓLorentz > 10. What is the

origin of the relativistic particles that produce non-thermal radiation
thatwe observe?Moreover, howdo these jets becomematter-loaded?
Focusing on the theoretical aspects of jet formation mechanisms,
fundamental questions continue to remain unresolved, one of which
is the causal connection of the jet to the exterior Kerr spacetime.
An application of the BZ process to alternatives or extensions of
general relativity by Pei et al. (2016) has shown the versatility of
the decade-old theory but, again, exhibits how the BZ process
needs extensions to incorporate the sources of the magnetic fields
it describes (Garofalo and Singh, 2021; King and Pringle, 2021).

As mentioned, a relativistic jet is described as a beam of
light that carries linear momentum and, thus, is influenced by an
appreciable amount of external angularmomentum in both the non-
relativistic and relativistic regimes. This angular momentum would
then be dependent on the origin of an associated coordinate system,
owing to the intrinsic gauge dependence of angular momentum in
fundamental physics descriptions. If we then proceed to describe
BL Lac and FSRQ blazars as energetic point sources, we can infer
the physical characteristics of the jet emission as relativistic beams
transported across galactic distances. These point sources should
then inherently carry rotational symmetry corresponding to rotated
field lines with respect to the host black hole (Gamble, 2022). The
following equations of motion described in Eq. 4, specifically under
the influence of curved spacetime near the jet-launching region,
illustrate the complexities of jet launching from the supermassive
black holes of blazar types. Here, the potentials parameterizing
particle paths in this near-horizon region are defined, yielding a set
of Hamilton–Jacobi equations for each direction. It is easy to see the
expected symmetries in the particle paths for the t and ϕ directions.
Here, the functions R(r) and V(θ) in Eqs 6, 7 correspond to the
traditional motions in the r and θ directions, respectively.

Σ dr
dλ
= ±√R (r), (4a)

Σdθ
dλ
= ±√Vθ (θ), (4b)

Σ
dϕ
dλ
= −(αHE− L/sin2θ) + αHT/Δ, (4c)

Σ dt
dλ
= −αH (αHEsin2θ− L) + (r2 + α2

H)T/Δ, (4d)

where the functions T, R(r), and Vθ(θ) are defined as

T ≡ E(r2 + α2
H) − αHL, (5)

R (r) ≡ T2 −Δ[m2
0r

2 + (L− αHE)2 +Q] , (6)

Vθ (θ) ≡ Q− cos
2θ[α2

H (m
2
0 −E

2) L2

sin2θ
]. (7)

Here, E and L are the particle energy and angular momentum,
respectively, m0 is the rest mass of a test particle, and Q is
identified as Carter’s constant. The functions Σ = r2 + α2

Hcos
2θ and

Δ = r2 −Mr+ α2
H are defined from the components of the Kerr

spacetime for a rotating black hole of arbitrary mass. Within the
context of this discussion on blazar jet emission, it is logical to
consider not only the particle distributions in jets but also the
intrinsic geometry of particle paths moving at high Lorentz factors,
specifically above Γbulk ≥ 10− 102. Additionally, there have been
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efforts to incorporate non-equatorial instabilities that contribute to
the e−/e+ pair production at γ-ray energies ≥GeV around high-
spin αH ≥ 0.8 black hole horizons in a description of jet launching
(Williams, 1995; Williams, 2004), thus removing some of the
mystery of the physical mechanisms that cause some jets to twist
and carry a proportionate amount of angular momentum from
the black hole. It is then intuitive to think about how one can
infer the mechanisms causing such polarization in the observed
spectra. Observations of blazars and radio-loud AGN have shown
that polarization states exist in the spectra from these sources
(Homan et al., 2021; Liodakis et al., 2021).

3 Multi-spectral variability of blazars

3.1 Variability and flaring of VLBI-selected
blazars

Observing the variability of blazars can reveal the necessary
information to infer the composition of the jet emissions, the
mechanisms behind the jet formation, and changes in the accretion
rate of the accretion disk and can allow for the localization of the
innermost emitting regions (Lawrence, 2016; Valverde et al., 2020).
As the central supermassive black hole (SMBH) at the cores of
blazars accretes matter and forms the surrounding accretion disk,
it launches relativistic jets that emit across the electromagnetic
spectrum (radio to γ-rays) (Gupta et al., 2016). Figure 2 shows
such a distribution in the GeV energy flux associated with γ-
ray emissions versus the very long baseline array (VLBA) flux for
these radio–gamma correlated sources. This distribution shows a
differentiation between high-synchrotron peak (HSP) BL Lacs that
feature peaks in the range ν > 1015Hz and low-synchrotron peaked
(LSP) BL Lacs that fall in the range ν < 1014Hz (Sahakyan, 2020).
Refer to Giommi and Padovani (1994) and Abdo et al. (2010b)
for more detailed descriptions comparing HSP and LSP signatures
for BL Lacs.

Figure 3 shows that there exists a delayed variability in the radio
emission for the blazar TXS 0506 + 056 (4FGL J0509.4 + 0542)
compared to its higher-energy counterpart in the light curve at
Eph > 1.07 GeV. This light curve, along with blazars in the MOJAVE-
FERMI catalog, features this type of variability, where the radio and
γ-ray emissions are correlated according to a respective time lag.
There exists significant correspondencewith the γ-ray flaring of TXS
0506 + 056 (4FGL J0509.4 + 0542) with neutrino incidence in the
direction of this blazar (IceCubeFermi-LATMAGICAGILEASAS-
SNHAWC et al., 2018). Analyzing the photo-meson production for
HSP as stated above, such particle interactions within the jets of
highly energetic sources like TXS 0506 + 056 (4FGL J0509.4 + 0542)
and PKS 0735 + 178 (4FGL J0738.1 + 1742) (Prince et al., 2023) are a
testament of the dynamicmulti-messenger andmulti-physics aspect
of sources that feature extremely accelerated ejecta. The correlation
between the radio and very high-energy (VHE) γ-ray emissions is
a curious notion highlighting the new frontier of multi-messenger
astrophysics in the modern era of astronomy. Additionally, HSP
blazars with similar flaring characteristics are also likely to exhibit
particle cascademechanisms that produce cosmic rays (high-energy
nucleons and charged particles). The 116 sources in the MOJAVE-
FERMI-LAT 1FGL catalog are a prototypical example of the type

of variability blazars exhibit across multiple spectral frequencies.
Note that the catalog only correlates VLBI-selected 15-GHz radio-
loud sources with a significant correlation to their γ-ray peaks. The
catalog is sourced from the study by Kramarenko et al. (2021), a
decade of jointMOJAVE-FermiAGNmonitoring: localization of the
γ-ray emission region that features 331 sources with down selection
to N-blazars with significantly strong radio emission ( > = 80%)
of the 331 catalogs of sources. Both blazar classes have been
reported to present strong correlations between the radio and γ-
ray emissions (Max-Moerbeck et al., 2014; Mufakharov et al., 2015;
Fan et al., 2016), thus indicating that the production of these jet
emissions coincides with a common mechanism. A more extensive
overview of radio VLBI/γ-ray catalogs of blazars: MOJAVE-FERMI-
LAT 1FGL, National Radio Astronomy Observatory (NRAO)
catalogs, Atacama Large Millimeter/submillimeter Array (ALMA),
and Event Horizon Telescope results and simulations will be
provided in subsequent papers focusing onmore details of the cross-
correlation in blazars. Figure 4 shows such intra-week variability
at 15 GHz in the time domain. This variability illustrates the need
for time-domain follow-up for energetic sources. We can see that
on a month-to-month time scale, the correlation strength peaks
at ∼5 months. This suggests that there could be a significant
observing campaign for follow-up observations. From a multi-
physics perspective, improved time-dependent theoretical models
and GRMHD simulations are needed to decipher such physics.

4 Discussion

4.1 Blazar parallels with γ-ray bursts

Given the nature of the high-energy emission characteristics
of BL Lac and FSRQ blazars, it is additionally safe to compare
them to GRBs. Both types of high-energy sources are considered
to be sourced by compact objects (i.e., SMBH, X-ray binaries,
neutron star mergers, core-collapse supernovae, and stellar
mass black holes). Both energetic phenomena exhibit similar
physical characteristics when considering their respective ejecta
mechanisms. It is no coincidence that GRBs and blazar jets also
feature similarities in the spectral peaks, illuminating commonalities
in their respective radiation physics (Nemmen et al., 2012). A
more detailed description of these physical comparisons can be
found in works highlighting such comparisons (Lyu et al., 2014;
Srinivasaragavan et al., 2023). An even more interesting recent
inclusion in the “AGN zoo” is changing-look blazars. These are
blazars that feature changes in their accretion processes, intrinsically
changing from FSRQ-type to BL Lac and vice versa (Kang et al.,
2024). This suggests that further investments in TDAMM science
and its technological developments are needed to further elucidate
the dynamical properties of AGN with blazar types, BL Lac,
FSRQs, and BCUs.

4.2 Ground-based follow-up

4.2.1 ALMA: radio
Specifically, within the radio frequency regime, the ground-

based ALMA (Wootten and Thompson, 2009) is extraordinary
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FIGURE 2
Plot of 11-month Fermi average > 0.1GeV energy flux vs 15-GHz VLBA flux density of the joint blazar samples given by Lister et al. (2011). The filled
circles represent BL Lac objects, with the HSP objects in orange and others in blue. The open circles represent quasars, the green diamonds denote
radio galaxies, and the purple crosses denote optically unidentified objects. Upper limits on the γ-ray fluxes are indicated by arrows. All of the BL Lac
objects are detected by the LAT, with the exception of J0006-0623. The vertical dashed line indicates a sample radio limit of 1.5Jy, and the horizontal
dashed line indicates a γ-ray limit of 3× 10−11erg cm−2 s−1. The figure and caption are sourced from the MOJAVE-FERMI-LAT
1FGL catalog (Lister et al., 2011).

for observing, in general, AGN of different classifications as it
provides a perspective of these high-energy objects in the radio
and infrared spectrum. With its ground-breaking interferometric
array of 66 high-precision antennas, its performance results in
high-resolution images with the brightness sensitivity of a single-
antenna array (Brown et al., 2004). LSP BL Lac objects offer a
distinctive spectral climb when comparing their γ-ray peaks to their
maximal synchrotron peaks (Mohana A et al., 2023), with blazars of
type FSRQ almost exclusively falling under LSP (Sahakyan, 2020).
Conversely, when analyzing the spectral correlation of HSP BL Lac
objects with similar γ-ray energies, the correlation is not strong
enough ( < 10GeV).

Quasar PKS 1549–79 was previously observed by
Oosterloo et al. (2019) in order to analyze its radio jet, using
millimeter- and very long baseline interferometry 2.3-GHz
continuum observations. PKS 1549–79 is known as a radio-
loud quasar, having a stronger radio emission and higher energy
than the more common radio-quiet quasar (Barvainis et al.,
2005). PKS 1549–79 is also the closest quasar that has been
observed merging with an AGN in the first phases of its evolution.
Oosterloo et al. (2019) also presented CO (1–0) and CO (3–2)

observations of its molecular gas. Their results showed that the
massive outflow of 650 M⊙ yr

−1 confined to r < 120 pc of the
inner galaxy suggests that the AGN drives this outflow. The radio-
quiet quasar SDSS J0924 + 0219 was observed by Badole et al.
(2021) using 45 of ALMA antennas and very large array
(VLA). It is evident that analyzing both LSP and HSP blazars
contributes to a more compounded description of blazar models
when looking at the entire non-thermal spectra of blazars in
the AGN zoo.

4.2.2 IceCube: neutrinos and cosmic rays
The flaring and variability of the blazar spectra listed in the

MOJAVE-FERMI catalog, the Fermi-LAT catalogs, and various
others that feature high-energy γ-ray emission from blazars residing
in their active phases are important aspects for identifying the
neutrino production from such sources (e.g., TXS 0506 + 056 (4FGL
J0509.4 + 0542) and PKS 0735 + 178 (4FGL J0738.1 + 1742)).
Analyzing the particle production mechanisms, we can see that
the particle phenomenology associated with the electromagnetic
and cosmic-ray producing interactions overlaps with their decay
mechanisms as well. The photo-meson particle production in the

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2024.1401891
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Gamble et al. 10.3389/fspas.2024.1401891

FIGURE 3
Intra-week variability overlap of the γ-ray emission at Eph > 1.07 GeV (in black) and the VLBA radio emission at 15 GHz (in red) of the blazar TXS 0506 +
056 (4FGL J0509.4 + 0542). The two panels show the light curve with adaptive binning on the top and weekly binning on the bottom where the epoch
spans 12 years. The multi-epoch light curve is sourced from the MOJAVE-FERMI-LAT 1FGL catalog (Lister et al., 2011).

accelerated environments of jets is shown in Eqs 8, 9, where protons
scatter off photons to produce a cascade of charged and neutral pions
(π0,π+,π−).

p+ γ→ p′ + π0

p+ γ→ n+ π+

p+ γ→ p′ + π+ + π−. (8)

This interaction of accelerated protons with γ-ray photons
provides a precursor to the neutral and charge pions. The
subsequent decay of (π−,π+) into a cascade of muons (μ+,μ−)
and neutrinos (νe,νμ) (of e− and μ+ types) and their respective
symmetric (antimatter) pairs introduces the weak interaction into
hadronic/meson blazar jet models.

π0→ 2γ

π+→ μ+ + νμ→ e+ + νe + νμ + νμ
π−→ μ− + νμ→ e− + νe + νμ + νμ. (9)

Ultimately, the presence of these cascades detected by neutrino
and Cherenkov telescopes is a prominent clue for finding relativistic
protons in the jet (Muecke et al., 1999; Cerruti, 2020). The IceCube
Neutrino Observatory (Aartsen et al., 2017) has made significant
progress in detecting neutrinos of astrophysical origin emanating
fromblazars. Blazars, such as TXS 0506 + 056 (4FGL J0509.4 + 0542)
and PKS 0735 + 178 (4FGL J0738.1 + 1742), have been extensively
studied in recent years (Padovani et al., 2015; IceCubeFermi-
LATMAGICAGILEASAS-SNHAWC et al., 2018; Prince et al.,
2023). Multi-messenger observations and their follow-up have thus
proven to be a powerful methodology for determining the VHE
characteristics of blazars.

5 Conclusion

This focused review of blazars of type FSRQ, BL Lac,
and BCU shows just how dynamic these point-like objects
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FIGURE 4
Intra-week variability cross-correlation at 15-GHz VLBA. Reproduced with permission from Kramarenko et al. (2021).

are regarding their relativistic properties. The multi-physical
nature of such astronomical objects suggests significant gaps in
our understanding of their multi-messenger characteristics. The
recommendations from the Astro2020 decadal survey offer an
initiation of thoughts surrounding TDAMM science gaps. Further
investments from the broader astronomy/astrophysics community
are required to elucidate and decipher the true nature of blazars,
their relativistic jet emission, and future multi-spectral analyses
and missions. The utilization of unconventional thoughts and
methodologies would prove useful in our quest to understand
the energetic Universe. The synergy between radio (ALMA and
MOJAVE), X-ray (IXPE, XRISM, Chandra, and SWIFT), γ-
ray (VERITAS, Fermi-LAT, MAGIC, and H.E.S.S.), and cosmic-
ray/neutrino (IceCube) observations plays an important role
in the analysis and theoretical modeling of variable energetic
blazars as it allows for more detailed observations of these
objects.
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