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Rapid multi-band space-based
optical timing: revolutionizing
accretion physics

Krista Lynne Smith*

Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX,
United States

Optical timing with rapid, seconds-to-minutes cadences with high photometric
precision and gap-free long baselines is necessary for an unambiguous physical
picture of accretion phenomena, and is only possible from space. Exoplanet-
hunting missions like Kepler and TESS have offered an outstanding new window
into detailed jet and accretion physics, but have been severely hampered
by incomplete calibration and systematics treatments and, most especially,
a monochromatic single wide bandpass. Advances made using Kepler and
TESS survey data, when considered alongside detailed, expensive multi-color
experiments done from the ground, reveal the enormous potential of a space-
based multi-color optical timing mission with a high energy focus.
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1 Introduction

During its prime mission from 2009–2013, the Kepler spacecraft fulfilled its brief
spectacularly, discovering thousands of extrasolar planets. Its success was due to threemajor
properties of themission tailored to the search for exoplanet transits: rapid, 30-min cadence
of the observations, a long and uninterrupted ∼4 year baseline, and unprecedented
photometric precision. The lack of seasonal and diurnal gaps, so often the bane of ground-
based monitoring campaigns, enabled a full temporal sampling space. The properties that
made the mission such an exemplary planet-finder also raised the potential for it to study
variable high-energy phenomena in unexplored parameter spaces as well. A number of
investigations into active galactic nuclei (AGN) and other accreting systems took place, but
were hampered significantly by instrumental systematics that required complex bespoke
reduction techniques often difficult to reproduce. To a large extent, this was due to the
non-exoplanet applications requiring more complete calibration than needed for detecting
the strictly periodic point-source variation that characterizes exoplanet transits; see Smith
(2019) for a complete discussion, and Howell (2020) for a summary of Kepler results,
including those beyond exoplanets.

The successor to Kepler, the Transiting Exoplanet Survey Satellite (TESS) was launched
in 2018 with the same high precision, rapid cadence, and monolithic bandpass (with a
redder central wavelength) as its predecessor, but with a few key differences, including
the release of early-stage full frame images (FFIs) for the entire survey region and a much
larger, nearly all-sky survey footprint, with the tradeoff of shorter baselines (27 days–1 year,
depending on ecliptic latitude). From the start, TESS made itself more amenable to non-
exoplanet science applications by releasing flexible support software for reduction (e.g.,
Lightkurve Lightkurve Collaboration et al., 2018, originally designed for K2 data) and
calibration products for the FFIs. Nonetheless, TESS systematicsmake time domain analysis
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of stochastically varying sources like AGN quite challenging,
especially when stitching light curves across many 27-day sectors.
Fortunately, TESS supported user-created reduction software as part
of its guest observer program, resulting in a proliferation of pipelines
for both generic and highly customized science applications.
Still, many works publish light curves that are badly affected by
systematics.

In addition to challenging systematics due to electronics
and background light, both missions also have a single white-
light bandpass. While an efficient choice for transient and
exoplanet searches, this prohibits the vast amount of astrophysics
present in cross-band correlations at rapid timescales. Because
these investigations require significant resources with existing
instruments, almost all experiments at high cadence are done in
expensive single object case studies.

2 Potential high-energy applications
of multi-colored space-based timing

2.1 Searching for binary supermassive
black holes

A confident census of the separations, mass ratios, and spins
of binary supermassive black holes is an important prior for the
multimessenger detections of binary inspirals through gravitational
waves, both the stochastic background of orbiting binary pairs as
seen by pulsar timing arrays like NANOGrav (Agazie et al., 2023)
and in future signals expected from the upcoming LISA observatory
(Amaro-Seoane et al., 2017). One potential signal is periodicity in
AGN light curves due to Doppler boosting of an orbiting pair,
periodic accretion episodes in themini-disks, or precessing jets (e.g.,
D’Orazio et al., 2015; Ryan and MacFadyen, 2017; Charisi et al.,
2018; Combi et al., 2022); observed candidates of each of these
have been put forth in varying numbers (e.g., Graham et al., 2015;
Liu et al., 2016; Britzen et al., 2018; Liao et al., 2021). However, the
red noise nature of accretion disk and jet variability can lead to false
positives in searches for binaries, which are seriously exacerbated
by gaps in light curves. As the following examples demonstrate, far
less ambiguous signatures of binary AGN are possible with high-
cadence, uninterrupted monitoring, and adding color information
increases the confidence even more.

Self-lensing flares, wherein a foreground massive black hole
gravitationally lenses the emission from the mini-disk around the
background hole in an orbiting pair, is a periodic signal that occurs
at a predictable phase of a doppler-boosted periodic oscillation, and
is not degenerate with other physical explanations (D’Orazio and
Di Stefano, 2018). Only one such candidate exists currently, and it is
from Kepler data, which was capable of capturing the approximately
week-long flare event with very high significance (Hu et al., 2020).

As shown by (D’Orazio and Di Stefano, 2018), when the
background accretion disk is near enough to be lensed as a source of
finite size, multi-band light curves would provide a very sensitive
probe of the structure of that accretion flow, a totally unique
observable of the fueling of binaries. If the background disk is a
point source, lensing is, as usual, achromatic; this would make the
self-lensing flare completely distinct from other AGN flares.

The technique of “varstrometry” has recently been used with
Gaia data to locate binary AGN candidates (at much larger
separations than the self-lensing or periodicity techniques) using
astrometric noise: two AGN will vary independently, so even
when they are convolved in a low-resolution image, the image’s
centroid will shift as one or the other AGN becomes brighter
(Liu, 2015; Shen et al., 2019; Hwang et al., 2020). This method has
successfully recovered a large number of known close binaries, and
led to the discovery of many new binaries (e.g., Chen et al., 2022),
although the technique is also useful for discovering lensed images
of single quasars (e.g., Shen et al., 2021; Springer and Ofek, 2021).
Rapid monitoring will allow for tighter constraints on astrometric
noise, as well as noise at different variability timescales, and reveal
a wider population of astrometrically-varying binary candidates.
Furthermore, adding colors to the “varstrometry” method widens
the discovery space even further; as the centroid shifts, so will the
peak wavelength at which the convolved source is varying. This
will lead to distinct centroids in different wavebands, as shown
by Liu (2015) and Liu (2016). The achromaticity of gravitational
lensing also suggests that multi-color varstrometry is likely to be
able to differentiate between binary AGN pairs and lensing as the
underlying cause of the shifting light center.

2.2 Relativistic jet physics in blazars

Blazars vary significantly at a huge variety of timescales, from
a few minutes to a few years, in every waveband in which they
have been studied. A vast literature exists focused on simultaneous
monitoring of blazars across the full electormagnetic spectrum,
with the most frequent goal being the determination of the origin
of the two peaks of the blazar spectral energy distribution (SED).
The lower-energy peak can span the radio to UV (so-called “low-
synchrotron peak” or LSP blazars) or X-ray (“high-synchrotron
peak”; HSP) wavebands, while the higher energy peak extends
blue-ward from a trough after the low energy peak, including the
gamma ray spectral region. The physical origin of the low-energy
peak is well understood as synchrotron emission from electrons
in the relativistic jet powered by the supermassive black hole. The
gamma ray emission in the high-energy peak could come from
leptonic processes like Compton-upscattered thermal photons from
the accretion disk or obscuring torus (external Compton models;
Sikora et al., 1993) or upscattered synchrotron photons from the
jet itself (self-Compton models; Mastichiadis and Kirk, 1997).
Alternatively, the gamma ray emission could come from hadronic
processes such as pion decay or proton-synchrotron radiation (e.g.,
Böttcher et al., 2009; Reimer, 2012). Self-comptonmodels imply that
a strong correlation between variations in the lower and higher
energy peaks would be expected, while hadronic models might
suggest a weak or no correlation.

Within the optical band, multi-color monitoring has been used
in a large number of ground-based surveyswith semi-daily toweekly
sampling over many years to study the physics of blazar flares.
Bonning et al. (2012) showed convincing evidence for a shift in
the low energy peak of the blazar 3C 454.3 over a 24 h flaring
period in 2009 using multi-band optical-IR SMARTS monitoring,
and reported a redder-when-brighter trend in flat-spectrum radio
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quasars (FSRQs). Recent ground-based studies have found a bluer-
when-brighter trend in many blazars, as well as using the rapid
minutes-scale variability to determine upper limits on black hole
masses, a very challenging quantity to measure in beamed targets
like these (Chang et al., 2023; Li et al., 2024). Other studies have
found that whether a source becomes bluer or redder when
brightening depends on its optical spectral classification as an FSRQ
or a BL Lac object (Zhang et al., 2023). The amount and color
lag properties of so-called “microvariability” on minutes-to-hours
timescales can be used to study the uniformity of particle flow
within the jets andmeaningfully constrain the amount of turbulence
present (Marscher, 2014; Roy et al., 2023). The degree to which
the color index changes on rapid timescales can also determine
whether a rapidly-varying jet angle due to precession or a wobbling
jet (and therefore a changing bulk Doppler factor) is contributing
to the observed variability (Agarwal et al., 2016; Marchesini et al.,
2016). These discoveries, however, have taken place in detailed,
observationally expensive monitoring campaigns of single objects,
requiring global networks of ground-based telescopes to avoid
diurnal andweather-dependent gaps. Space-based timing, especially
from TESS, has enabled discoveries of rapid quasi-periodicities in
the optical jet emission has led to speculation about the nature of
fluid instabilities in the jet boundaries, such as the kink instability
(Jorstad et al., 2022; Tripathi et al., 2024a; b). However, as the
TESS spacecraft has only a single wide bandpass, no color index
information is present, preventing the use of these data for studying
rapid inter-band lags in large samples.

2.3 Detailed physics of accretion flows

Accretion disks around supermassive black holes radiate
primarily in the UV and optical, and are conceived as a series of
annuli radiating like local blackbodies, decreasing in temperature
with distance from the hole. This has led to enormous efforts
to map accretion disks and track variations moving through
accretion disks with simultaneous, multi-color modeling, to great
effect. Edelson et al. (2015) and the STORM team conducted a
monumental effort to monitor the Seyfert galaxy NGC 5548 with
Swift and daily with HST in the X-ray, UV, and a range of optical
wavebands.The results are spectacular, showing a clear signal of UV-
optical lags agreeing with this general thermal annuli accretion disk
theory, but with surprising results for the size of the accretion disk
and with possible implications for the geometry of the broad-line
region. Further studies of individual objects with multiband, daily
monitoring by STORM have led to even further insights, including
detailed maps of accretion disk temperature fluctuations with both
temporal and spatial resolution (De Rosa et al., 2015; Cackett et al.,
2023; Neustadt et al., 2024).

The unique insights offered by these studies cannot be
overstated: this is the only direct observable into the behavior
of matter in the extreme environments of AGN disks, except
for direct imaging of accretion flows by, for example, the Event
Horizon Telescope (Event Horizon Telescope Collaboration et al.,
2019; The Event Horizon Telescope Collaboration, 2023), or deep
Chandra imaging of gas near the Bondi radius (Baganoff et al., 2003;
Wong et al., 2011; Russell et al., 2015; Bambic et al., 2023), which is
only possible for a handful of nearby objects.

With cadence on minutes timescales like those afforded by
TESS, but in the multiple colors explored with STORM, such
insights would extend to the smallest regions of the optical disk,
reaching into the most extreme space-time environments of the
accretingmatter. Ray tracing simulations indicate that at these scales,
different wavelengths may trace the space-time environment itself
(e.g., Bromley et al., 1997).

When combined with simultaneous X-ray monitoring, multi-
band timing experiments provide unique information about the
geometry and location of the X-ray corona, a major contested
question in AGN physics. A wealth of longer-baseline, lower-
cadence X-ray/UV/optical campaigns have provided conflicting
results in the question of the origin of variations: do flares initiate
in the corona, which is located above the disk like a “lamp-post”, and
get reprocessed successively by the accretion disk at different radii, or
do flares initaite in the disk through magnetic reconnection or bulk
accretion flow variations, and propagate inward to the corona (For
a recent review, see Cackett et al. (2021).)? The advent of very rapid
X-ray timing with experiments like NICER (Gendreau et al., 2012),
which has joint programs with TESS already, offers the possibility of
simultaneous, rapid multi-band optical and X-ray experiments that
probe this relationship at the smallest relevant physical scales.

2.4 Other applications

In addition to the science cases discussed in detail here, there
are numerous other applications to AGN and accretion physics.
Variability has been identified as an important means of identifying
potential dwarf AGN; that is, actively accreting intermediate mass
black holes (IMBHs) (Baldassare et al., 2020), and indeedmany low-
mass AGN have been noted in TESS light curves (Burke et al., 2020;
Treiber et al., 2023). Rapid, highly photometrically accurate space-
based timing is well-equipped to build a census of these objects
orthogonal to those found in expensive radio and X-ray imaging
searches. This is important, because the occupation fraction of AGN
in dwarf galaxies has major implications for the nature of black hole
seeds in the early Universe (see Greene et al., 2020, for a review).

Transients also offer a tantalizing peek into accretion physics,
especially those associated with tidal disruption events (TDEs) in
which a massive black hole consumes a stellar object, producing a
temporary accretion flow and resulting in a large, multi-wavlength
flare (Evans and Kochanek, 1989; Gezari, 2021). TESS has seen
a number of such events (e.g., Holoien et al., 2019), and has
detected other interesting fast nuclear transients (including some
repeating anomalous signals) in galaxies (e.g., Payne et al., 2023).
Color information provides much more physical interpretability
than monochrome transient detection, including characterization
of the transient’s evolution and information that helps constrain the
nature of the disrupted star.

3 Conclusion: the impact of a rapid,
multicolor space-based high-energy
satellite

Despite their original design goal of finding and determining
the orbital parameters of exoplanets, the Kepler and TESS
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missions’ rapid optical timing with high photometric precision
and uninterrupted space-based monitoring were powerful tools
for exploring the high energy astrophysics of accretion and
jets. Observers in these areas overcame major data reduction
challenges in order to use these instruments, driven mainly
by the missions’ original design goals (see Smith, 2019, for a
detailed description of challenges). Among the biggest obstacles to
achieving complete pictures of the phenomena under investigation
are the monolothic one-color bandpasses of the experiments
and the daunting uncalibrated systematics that mimic stochastic
astrophysical signals; others include the large pixel size (contributing
to crowding, a major issue for faint sources) and a bright limiting
magnitude that severely hampers extragalactic sample sizes.

It is my perspective that a survey mission with many of the
properties of Kepler and TESS, but with high-energy applications
in mind, would provide major leaps forward in all of the
science applications listed here. A mission with ∼10− 30 minute
cadence, multiple optical colors, and a deeper limiting magnitude,
even at the expense of sky coverage (for example, limited to
small, well-studied extragalactic fields) and with careful calibration
geared towards recovering stochastic signal is a natural next step
towards space-based high energy astrophysics in the optical regime,
following an existing budget-friendly template, that would offer
outstanding science returns. All extragalactic applications would
benefit substantially from deeper limiting magnitudes than those
probed by the exoplanet missions, due to enormous increases in
sample size at magnitudes > 20 even with reduced sky coverage.
Rapid cadence offers an unprecedented window into jet and
accretion disk phenomenology only accessible before with intensive
global ground-based campaigns. Color information opens up a wide
range of phenomenologies through the study of interband lags and
leads, while also breaking degeneracies in searches for close binary
AGN pairs, the source population for low-frequency gravitational
waves. I urge the rest of the time domain community to consider
what such a mission could do for their respective fields!
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