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Magnetopause location
modeling using machine
learning: inaccuracy due to solar
wind parameter propagation
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J. Šafránková1, K. Grygorov1, J. Šimůnek2 and T.-C. Tsai3

1Faculty of Mathematics and Physics, Charles University, Prague, Czechia, 2Institute of Atmospheric
Physics of the Czech Academy of Sciences, Prague, Czechia, 3National Center for High-Performance
Computing, National Applied Research Laboratories, Hsinchu, Taiwan

An intrinsic limitation of empirical models of the magnetopause location is
a predefined magnetopause shape and assumed functional dependences on
relevant parameters. We overcome this limitation using a machine learning
approach (artificial neural networks), allowing us to incorporate general, purely
data-driven dependences. For the training and testing of the developed neural
network model, a data set of about 15,000magnetopause crossings identified in
the THEMIS A-E, Magion 4, Geotail, and Interball-1 satellite data in the subsolar
region is used. A cylindrical symmetry around the direction of the impinging
solar wind is assumed, and solar wind dynamic pressure, interplanetarymagnetic
field magnitude, cone angle, clock angle, tilt angle, and corrected Dst index are
considered as parameters. The effect of these parameters on themagnetopause
location is revealed. The performance of the developedmodel is compared with
other empirical magnetopause models. Finally, we demonstrate and discuss the
inaccuracy of magnetopause models due to the inaccurate information about
the impinging solar wind parameters based on measurements near the L1 point.
This inaccuracy imposes a theoretical limit on the precision of magnetopause
predictions, a limit that our model closely approaches.

KEYWORDS

magnetopause crossings, magnetopause empirical model, magnetopause machine
learning model, solar wind parameter propagation, model inaccuracies

1 Introduction

The magnetopause is the boundary between the Earth’s magnetic field and the solar
wind. It represents a key region for the transfer of mass, momentum, and energy from
the solar wind to the magnetosphere. This boundary takes a form of an electric current
sheet with a paraboloid shape. Its subsolar distance is typically 10 to 12 Earth radii (RE,
RE ≈ 6371km) (Haaland et al., 2021). The shape and location of the magnetopause are not
constant; they vary according to the upstream solar wind conditions and the internal
state of the magnetosphere. The first magnetopause observations were performed by a
three-component magnetometer on board the Explorer 12 spacecraft in 1961 (Cahill and
Amazeen, 1963). Magnetopause crossings can be readily identified in in situ spacecraft
data as sudden changes in measured plasma parameters. This allowed for a systematic
identification of the boundary and an eventual formulation of the first empirical models
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of the magnetopause distance (Fairfield, 1971; Formisano et al.,
1979). These models essentially assume a predefined dependence
of the boundary shape and location on selected physical quantities.
This dependence typically involves several free parameters, the
values of which are, in turn, determined by fitting of the observed
magnetopause crossings. The respective solar wind properties are
generally not measured directly upstream of the magnetopause.
Instead, they are estimated based on measurements of a solar
wind monitoring spacecraft near the Lagrange L1 point, taking
into account the time lag due to the solar wind propagation
from the L1 point to Earth. The most important parameter
is undoubtedly the solar wind dynamic pressure. A power law
dependence of the magnetopause stand-off distance on the dynamic
pressure is typically assumed, though the coefficient employed varies
across studies (Šafránková et al., 2002).

Over time, with the increasing number of satellites and the
possibility to continuously track relevant solar wind characteristics
near the Lagrangian L1 point, more sophisticated magnetopause
models have been developed.Thesemodels are capable of addressing
the level of tail flaring (Petrinec and Russell, 1996; Shue et al., 1997)
and demonstrate convincingly that the magnetopause distance is
significantly influenced also by the north-south component (Bz)
of the interplanetary magnetic field (IMF) (Sibeck et al., 1991;
Roelof and Sibeck, 1993). Furthermore, it has been observed
that the high-latitude magnetopause distance around the cusp
regions is significantly different from that near the ecliptic, leading
to the formation of cusp indentations (Boardsen et al., 2000;
Safrankova and Dusik, 2005; Wang et al., 2013). Additionally, the
radial component of the IMF is apparently important, as larger
magnetopause distances have been noted during periods of radial
IMF (Merka et al., 2003; Dušík et al., 2010; Samsonov et al., 2012;
Park et al., 2016; Němeček et al., 2023).

Overall, the location of the magnetopause is influenced
by a variety of parameters, and the respective trends and
dependences are yet not fully understood. This complexity arises
partly because these parameters are often interrelated, making
it experimentally challenging to isolate their individual effects.
For instance, Verigin et al. (2009) highlighted the dependence
of the magnetopause location on the IMF direction rather
than on the IMF Bz component. The significance of the IMF
direction is further corroborated by Lavraud et al. (2013) and
Aghabozorgi et al. (2023), which utilize extensive magnetopause
crossing data sets. These findings are also confirmed by global
magnetohydrodynamic (MHD) simulations, indicating that the
cross-sectional shape of the magnetopause is more extended in the
direction (anti)parallel to IMF than perpendicular to it (Lu et al.,
2013). Although global MHD models offer a means to isolate the
effects of individual parameters and aid in the development of
new magnetopause models, they require ongoing and systematic
cross-validation against empirical data from magnetopause
crossings (Liu et al., 2015).

Increasingly complex formulas are being adopted to model the
magnetopause shape and its dependence on various parameters
(Lin et al., 2010). While these models generally predict the average
magnetopause location accurately, individual crossing distances
often deviate from these predictions, exhibiting a scatter of
approximately 1RE (Šafránková et al., 2002; Case and Wild, 2013).
This discrepancy is partly related to limitations in the model

formulations, which may overlook possibly important factors such
as IMF magnitude (Li et al., 2023) and fast IMF fluctuations
(Bonde et al., 2018), magnetospheric dense cold ion population
(Grygorov et al., 2022), and the influences of Earth’smagnetic dipole
eccentricity and the magnetospheric ring current (Machková et al.,
2019). The change in magnetospheric currents due to variations
in ionospheric conductivity during the solar cycle may also be
important (Němeček et al., 2016). However, a significant reason
for the scatter of real magnetopause crossings around model
predictions is—as we demonstrate in the present paper—an
inaccurate propagation of the solarwind parameters from solarwind
monitor close to the Lagrange L1 point to Earth.

We use nearly 15,000 subsolar magnetopause crossings along
with an artificial neural network to construct a purely data-
driven magnetopause model, with no a priori assumptions on
the dependences involved. We consider various parameters and
evaluate their effects on the magnetopause distance. Additionally,
we demonstrate the inaccuracy caused by the solar wind parameter
propagation from the Lagrangian L1 point, highlighting it as the
primary limitation in further improving the model accuracy.

The data set and neural network approach employed for
modeling the magnetopause location are detailed in Sections 2, 3,
respectively.Themodel performance anddependences are presented
in Section 4, and they are discussed in Section 5. Finally, Section 6
offers a summary of the key findings and conclusions.

2 Data set

We use the list of magnetopause crossings previously employed
by Aghabozorgi et al. (2023). It contains 49,638 magnetopause
crossings identified in the THEMIS A-E, Geotail, Magion 4, and
Interball-1 satellite data measured between the years 1995 and 2020.
The magnetopause crossings in the THEMIS data were identified
using an automated routine looking for sudden changes in the
magnetic field and plasma parameters, with subsequent manual
verification and elimination of false positives (Němeček et al., 2016).
The lists of magnetopause crossings from other missions were
compiled manually (Šafránková et al., 2002).

The locations of the magnetopause crossings are shown in
Figure 1 by the green points. An aberrated coordinate system is
used, in which the x-axis is oriented in the opposite direction to the
incoming solar wind. A cylindrical symmetry around this direction
is assumed, with the ρ coordinate corresponding to the distance
from the x-axis. We define the angle θ as the angle between the
positional vector and the x-axis, θ = arctan(ρ/x). The limited apogee
of THEMIS results in an underrepresentation of magnetopause
locations at large distances in our data set, potentially leading to
a sampling bias for larger values of θ. For this reason, and in line
with Aghabozorgi et al. (2023), all further analysis is limited to
the subsolar region (θ < 30°), encompassing 14,781 magnetopause
crossings. This limit is shown by the black line in Figure 1.

Corresponding solar wind parameters are assigned to each
identified magnetopause crossing based on the Wind spacecraft
measurements. The time lag resulting from the solar wind
propagation from the Wind spacecraft to Earth is accounted for
using the two-step approximation method (Šafránková et al., 2002).
In the first step, the solar wind velocity is assumed to be 400 km/s,
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FIGURE 1
Locations of the analyzed magnetopause crossings. Each green dot
represents the position of a single magnetopause crossing in the ρ− x
plane. Here, x is oriented opposite the direction of the incoming solar

wind, and ρ = √y2 + z2 is the distance from the x-axis. The black line
depicts the region within 30° angle from the x-axis, corresponding to
the subsolar region.

and the corresponding time lag is determined based on the Wind
spacecraft location. In the second step, the actual solar wind velocity
measured at the lagged time is used to calculate the final time lag.
The solar wind parameters used include the three components of the
IMF (Bx, By, Bz), the proton number density, and the velocity vector
(vx, vy, vz). The dynamic pressure is then calculated from the proton
number density and velocity, assuming a constant 4% alpha particle
content in the solar wind. Histograms of parameters associated with
individual magnetopause crossings are shown in Figure 2.

Figure 2A shows a histogram of the crossing angle θ values. Due
to geometrical reasons, most magnetopause crossings are at larger
values of θ (note that the area of magnetopause at a given value
of θ scales roughly as ∝ sinθ). The distribution of the solar wind
dynamic pressure is depicted in Figure 2B. It can be seen that the
solar wind dynamic pressure values are mostly between about 1
and 3 nPa. However, the distribution has a rather significant tail,
with the dynamic pressure occasionally being as high as 7 nPa.
Similarly, the distribution of IMF magnitudes depicted in Figure 2C
reveals that most magnetopause crossings are observed at IMF
magnitudes between about 2 and 8 nT, consistent with the long-term
solar wind properties. Figure 2D shows the distribution of the IMF
clock angle [the angle between the GSM z-axis and the projection
of the IMF vector onto the GSM Y-Z plane, arctan(By/Bz)]. The
two peaks at ±90° are formed due to the typically rather low value
of IMF Bz . Figure 2E depicts the distribution of the tilt angle (the
angle between the Earth’s magnetic dipole axis and the GSM z-
axis). The range of the dipole tilt angle is given by the sum of the
Earth’s dipole tilt with respect to the rotational axis (about 11°)
and the inclination of the Earth’s rotational axis with respect to
the ecliptic (about 23.5°). The extreme values of the tilt angle are

rather rare, as they require a specific combination of the Earth’s
rotation and season. Figure 2F shows the distribution of the cone
angle (the angle between the IMF and the velocity of the solar
wind). The two maxima at about 45° and 135° are in line with the
Parker spiral theory and the Earth-Sun distance of 1 AU. Finally,
Figure 2G shows a histogram of corrected Dst index at the times of
the magnetopause crossings. The corrected Dst index is essentially
the traditional Dst index with the contribution of the magnetopause
currents subtracted, corresponding thus better to the magnitude of
the ring current (Burton et al., 1975).

3 Neural network models

Compared to a predefined empirical model formulation and
subsequent fitting of free parameters to observed magnetopause
crossings, artificial neural networks offer a more general approach.
This approach allows for optimal matching of desired outputs with
respective inputs contained in the training data set. The idea is
inspired by real biological neurons. A multi-layer feed-forward
neural network configuration (Wythoff, 1993) we use consists of the
first (input) layer of neurons, several interim (hidden) layers, and
the last (output) layers. The inputs are the magnetopause crossing
angle θ and individual parameters controlling the magnetopause
crossing distance. The output is a single number corresponding
to the magnetopause radial distance. During the learning process,
the neural network configuration is adjusted using a training data
set in such a way that the predicted (model) radial distances of
magnetopause crossings match the observed radial distances as
closely as possible. The degree of this match is quantified using a
loss function; a common choice, and the one we employ, is the mean
square error. Adjusting the neural network configuration thus in
fact corresponds to a fitting process. However, the fitting function
is given by the neural network itself, allowing an extremely large
range of nonlinear dependences to be included, and thus effectively
removing the limitation of a prescribed empirical fitting function.

An important aspect of neural network configuration is that
each neuron is connected to all neurons in the subsequent layer,
and each connection has a distinct weight. The output of a given
neuron is calculated as a weighted sum of its inputs, to which a
bias term is added. Subsequently, an activation function is applied
to this sum. The weights of the connections between individual
neurons represent their significance. These values are adjusted
during the neural network training process (McCulloch and Pitts,
1943; Svozil et al., 1997). This adjustment can be performed using a
backpropagation learning algorithm,where the error is progressively
transferred from the output layer to the input layer, and the
connection weights are iteratively adjusted (Haykin, 1998).

It is not desirable to use the same data set for training and
testing the neural network. The reason is that, if the same data
set is used, the neural network may overfit and focus on features
that are not representative of the entire data set. Therefore, the
data set is randomly divided into two distinct parts: a training
data set and a testing data set. In our case, 80% and 20% of
the data are allocated to these data sets, respectively. The exact
neural network configuration, including the activation functions,
number of layers, and the number of neurons in each layer,
can be somewhat arbitrary. After numerous trials with various
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FIGURE 2
Histograms of the parameters associated with individual magnetopause crossings. (A) Crossing angle θ, which is the angle between the positional
vector of the crossing and the x-axis. (B) Solar wind dynamic pressure. (C) Interplanetary magnetic field magnitude. (D) Clock angle. (E) Tilt Angle. (F)
Cone angle. (G) Corrected Dst index.

configurations, we found that, in our case, the specific configuration
used has only a rather marginal effect on the overall performance.
We note, however, that the situation of too few neurons/layers
should be avoided as it does not allow to describe a sufficiently
general dependence of the magnetopause location on the control
parameters, limiting the possible outcomes of the model. On the
other hand, the situation of too many neurons/layers should be
avoided as well, as it may result in overfitting, i.e., in the neural
network model nit-picking irrelevant rare features, outliers, etc.
We eventually settled on using hyperbolic tangent as an activation
function and two hidden layers comprising 30 and 15 neurons,
respectively. The neural network optimization is done using the
adaptive moment estimation algorithm, iterating until effective
convergence is achieved.

Two different magnetopause models are constructed based on
neural networks. The first model is developed using three input
parameters: magnetopause crossing angle θ, solar wind dynamic
pressure, and IMF Bz . These parameters are identical to those used

in the popular model by Shue et al. (1997), allowing for a direct
comparison of the model performance. The second model does not
expect an explicit dependence on IMF Bz , but rather adds five other
parameters influencing themagnetopause location: IMFmagnitude,
clock angle, cone angle, tilt angle, and the corrected Dst index. This
model thus has a total of seven input parameters, replacing the
magnetopause location dependence on IMF Bz with a dependence
on the IMF clock angle andmagnitude.We note that parameterizing
the IMF vector by its magnitude and the two angles (clock angle and
cone angle) is desirable, as it ensures relative independence of the
parameters.

Input values are normalized using arctan before being fed into
the neural network, ensuring uniform range and a central value
of zero. However, it is possible to significantly improve the neural
network performance and ensure its adherence to the physical
symmetries involved by a pre-transformation of the input variables.
Due to the long tail of the solar wind dynamic pressure distribution,
its logarithm is considered instead of the actual value. For symmetry
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FIGURE 3
Comparison of the performance of the neural network model based on the three main parameters (θ, dynamic pressure, and IMF Bz) with the
Shue et al. (1997) model. (A) Magnetopause distances predicted by the neural network model vs. observed magnetopause distances. The black line
shows the 1:1 dependence. (B) The same as (A), but for the Shue et al. (1997) magnetopause model. (C) Histogram of differences between observed
and model magnetopause distances. The results obtained for the neural network model and the Shue et al. (1997) model are shown by the red and
blue lines, respectively. The vertical color lines show the respective median values. (D) The same as (C), but for the ratios of observed to model
magnetopause distances.

arguments, the sine of the cone angle is used in place of the cone
angle itself, the square of the sine of its half is used in place of the
clock angle, and the absolute value of the tilt angle is used instead of
the tilt angle.

4 Model performance and
dependences

The performance of the first neural network model based
exclusively on the magnetopause crossing angle θ, solar wind
dynamic pressure, and IMF Bz is evaluated and compared with
the performance of the Shue et al. (1997) model in Figure 3.
Figure 3A shows the magnetopause radial distances predicted
by the neural network model as a function of the observed
magnetopause radial distances. Each red point corresponds to a
single magnetopause crossing and the black line shows a one-
to-one dependence. It can be seen that the model and observed
magnetopause distances are well correlated (Pearson’s correlation
coefficient of about 0.74), with the model tendency to underpredict

the radial distances for very distant magnetopause crossings. Note
that a few magnetopause crossings at very extreme distances are
not shown in this plot due to the range of axes used; they are,
nevertheless, included in the calculation of correlation coefficients
and standard deviations. Figure 3B uses the same representation,
but employing the Shue et al. (1997) in place of the neural network
model. Essentially the same correlation coefficient is obtained
(0.76), with the model tendency to underpredict the magnetopause
radial distances overall, but in particular for distant magnetopause
crossings. Histogram of the differences between the observed
magnetopause radial distances and the radial distances predicted
by the neural network and Shue et al. (1997) models are depicted
in Figure 3C by the red and blue lines, respectively. The red
and blue vertical lines show the median values of the respective
distributions. The histogram of differences corresponding to the
neural network model appears somewhat narrower (albeit the
standard deviations are quite the same, 0.67 RE vs. 0.65 RE) and it
is better centered at zero (median value of −0.1RE vs. 0.5RE). This
is confirmed by Figure 3D, which uses the same representation to
depict the histogram of ratios of observed and model magnetopause
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FIGURE 4
(A) Performance of the neural network model based on seven parameters (θ, dynamic pressure, IMF magnitude, clock angle, cone angle, tilt angle,
corrected Dst index). (A) Magnetopause distances predicted by the neural network model vs. observed magnetopause distances. The black line shows
the 1:1 dependence. (B) Histogram of differences between observed and model magnetopause distances. The vertical line shows the respective
median value. (C) The same as (B), but for the ratios of observed to model magnetopause distances.

radial distances (standard deviation of 0.05 vs. 0.06, median value of
0.99 vs. 1.04).

The results obtained for the second neural network model based
on all the seven input parameters (magnetopause crossing angle
θ, solar wind dynamic pressure, IMF magnitude, clock angle, cone
angle, tilt angle, and corrected Dst index) are depicted in Figure 4.
The panel format used is the same as in Figure 3. Figure 4A shows
the magnetopause radial distances predicted by the neural network
model as a function of the observed magnetopause distances, with
each red dot representing a single magnetopause crossing. The black
line again corresponds to the one-to-one dependence. A reasonable
agreement between the model and the observations can be seen
(correlation coefficient of about 0.78), with only a slight tendency of
the model to underpredict the larger radial distances. Figures 4B, C
show, respectively, the differences and ratios of observed and model
magnetopause radial distances. It can be seen that, on average, the
model predictions well correspond to the observations, with nearly
no systematic bias (median value of differences −0.1RE, median
value of ratios 0.99).Moreover, the distributions of differences/ratios
are slightly narrower than those in Figure 3. The corresponding
standard deviations are 0.61 RE and 0.05, respectively.

In order to better understand the uncertainty of the neural
network model predictions and the dependence on individual
parameters, the neural network model based on the seven
parameters was trained not a single time but a hundred times.
Each time, the training set was randomly selected so that it was
different across individual training instances, resulting in slightly
different models providing slightly different magnetopause distance
predictions. This allows us to determine the mean model prediction
and its standard deviation (calculated over the set of hundred
neural network models, evaluated for given input parameters).
The results obtained for the subsolar magnetopause distance are
depicted in Figure 5. Each panel corresponds to a dependence on a
single input parameter, with the remaining parameters fixed at their
median/characteristic values. The black curves show the average

model predictions, while the red and green curves correspond to the
average value ±1 standard deviation.

Figure 5A shows the subsolar magnetopause distance r0 as a
function of the solar wind dynamic pressure pd. A systematic
monotonic decrease of the radial distance with increasing dynamic
pressure can be seen, as expected. Given the logarithmic scales
of the plot, a straight line would indicate the expected power
law dependence (R0 ∝ pαd). However, the slope of the dependence
becomes slightly steeper for larger dynamic pressures. The power
law dependence at low dynamic pressures would have the exponent
of α ≈ −1/9.0, while at high dynamic pressures α ≈ −1/6.2. This
variation in the power law index with the dynamic pressure may
be attributed to the influence of the limited spacecraft apogee,
as demonstrated by Němeček et al. (2020). However, it might also
suggest that a single, constant power law index is not universally
applicable. Regardless, the obtained values are roughly in line
with the −1/6 value stemming from a simple pressure balance of
the dynamic and magnetic field pressures, assuming the magnetic
field to decrease as a cube of the radial distance, and with the
−1/6.6 value reported by Shue et al. (1997). Note, however, that the
dependence in Figure 5A is purely data-driven, with no a priori
assumptions.

Figure 5B reveals a systematic monotonic decrease of the
subsolar magnetopause distance with the IMF magnitude. This
is apparently in line with the results obtained by Li et al. (2023),
suggesting that the solar wind/magnetosheath magnetic field
pressure non-negligibly contributes to the pressure balance, as
accounted for in some newer empirical models (Lin et al., 2010).
The subsolar magnetopause distance dependence on the clock
angle depicted in Figure 5C is somewhat more complicated and
noticeably weaker. It is, by definition, symmetric around zero (recall
that the square of the sine of half of the cone angle is used as
the neural network input). The subsolar magnetopause distance
is found to be maximal for zero clock angles (corresponding
to the northward IMF) and minimal for clock angles of ±180°
(corresponding to the southward IMF). This trend is well in line
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FIGURE 5
Magnetopause distance in the subsolar point predicted by neural network model as a function of (A) Solar wind dynamic pressure. (B) IMF magnitude.
(C) Clock angle. (D) Cone angle. (E) Tilt angle. (F) Corrected Dst index. The three curves plotted in individual panels correspond to the mean
dependence and ±1 standard deviation confidence interval.

with former empirical models (e.g., Shue et al., 1997). The cone
angle effect on the subsolar magnetopause distance investigated in
Figure 5D is of a similar magnitude. The magnetopause is found at
larger radial distances at the times of cone angle close to 0° and 180°,
i.e., at the times of the radial IMF, in agreement with former studies
(Dušík et al., 2010; Samsonov et al., 2012).

The tilt angle effect analyzed in Figure 5E is very weak.
The small dip/peak observed at a tilt angle equal to zero is
an artifact given by the predefined symmetry (recall that the
absolute value of the tilt angle is used as the neural network
input), and—given its magnitude being smaller than the standard
deviation—can be quite ignored. Figure 5F further shows that
subsolar magnetopause distance tends to be larger at the times of
large negative corrected Dst index. This suggests the importance
of the ring current and the corresponding magnetic field on the
magnetospheric side of the dayside magnetopause (Machková et al.,
2019). We note that the corrected Dst index is governed by the
solar wind parameters and their short-term history, particularly by
the clock angle (IMF Bz). At times of southward IMF, the clock
angle effect results in smaller magnetopause distances. However,
simultaneously, the Dst index is typically more negative, tending
to increase the magnetopause distances. The two effects may
thus partially cancel each other.

Having demonstrated the reasonable performance of our purely
data-driven magnetopause model based on the neural network,
we further try to understand why all the models (albeit arguably
better and better) do not seem to improve too much. There
seems to be an intrinsic limitation of their accuracy, no matter
how complicated these models become and how many parameters
possibly controlling the magnetopause location are considered. We
argue that this limitation stems from the inaccurately known solar
wind parameters,most importantly the solar wind dynamic pressure
(as the main factor controlling the magnetopause location). These
are typically not measured just upstream the Earth, but rather
close to the L1 point and then propagated to Earth (i.e., essentially
just time delayed). We further demonstrate that this propagation
may result in a considerable inaccuracy in the solar wind dynamic
pressure, eventually limiting the accuracy of the magnetopause
model predictions.

A combination of the Wind spacecraft data close to the L1
point, OMNI data, and the THEMIS B and THEMIS C data just
upstream the bow shock is used for this purpose. Altogether,
as many as 8,268,027 THEMIS measurements of the solar wind
dynamic pressure with a time resolution of 3 s are used for this
purpose. Corresponding solar wind dynamic pressure value based
on the measurements close to the L1 point is attributed to each
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FIGURE 6
(A) Histogram of the ratio of the solar wind dynamic pressure propagated from the Lagrange L1 point and the solar wind dynamic pressure measured
by the THEMIS spacecraft just upstream of the bow shock. The red histogram shows the results obtained for the propagation used in the OMNI data
set, while the blue line shows the results obtained for our own propagation routine of the Wind spacecraft data. (B) The same as (A), but the respective
ratios are multiplied by a constant to ensure their median is equal to one, accounting for systematic differences between the measurements of
individual spacecraft instruments. (C) Histogram of the ratios of magnetopause radial distances corresponding to (B), assuming that the power law
dependence of the magnetopause radial distance on the dynamic pressure with an exponent of −1/6 (R∝ p−1/6d ).

data point using our two-step propagation routine as well as using
the OMNI data set. Histograms of the ratios of these propagated
solar wind dynamic pressures (psw) and the solar wind dynamic
pressures observed by THEMIS (pTHEMIS) are depicted in Figure 6A.
The red line corresponds to the OMNI data propagation, while
the blue line corresponds to our two-step propagation of the
Wind data. In an optimal situation, a very narrow peak centered
at one would be obtained. However, this is not the case. The
distribution is rather broad and, moreover, there appears to be a
systematic shift towards larger pressure ratios, corresponding to a
systematic difference between THEMIS and Wind measurements.
This systematic difference may be partly due to some THEMIS
data being measured in the foreshock region, where the solar
wind is already somewhat decelerated (Urbář et al., 2019), and
partly due to the internal inaccuracies of the instruments used, as
is the case with the Magnetospheric Multiscale (MMS) mission,
for example (Roberts et al., 2021). Nevertheless, the broadness of the
distribution is the issue.

The systematic difference in the observed dynamic pressures
can be easily accounted for, e.g., through a multiplication by a
factor which ensures that the median of the distribution is equal to
unity. This is done in Figure 6B. However, the issue of the widths
of the distributions (standard deviations of about 0.3), indicating
an intrinsic inaccuracy in the propagation itself, remains. This
inaccuracy can be recalculated to the corresponding inaccuracy of
the magnetopause location, assuming that the magnetopause radial
distance depends on the solar wind dynamic pressure as R∝ p−1/6d .
The ratios of the solar wind dynamic pressures from Figure 6B are
then converted to the ratios of the magnetopause radial distances
in Figure 6C. Distributions with standard deviations of about 0.050
and 0.045 are obtained for the OMNI and our two-step propagation
of Wind measurements, respectively. These effectively represent
the accuracy limit of magnetopause models stemming from the
inaccuracy in the solar wind dynamic pressure propagation from
the L1 point. They can be directly compared with Figures 3D, 4C
which depict the ratios of the observed to model magnetopause
distances.

5 Discussion

A large data set of subsolar magnetopause crossings compiled
using data measured by several different spacecraft has been used.
Being close to the subsolar point, the crossing locations are virtually
unaffected by the cusp indentations, and, moreover their radial
distances are comparatively low to suffer from the sampling bias due
to the limited spacecraft apogee.

The primary benefit of the neural network modeling
approach employed is that it nearly eliminates the need for a
priori assumptions regarding the model formulation and the
magnetopause location dependence on individual parameters.
Additionally, the flexibility of the neural network model makes
it easier to extend the model by including other possible controlling
parameters.

However, two initial decisions limiting the model generality
are still necessary. The first decision concerns the choice of model
parameters and their possible pre-normalization to respect the
symmetries involved. In our study, we use a single value to describe
the magnetopause crossing direction, assuming its symmetricity
around the direction of the incoming solar wind. Although this
assumption is well justified by the fact that only near-subsolar region
is studied, it may be possibly desirable to release this constraint
in further studies. Moreover, the proper consideration of the
symmetries based on the physical insight into the problem improves
the model outcome considerably. This concerns, in particular, the
parameterization of the IMF, where the used approach of the IMF
magnitude and properly transformed clock and cone angles is
superior to, e.g., considering individual Cartesian coordinates of
IMF. The second, less limiting, decision needed are the technical
details of the neural network configuration used. Many different
configurations, parameter normalizations, and neuron activation
functions have been tried. Nevertheless, it turns out that, as long as
these are not very extreme, they have only a marginal effect on the
neural network performance.

Two different neural network models are constructed. The
first of them uses a simple parameterization exactly following the
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traditional Shue et al. (1997)model to allow for a direct comparison.
This revealed that the neural network model performance is
comparable to the Shue et al. (1997) model, demonstrating the
feasibility of the neural network approach for the magnetopause
model formulation. The second neural network model developed
uses as many as seven different parameters and slightly outperforms
the other models. However, its main aim is to show that the
employed neural network approach can be used to isolate the effects
of individual parameters, and to eventually obtain the respective
data-driven magnetopause distance dependences. The obtained
effects of individual parameters are in line with former studies.
This concerns the dependence on the solar wind dynamic pressure
and IMF Bz (e.g., Shue et al., 1997), cone angle (Dušík et al., 2010;
Samsonov et al., 2012), IMF magnitude (Lin et al., 2010; Li et al.,
2023), and corrected Dst index (Machková et al., 2019). The effect
of the tilt angle appears to be very weak, which is perhaps due to our
data set being limited to the vicinity of the subsolar point, avoiding
the cusp regions (Safrankova and Dusik, 2005).

Finally, we focus on the evaluation of intrinsic limitations of
the magnetopause location predictions due to the inaccuracy of
the upstream solar wind dynamic pressure propagated from the L1
point. A comparison of the solar wind dynamic pressure measured
by the THEMIS spacecraft in the solar wind just upstream the bow
shock with the corresponding dynamic pressure propagated from
the L1 point reveals that, albeit the two values generally reasonably
agree, the distribution of their ratios is rather broad, with a standard
deviation of about 0.3. Assuming that the magnetopause distance
depends on the solar wind dynamic pressure roughly as R∝ p−1/6d ,
we can directly translate this to the uncertainty of about 5% in the
magnetopause distance. This provides us with the accuracy limit
achievable by the magnetopause models, which is not possible to
surpass unless better solar wind dynamic pressure data are available.
Wenote that the real accuracy limit is evenmore severe, as additional
sources of error are clearly present. The content of alphas and
heavier particles in the solar wind is rarely properly considered,
and the propagation of other solar wind parameters—although
their effects on the magnetopause location are weaker—suffers
from the same problems. Various solar wind structures present
at L1 may evolve during their propagation to Earth or they
may actually miss Earth completely. Moreover, the time history
of the magnetospheric system and the dynamic motion of the
magnetopause are not considered within the static approximation
employed by empirical models. Consequently, it appears that the
recent empirical magnetopause models eventually approach the
theoretical accuracy threshold. In this sense, a development of
more accurate magnetopause models may not be possible. On the
other hand, it is still possible to learn about important physical
processes and dependences involved using a statistical approach,
where the inaccuracies of the solar wind parameters eventually
average out.

6 Conclusion

We used about 15,000 subsolar magnetopause crossings
identified in the THEMIS A-E, Magion 4, Geotail, and Interball

satellite data to investigate the possibility of modeling the
magnetopause radial distance using a neural network. Furthermore,
the intrinsic inaccuracy of magnetopause models due to the solar
wind parameter propagation from the L1 point was demonstrated.

Two magnetopause models based on the neural network
approach were constructed. The first model has only three
parameters (magnetopause crossing angle θ, solar wind dynamic
pressure, IMF Bz), mimicking closely the traditional Shue et al.
(1997) empirical model. It was used to demonstrate the suitability of
the approach, achieving the accuracy comparablewith the Shue et al.
(1997) model without the need of any a priori assumptions on
the model formulation. The second model has seven parameters
(magnetopause crossing angle θ, solar wind dynamic pressure, IMF
magnitude, clock angle, cone angle, tilt angle, and corrected Dst
index). It resulted in a slightly better accuracy. The analysis of
the predicted subsolar magnetopause distance as a function of
individual controlling parameters allowed us to demonstrate that the
respective dependences are indeed quite reasonable and correspond
to the expectations, albeit purely data-driven, with no a priori
assumptions.

Finally, we show that the accuracy of predicting the
magnetopause location is limited by our insufficient information
about the upstream solar wind parameters. These are typically
propagated from the L1 point. However, we show that the
real upstream solar wind parameters may be quite different.
Consequently, even a perfect model would not in principle predict
the magnetopause location precisely, due to the inaccuracy of the
input parameters. We show that this accuracy threshold is rather
approached by recent empirical models.
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