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Transport of energetic particles
in turbulent space plasmas:
pitch-angle scattering, telegraph,
and diffusion equations

Andreas Shalchi*

Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada

Introduction: In this article, we revisit the pitch-angle scattering equation
describing the propagation of energetic particles through magnetized
plasma. In this case, solar energetic particles and cosmic rays interact with
magnetohydrodynamic turbulence and experience stochastic changes in the
pitch-angle. Since this happens over an extended period of time, a pitch-angle
isotropization process occurs, leading to parallel spatial diffusion. This process
is described well by the pitch-angle scattering equation. However, the latter
equation is difficult to solve analytically even when considering special cases for
the scattering coefficient.

Methods: In the past, a so-called subspace approximation was proposed,
which has important applications in the theory of perpendicular diffusion.
Alternatively, an approach based on the telegraph equation (also known as
telegrapher’s equation) has been developed. We show that two-dimensional
subspace approximation and the description based on the telegraph equation
are equivalent. However, it is also shown that the obtained distribution functions
contain artifacts and inaccuracies that cannot be found in the numerical
solution to the problem. Therefore, an N-dimensional subspace approximation
is proposed corresponding to a semi-analytical/semi-numerical approach. This
is a useful alternative compared to standard numerical solvers.

Results and Discussion: Depending on the application, the N-dimensional
subspace approximation can be orders of magnitude faster. Furthermore, the
method can easily be modified so that it can be used for any pitch-angle
scattering equation.

KEYWORDS

cosmic rays, magnetic fields, turbulence, diffusion, transport

1 Introduction

The motion of energetic particles such as cosmic rays through plasma is a complicated
stochastic process. It is described via transport equations containing different diffusion
parameters. The simplest form of a transport equation which is used in this field is the
pitch-angle scattering equation ( Shalchi, 2009; Zank, 2014)

∂ f
∂t
+ vμ

∂ f
∂z
= ∂
∂μ
[Dμμ (μ)

∂ f
∂μ
], (1)

where we have used time t, particle position along the mean magnetic field z, pitch-
angle cosine μ, particle speed v, and pitch-angle scattering coefficient Dμμ. The analytical
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form of the latter parameter is difficult to determine since it contains
information about the interaction between magnetohydrodynamic
turbulence and energetic and electrically charged particles. Very
originally, a quasi-linear approach was developed to determine the
coefficient Dμμ (Jokipii 1966). However, this approach is inaccurate,
and it fails to describe correctly the scattering of particles at
90° corresponding to μ = 0 (Shalchi 2009). Therefore, the so-
called second-order quasi-linear theory (SOQLT) was developed
by Shalchi (2005), which provides non-vanishing scattering at
μ = 0, resolving the 90°-problem. This theory was further explored
analytically in Shalchi et al. (2009), and the so-called isotropic form

Dμμ = (1− μ2)D (2)

was derived in the limit of a stronger turbulent magnetic field. In
Eq. 2, the parameterD does not depend on μ, but it is a complicated
function of turbulence and particle properties (Shalchi et al., 2009).

In addition to the question of what the correct analytical form of
Dμμ is, one desires to find solutions to Eq. 1. However, so far, no exact
solution to the pitch-angle scattering equation has been found, and
one has to rely on either a numerical approach or approximations.
However, one can show that in the late-time limit, the pitch-angle-
averaged distribution function

M (z, t) = 1
2
∫
+1

−1
dμ f (μ,z, t) (3)

satisfies a diffusion or heat transfer equation of the form

∂M
∂t
= κ‖

∂2M
∂t2
, (4)

where the parallel spatial diffusion coefficient is related to the pitch-
angle scattering coefficient via (Earl, 1974)

κ‖ =
v2

8
∫
+1

−1
dμ
(1− μ2)2

Dμμ (μ)
. (5)

The heat transfer equation shown above can easily be solved.
For sharp initial conditions, for instance, the solution is simply a
normalized Gaussian distribution

M (z, t) = 1

√4πκ‖t
e
− z2

4κ‖t (6)

centered at z = 0 and having the second moment ⟨z2⟩ = 2κ‖t. One
can also write down the more general solution

M (z, t) = 1

√4πκ‖t
∫
+∞

−∞
dz′ M(z′, t = 0)e

−
(z−z′)2

4κ‖t (7)

which depends on the initial distribution M(z′, t = 0) and has a
Gaussian integral kernel.

More recently (Tautz and Lerche, 2016 and references therein), it
was argued that the diffusive solution does not always provide a good
approximation, and one should instead use a telegraph equation of
the form

τM̈+ Ṁ = κ‖
∂2M
∂z2
, (8)

where we have used the telegraph time scale τ. It should be noted that
using the telegraph equation instead of the diffusion equationwas, in

particular, suggested in the context of adiabatic focusing (Litvinenko
and Schlickeiser, 2013; Effenberger and Litvinenko, 2014), but this
effect is omitted in this paper.

Independently, a two-dimensional subspace approximation
to the solution of Eq. 1 has been developed (see Shalchi et al.
(2011) for the original description of this approach and Shalchi
(2020) for a review). Although this approach provides only an
approximation to the solution of Eq. 1 for the isotropic case, it
provides a pitch-angle-dependent solution. The two-dimensional
subspace approximation was successfully applied in the theory
of perpendicular transport and contributed significantly to the
development of advanced particle transport theories (Shalchi, 2020;
Shalchi, 2021).

In this paper, we revisit pitch-angle scattering and parallel spatial
diffusion as well as the corresponding transport equations.Through
this study, we aim to perform the following tasks:

1. We review the two-dimensional subspace approximation and
summarize the corresponding results.

2. We show the equivalence of the two-dimensional subspace
approximation and the telegraph equation.

3. We derive an approximation for the Fourier-transformed
distribution function corresponding to the correctly
normalized solution of the telegraph equation.

4. We propose an N-dimensional subspace approximation to
numerically solve the pitch-angle scattering equation. This
approach can be several orders of magnitude faster than
standard solvers.

5. All numerical and analytical approaches are compared with
each other. This will help us understanding the respective
advantages and disadvantages of the different techniques.

Those tasks will be performed in Sections. 2–4, and in Section 5, we
provide the summary and and conclusions. This article has several
appendices containing mathematical details.

2 The two-dimensional subspace
approximation

The two-dimensional subspace approximation was originally
developed by Shalchi et al. (2011) to solve pitch-angle scattering
Equation 1. We summarize the corresponding results, rewrite
previously found solutions, and discuss the relation to the
telegraph equation as follows. The following three subsections
were mostly taken from Shalchi (2020) but have been modified
significantly.

2.1 The isotropic scattering coefficient

For the isotropic scattering coefficient, as given byEq. 2, the parallel
spatial diffusion coefficient is obtained via Eq. 5. Alternatively, we can
compute the parallel mean free path that is defined via λ‖ = 3κ‖/v. For
the isotropic case, those parameters are given by

κ‖ =
v2

6D
and λ‖ =

v
2D
. (9)
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Eq. 1 corresponds to a partial differential equation with the variables
t, z, and μ. As a first step toward a solution, we use the Fourier
transform

f (z,μ, t) = ∫
+∞

−∞
dk Fk (μ, t)eikz (10)

so that the pitch-angle scattering equation becomes

∂Fk
∂t
+ ivμkFk =

∂
∂μ
[Dμμ

∂Fk
∂μ
]. (11)

The inverse Fourier transform is then given by the following
equation:

Fk (μ, t) =
1
2π
∫
+∞

−∞
dz f (z,μ, t)e−ikz. (12)

For the isotropic scattering coefficient, Eq. 11 is simplified to

∂Fk
∂t
+ ivμkFk = D

∂
∂μ
[(1− μ2)

∂Fk
∂μ
]. (13)

To continue, we expand the solution of Eq. 13 in a series of Legendre
polynomials

Fk (μ, t) =
∞

∑
n=0

Cn (t)Pn (μ) , (14)

where the coefficients Cn are functions of time, though they also
depend on k. This dependence is not explicitly written down
during the following investigations. Using Eq. 14 in the differential
Equation 13 yields

∑
n
ĊnPn + ivμk∑

n
CnPn

=D∑
n
Cn

∂
∂μ
[(1− μ2)

∂Pn
∂μ
],

(15)

where Ċn denotes the time derivative of the coefficient Cn. In order
to further valuate Eq. 15, we use the following two relations for
Legendre polynomials (Abramowitz and Stegun, 1974)

∂
∂μ
[(1− μ2)

∂Pn
∂μ
] = −n (n+ 1)Pn (16)

and

μPn =
n+ 1
2n+ 1

Pn+1 +
n

2n+ 1
Pn−1. (17)

With those two relations, Eq. 15 can be written as follows:

∑
n
ĊnPn + ivk∑

n
Cn(

n+ 1
2n+ 1

Pn+1 +
n

2n+ 1
Pn−1)

= −D∑
n
Cnn (n+ 1)Pn.

(18)

To continue, we multiply this equation by the Legendre polynomial
Pm, integrate over μ, and use the orthogonality relation of Legendre
polynomials (Abramowitz and Stegun, 1974)

∫
+1

−1
dμ PnPm =

2
2m+ 1

δnm. (19)

After performing those steps, we derive the recurrence relation

Ċm = −Dm (m+ 1)Cm − ivk
m

2m− 1
Cm−1

− ivk m+ 1
2m+ 3

Cm+1.
(20)

Alternatively, one can use the coefficient Qm defined via

Cm = (2m+ 1) (−i)mQm. (21)

With this, the recurrence relation can be written as follows

(2m+ 1) Q̇m = −Dm (m+ 1) (2m+ 1)Qm

+ vkmQm−1 − vk (m+ 1)Qm+1.
(22)

For the case of no scattering D = 0, we can compare this with the
relation (see Equation of Abramowitz and Stegun (1974))

(2n+ 1) j′n = njn−1 − (n+ 1) jn+1, (23)

where we have used spherical Bessel functions. Thus, we find
Qm = jm(vkt) for the scatter-free case and

Cm = (2m+ 1) (−i)mjm (vkt) . (24)

Using this in Eq. 14 yields

Fk (μ, t) =
∞

∑
n=0
(2n+ 1) (−i)njn (vkt)Pn (μ)

= e−ivμkt,
(25)

where we have used Equation 92 from Shalchi et al. (2011). This
is also known as plane wave expansion widely used in quantum
mechanics. It should be noted that Eq. 25 corresponds to the
unperturbed or scatter-free solution. It can be easily obtained
directly from Eq. 11 for the case D = 0.

We use Eq. 20 which corresponds to an infinite set of coupled
ordinary differential equations. Form = 0, for instance, we find

Ċ0 = −
1
3
ivkC1 (26)

and form = 1, we obtain

Ċ1 = −2DC1 − ivkC0 −
2
5
ivkC2. (27)

It is problematic here that the coefficients C0 and C1 are coupled to
C2. Therefore, it is not possible to derive an exact solution for the
coefficients Cn.

2.2 The two-dimensional approximation

Since an exact solution to Eq. 20 seems impossible to be
found, one needs to rely on approximations. In the following,
we discuss the two-dimensional (2D) subspace approximation
originally developed by Shalchi et al. (2011), meaning we set

Cm = 0 for m ≥ 2 (28)

so that only the coefficients C0 and C1 are used. In Lasuik and
Shalchi (2019), one can find the solution obtained by using a three-
dimensional subspace approximation. It is shown that the three-
dimensional (3D) solution is too complicated for most applications.

Within the two-dimensional subspace approximation, the
expansion (14) is reduced to

F(μ, t) = C0 + μC1. (29)
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In this case, Eqs 26, 27 can be combined to eliminate C1. Since we
set C2 = 0, we found the second-order differential equation

C̈0 = −2DĊ0 −
1
3
v2k2C0. (30)

Using the ansatz

C0 = beωt (31)

leads to the quadratic equation

ω2 + 2Dω+ 1
3
v2k2 = 0. (32)

Alternatively, for C2 = 0, Eqs 26, 27 can be written as the matrix
equation

(
Ċ0

Ċ1
) = (

0 −ivk/3
−ivk −2D

)(
C0

C1
). (33)

After using Eq. 31 for both functions C0(t) and C1(t), the problem of
finding the two ω is expressed as

det(
ω ivk/3
ivk ω+ 2D

) = 0, (34)

leading to the same quadratic equation as given by Eq. 32.The latter
equation can easily be solved by the following equation:

ω± = −D±√D2 − 1
3
v2k2. (35)

We conclude that the eigenvalues can be complex depending on the
wave number k. With this, the coefficient C0 can be written as the
linear combination

C0 = b+eω+t + b−eω−t (36)

with the two unknown coefficients b±. It follows from Eq. 26 that

C1 = −
3
ivk
(b+ω+e

ω+t + b−ω−e
ω−t) . (37)

The coefficients b± will be determined below. Before we perform this
task, we write down the solution for Fk(μ, t). We need to combine
Eq. 29 with Eqs 36, 37 to derive

Fk (μ, t) = b+eω+t + b−eω−t

−
3μ
ivk
(b+ω+eω+t + b−ω−eω−t) .

(38)

In order to find the coefficients b±, we can use the initial condition

f (z,μ, t = 0) = 2δ (z)δ(μ− μ0) , (39)

meaning that the particle has its initial position at z = 0 and the
initial pitch-angle cosine μ0. Using this in the inverse Fourier
transform given by Eq. 12, yields after some straightforward algebra

Fk (μ, t = 0) =
1
π
δ(μ− μ0) . (40)

The latter initial condition used in expansion (Eq. 14) allows us to
write

∑
n
Cn (t = 0)Pn (μ) =

1
π
δ(μ− μ0) . (41)

In order to determine the coefficients Cn(t = 0), we multiply this by
Pm and integrate over μ to get

Cm (t = 0) =
2m+ 1
2π

Pm (μ0) . (42)

To perform this task, we have used again the orthogonality relation
(Eq. 19). Form = 0 andm = 1, this yields1

C0 (t = 0) =
1
2π

(43)

and

C1 (t = 0) =
3μ0
2π
. (44)

To determine the coefficients b±, we write down Eqs 36, 37 for t = 0
and use Eqs 43, 44 to deduce

b+ + b− =
1
2π
,

b+ω+ + b−ω− = −
ivkμ0
2π
.

(45)

This system of two equations is solved by the following equation

b± = ∓
ivkμ0 +ω∓
2π (ω+ −ω−)

. (46)

Using this result and Eq. 35 in Eq. 38 provides the two-dimensional
subspace approximation to the solution Fk(μ, t). In Section 2.4, we
provide a more detailed discussion of this solution.

Our solution is based on the expansion given by Eq. (29). One
can easily demonstrate using Eq. 3 and

J (z, t) = v
2
∫
+1

−1
dμ μ f (μ,z, t) , (47)

together with the orthogonality relation (Eq. 19), that the function
C0(t) corresponds to the Fourier transform of the pitch-angle-
averaged distribution function M(z, t), and C1(t) corresponds to
the Fourier transform of the current density or diffusion flux
J(z, t). Those two quantities are related to each other via the one-
dimensional continuity equation

∂M
∂t
+ ∂J
∂z
= 0 (48)

which is obtained by averaging Eq. 1 over all μ and using Eqs 3, 47.
The exact relations to the coefficients are

M (z, t) = ∫
+∞

−∞
dk C0 (t)eikz (49)

and

J (z, t) = v
3
∫
+∞

−∞
dk C1 (t)eikz. (50)

It should be noted that the latter relation is obtained by
combining Eq. 47 with Eq. 10 and the expansion given by Eq. 14.
After combining these three relations and using the orthogonality
relation (Eq. 19), one can obtain Eq. 50. As demonstrated, the
coefficients C0(t) and C1(t) are directly linked to physical quantities.
In particular, the coefficient C0(t) is very important because
it is simply the Fourier transform of the pitch-angle-averaged
distribution functionM(z, t).

1 Note: there is a typo in Shalchi (2020) where one can find the incorrect

formula C0(t = 0) = 1/(3π).
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2.3 Further physical quantities

An important quantity in particle transport theory is the
characteristic function ⟨e±ikz⟩. We define the ensemble average via

⟨A⟩ = 1
4
∫
+1

−1
dμ ∫
+1

−1
dμ0 ∫

+∞

−∞
dz A(z,μ, t) f (z,μ, t) . (51)

It should be noted that in some cases, one could aim for a result that
depends on μ0. Then, the corresponding average is omitted.

To determine the characteristic function, we average over all
quantities, and thus, we have

⟨e−ikz⟩ = 1
4
∫
+1

−1
dμ0∫
+1

−1
dμ

×∫
+∞

−∞
dz e−ikz f (z,μ, t) .

(52)

Replacing f(z,μ, t) therein by using Eq. 12 leads to

⟨e−ikz⟩ = π
2
∫
+1

−1
dμ0 ∫

+1

−1
dμ Fk (μ, t) . (53)

We now replace Fk(μ, t) by using Eq. 14 and use P0(μ) = 1 to get

⟨e−ikz⟩ = π
2
∫
+1

−1
dμ0 ∫

+1

−1
dμ
∞

∑
n=0

CnPnP0. (54)

Due to the orthogonality of Legendre polynomials (Eq. 19), this is
reduced to

⟨e−ikz⟩ = π∫
+1

−1
dμ0 C0. (55)

To solve the remaining integral, we use Eq. 36 to write

⟨e−ikz⟩ = π∫
+1

−1
dμ0 (b+e

ω+t + b−eω−t) . (56)

In order to replace b±, we use Eq. 46. The integrals over the terms
containing μ0 vanish, and we finally find

⟨e±ikz⟩ =
ω+e

ω−t −ω−eω+t

ω+ −ω−
. (57)

It should be noted that the parametersω± are given by Eq. 35. For the
case that the ω± are real, the characteristic function given by Eq. 57
is real as well. For the case that the ω± are complex, it follows from
Eq. 35 that ω∗+ = ω−. Therefore, the characteristic function is always
real, and we have ⟨e+ikz⟩ = ⟨e−ikz⟩.

Based on Eq. 35, it can be shown that Eq. 57 contains two
asymptotic limits, namely, (see Shalchi (2020) for more details)

⟨e±ikz⟩ ≈
{{
{{
{

e−κ‖k
2t for v2k2 ≪ 3D2

cos( vkt
√3
)e−Dt for v2k2 ≫ 3D2.

(58)

For small wave numbers, we find the characteristic function of
diffusionEquation 4.The result obtained for largewave numbers can
be understood as a damped unperturbed orbit.

By comparing Eq. 53 with Eq. 10 and using Eq. 3, we can relate
the characteristic function to the μ- and μ0-averaged functions
M(z, t). This relation is given by the following equation:

M (z, t) = 1
2π
∫
+∞

−∞
dk ⟨e±ikz⟩eikz. (59)

Furthermore, we can compare this with Eq. 49 to find

⟨e±ikz⟩ = 2πC0 (t) . (60)

As an example, we consider the limit D→∞ so that we can use the
first line of Eq. 58 in Eq. 59. We can easily derive

M (z, t) = 1
2π
∫
+∞

−∞
dk cos (kz)e−κ‖k

2t

= 1

√4πκ‖t
e
− z2

4κ‖t
(61)

corresponding to a Gaussian solution.The result obtained here is the
diffusive solution that one would expect in this case (see Eq. 6 in
this paper).

Other physical quantities can be derived by using the
subspace approximation, alternative approximations, or even exact
calculations (Shalchi, 2006; Shalchi, 2011).

2.4 Rewriting the solution

Eq. 29 corresponds to an integral representation of the solution
of the Fourier-transformed pitch-angle scattering equation. This
result is based on the 2D subspace approximation. Using therein
Eqs 36 and 37, as well as (Eq. 46) yields

Fk (μ, t) =
3μ0μω+ −ω− − ivk(μ0 + μ)

2π (ω+ −ω−)
eω+t

−
3μ0μω− −ω+ − ivk(μ0 + μ)

2π (ω+ −ω−)
eω−t,

(62)

where the functions ω± are given by Eq. 35.
The μ- and μ0-averaged solution is then

Mk (t) =
1
4
∫
+1

−1
dμ0 ∫

+1

−1
dμ Fk (μ, t)

= 1
2π (ω+ −ω−)

[ω+e
ω−t −ω−e

ω+t]
(63)

in Fourier space. To find the solution in the configuration space, we
use Eq. 10 to derive

M (z, t) = 1
2π
∫
+∞

−∞
dk [

ω+
ω+ −ω−

eω−t −
ω−

ω+ −ω−
eω+t]e−ikz. (64)

Alternatively, this result can also be obtained by
combining Eqs 57, 59.

It is convenient to define the parameter

ξ≔√D2 − 1
3
v2k2, (65)

and it follows from Eq. 35 that

ω± = −D± ξ. (66)

From this, we can easily deduce

ω+ −ω− = 2ξ. (67)

Therewith, the solution in the configuration space is given as the
following Fourier transform

M (z, t) = 1
2π

e−Dt∫
∞

0
dk [(1+ D

ξ
)eξt +(1− D

ξ
)e−ξt]

× cos (kz) ,
(68)
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where we have used the integrand, which is an even function of k.
With the help of hyperbolic functions, this can be written in a more
compact form

M (z, t) = 1
π
e−Dt∫
∞

0
dk [cosh (ξt) + D

ξ
sinh (ξt)]cos (zk) . (69)

It should be noted that the quantity ξ, given by Eq. 65, can either
be real or imaginary depending on the value of k. Eq. 69 provides
an integral representation of the μ- and μ0-averaged distribution
function based on the 2D subspace approximation. Alternative
forms are presented in Supplementary Appendix S1 of this paper. In
Supplementary Appendix S2, we provide an approximative solution
of the remaining integral.

2.5 Relation to the Telegrapher’s equation

We have derived an ordinary differential equation for the
function C0(t) previously (Eq. 30), which can be written as follows

C̈0 + 2DĊ0 = −
1
3
v2k2C0. (70)

As shown via Eq. 49, C0(t) is the Fourier transform of the
distribution function M(z, t). Thus, working in the configuration
space instead of the Fourier space allows us to write Eq. 70 as

M̈+ 2DṀ = 1
3
v2 ∂

2M
∂z2
. (71)

The latter equation has the same form as Eq. 8, and, thus, it
corresponds to a telegraph equation. A quick alternative derivation
of the latter equation can be found in Supplementary Appendix S3.
It should be noted that the coefficient C0(t) used here depends
also on the initial pitch-angle cosine μ0. If one averages over
the latter quantity, the two-dimensional subspace approximation
provides Eq. 69. In Supplementary Appendix S4, we demonstrate
that the latter form indeed solves Eq. 71. Using therein Eq. 9 and
the scattering time τ = 1/(2D) yields the telegraph equation, as given
by Eq. 8. Therefore, we have shown the complete equivalence of
the two-dimensional subspace approximation and the telegraph
equation. The solution given by Eq. 69 is correctly normalized. In
order to demonstrate this, we consider

∫
+∞

−∞
dz M (z, t) = 1

π
e−Dt∫
∞

0
dk [cosh (ξt) + D

ξ
sinh (ξt)]

×∫
+∞

−∞
dz cos (zk) .

(72)

Therein, we use (Zwillinger, 2012)

∫
+∞

−∞
dz ei(k

′−k)z = 2πδ(k′ − k) (73)

to write this as

∫
+∞

−∞
dz M (z, t) = e−Dt∫

+∞

−∞
dk [cosh (ξt) + D

ξ
sinh (ξt)]δ (k)

= e−Dt[cosh (ξt) + D
ξ
sinh (ξt)]

k=0
.

(74)

From Eq. 65, it follows that ξk=0 = D, and, thus, we find

∫
+∞

−∞
dz M (z, t) = e−Dt [cosh (Dt) + sinh (Dt)]

= 1.
(75)

As already pointed out in Tautz and Lerche (2016), one can use the
transformation

M (z, t) = Ψ (z, t)e−Dt, (76)

and Eq. 8 becomes

τΨ̈− κ‖
∂2Ψ
∂z2
= 1
4τ

Ψ. (77)

This corresponds to the Klein–Gordon equation but with imaginary
mass. After comparing Eqs 69, 76 with each other, we can easily read
off the function Ψ (z, t).

We have focused on the function C0(t) previously. We can also
derive an ordinary differential equation for C1(t). By combining
Eqs 26, 27, we derive

C̈1 + 2DĊ1 = −
1
3
v2k2C1, (78)

where we have set C2 = 0 corresponding to the 2D subspace
approximation. Eq. 78 is the same equation as we have derived
above for C0. The function C1(t) corresponds to the Fourier-
transformed current density, as shown by Eq. 50. Therefore, the
telegraph and Klein–Gordon equations can also be derived for
the current density function. In order to obtain the current
density, as a further solution to the telegraph equation, we
can combine Eq. 69 with the continuity Equation 48. We can
easily derive

J (z, t) = v2

3π
e−Dt∫
∞

0
dk k

ξ
sinh (ξt) sin (zk) , (79)

where ξ is given by Eq. 65. Of course, integrating the obtained J (z, t)
over all z yields 0, meaning that the found solution to the telegraph
equation is not normalized to 1.

3 The N-dimensional subspace
approximation

Previously, we have used the expansion in the Legendre
polynomials (see Eq. 14 of this paper). The functions Cn(t)
therein are given by the recurrence relation (Eq. 20). This
relation is still exact and can be written as the following
matrix equation

d
dt
C⃗ = AC⃗ (80)

with the tridiagonal matrix A having the components

An,n−1 = −ivk
n

2n− 1
,

An,n = −n (n+ 1)D,

An,n+1 = −ivk
n+ 1
2n+ 3
.

(81)

The vector C⃗ in Eq. 80 contains the functions Cn(t) needed in the
expansion given by Eq. 14. The formal solution of Eq. 80 can be
written as follows:
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FIGURE 1
Shown are runtimes of codes used to solve the pitch-angle scattering
equation based on different techniques. The black horizontal line
represents the pure numerical solution, providing a result which
depends on the pitch-angle cosine μ and the initial pitch-angle cosine
μ0. This pure numerical method is described in
Supplementary Appendix S5 and corresponds to an implicit Euler
method. The blue circles represent the N-dimensional subspace
approximation described in Section 3 also providing a
pitch-angle-dependent result. The red crosses represent the
N-dimensional subspace approximation for the μ- and μ0-averaged
case. For a small dimensionality (small N), the runtimes are
insignificant. It should also be noted that one obtains an accurate
result for N = 10 (vertical gray line), meaning that the subspace
approximation is several orders of magnitude faster than standard
numerical solvers. It should be noted that all results are normalized
with respect to the runtime of the pure numerical method and have
been obtained by using MATLAB running on the same computer.

C⃗ (t) = eAtC⃗ (t = 0) , (82)

where we have used the matrix exponential. The initial conditions
Cn(t = 0) are given by Eq. 42. Eq. 82 can be easily evaluated
with software such as MATLAB. However, it is required to
work with a finite matrix A. This corresponds to the subspace
approximation outlined above. Let us assume that we work with an
N×N-matrix. This then corresponds to an N-dimensional subspace
approximation. The method described here corresponds to a semi-
numerical/semi-analytical approach that solves the pitch-angle
scattering equation, but this method can be faster if one needs
the solution only for a specific time t. Standard numerical solvers
(see Supplementary Appendix S5 of this paper) require a high
time resolution to be accurate. Therefore, one typically needs
to work with roughly thousand time-steps so that the solution
converges to the true solution of the differential equation. The N-
dimensional subspace approximation can be applied to a single
time value. As shown via Figures 2–9, an accurate solution is
obtained for N = 10.

For certain applications, one could be interested in the μ- and
μ0-averaged solution only. Analytical solutions of diffusion and
telegraph equations are incomplete and inaccurate depending on
the considered application. For the case of pitch-angle-averaged
solutions, theN-dimensional subspace approximation is particularly

powerful, as outlined below. First, we define the matrix exponential
used already above via

E≔ eAt. (83)

Then, Eq. 82 can be written as follows

C⃗ (t) = EC⃗ (t = 0) (84)

or in component notation,

Cn (t) =
N−1

∑
m=0

EnmCm (t = 0) . (85)

At the initial time, the components of the vector C⃗ (t = 0) are
given by Eq. 42. If those coefficients are averaged over μ0, we can
easily derive

Cm (t = 0) =
1
2π

δm0, (86)

meaning that all coefficients are 0, except C0(t = 0). Therefore, we
can write the time-dependent coefficients as

Cn (t) = En0C0 (t = 0) ≡
1
2π

En0. (87)

Furthermore, the μ-dependent solution is given by Eq. 14. After μ-
averaging of the latter expansion, we find

Mk (t) = C0 (t) =
1
2π

E00, (88)

where Mk(t) is the Fourier-transformed distribution
function as observed by Eq. 49. It should be noted that
the function C0(t) discussed here is also μ0-averaged.
Furthermore, the characteristic function is easily obtained
via

⟨e±ikz⟩ = E00, (89)

meaning that the 00-component is simply the characteristic
function. Thus, it follows from Eq. 59 that

M (z, t) = 1
2π
∫
+∞

−∞
dk E00 (k, t)eikz, (90)

which is an integral and matrix exponential representation of
the μ- and μ0-averaged distribution function. Therefore, in order
to obtain the distribution function M(z, t) for given z and t,
we need to numerically solve the k-integral in Eq. 90. For
each value of k, we set up the matrix A defined via Eq. 81,
numerically compute the matrix exponential E, and use the
component E00 in the numerically evaluated k-integral. The
distribution functions shown in Figures 6, 7, based on the 10D
subspace approximation, for instance, can be computed with
a regular computer within a few seconds. Figure 1 shows a
comparison in speed between different numerical methods. This
comparison includes the N-dimensional subspace approximation
described above and the pure numerical approach described in
Supplementary Appendix S5 of this paper, which corresponds to an
implicit Euler method.

The μ- and μ0-dependent Fourier-transformed solution is given
by the following equation:
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FIGURE 2
Numerical and analytical solutions obtained for the characteristic function ⟨eikz⟩ versus the dimensionless wave number ̃k = vk/D. The numerical
solution refers to the implicit Euler method described in Supplementary Appendix S5, and the N-dimensional subspace approximation, which is a
semi-analytical/semi-numerical method, is described in Section 3. Shown are plots for ̃t = Dt = 0.1 (left panel) and ̃t = 0.5 (right panel). For the initial
pitch-angle cosine, we have used μ0 = 0. It should be noted that the characteristic function is μ-averaged.

FIGURE 3
Caption is as in Figure 2, but we have considered the times ̃t = 1 (left panel) and ̃t = 10 (right panel). It should be noted that for the latter case, all four
results are in coincidence.

Fk (μ, t) =
1
2π
∑
n,m
(2m+ 1)Enm (k, t)Pn (μ)Pm (μ0) , (91)

where we have combined Eqs 14, 42, and 85. The Fourier
transform can be performed using Eq. 10 and solving the k-integral
numerically. Of course, obtaining and plotting the pitch-angle-
dependent result is more time-consuming when compared to the
pitch-angle-averaged solution.

In certain analytical theories developed for describing the
perpendicular transport of energetic particles, one needs to
know the function (Shalchi, 2010; Shalchi, 2017; Shalchi, 2020;
Shalchi, 2021)

Γk (t) ≔ ⟨μ0μe
−ikz⟩ (92)

that is somewhat similar but not identical compared to the
characteristic function discussed above. In order to express Γk(t)
as before, we perform the same mathematical steps. The pitch-
angle-dependent solution is given by Eq. 14. In order to obtain
Γk(t), we need

Γk (t) =
1
4
∫
+1

−1
dμ ∫
+1

−1
dμ0 μμ0

×∫
+∞

−∞
dz f (z,μ, t)e−ikz.

(93)
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FIGURE 4
Numerical and analytical solutions obtained for the characteristic function ⟨eikz⟩ versus dimensionless time ̃t = Dt. Shown are plots for ̃k = 1 (left panel)
and ̃k = 2 (right panel). For the initial pitch-angle cosine, we have used μ0 = 0. It should be noted that the characteristic function is μ-averaged.

FIGURE 5
Caption is as in Figure 4, but we have considered the values ̃k = 5 (left panel) and ̃k = 10 (right panel).

To evaluate this further, we use Eqs 12, 14. After using those two
relations, we derive

Γk (t) =
π
2
∫
+1

−1
dμ ∫
+1

−1
dμ0 μμ0Fk (μ, t)

= 2π
∞

∑
n=0

1
2
∫
+1

−1
dμ0 μ0Cn (t)

1
2
∫
+1

−1
dμ μPn (μ) .

(94)

For the μ-integral, we can use the orthogonality relation
(Eq. 19) to find

1
2
∫
+1

−1
dμ μPn (μ) =

1
3
δn1. (95)

Using the above relation allows us to perform the
following steps:

Γk (t) =
π
3
∫
+1

−1
dμ0 μ0C1 (t)

= π
3

N−1

∑
m=0

E1m∫
+1

−1
dμ0 μ0Cm (t = 0)

= 1
6

N−1

∑
m=0
(2m+ 1)E1m∫

+1

−1
dμ0 P1 (μ0)Pm (μ0)

= 1
3

N−1

∑
m=0

E1mδm1

= 1
3
E11,

(96)

where we have used Eqs 19, 42, and 85. Therefore, the derived
function Γk (t) corresponds to the matrix element E11 which
can be computed quickly based on the N-dimensional subspace
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FIGURE 6
Numerical and analytical solutions for the μ-averaged distribution function M(z, t) versus the parallel position ̃z = Dz/v. Shown are plots for ̃t = 0.1 (left
panel) and ̃t = 1 (right panel). For the initial pitch-angle cosine, we have used μ0 = 0.

FIGURE 7
Caption is as in Figure 6, but we have considered the times ̃t = 2.5 (left panel) and ̃t = 10 (right panel).

approximation. Figure 12 shows some example plots for the
quantity Γk (t).

4 Comparison of results

We have solved the pitch-angle scattering equation numerically
using an implicit Euler method (Supplementary Appendix S5)
and the N-dimensional subspace approximation outlined in the
previous section. We have considered two cases, namely, N = 2
(corresponding to the pure analytical case discussed above)
and N = 10 (which provides an accurate result). In most cases,
we have only considered the μ-averaged solution to reduce the
number of plots. Some results are also averaged over the initial
pitch-angle cosine μ0.

Figures 2–5 show the characteristic function ⟨eikz⟩ ≡ ⟨e−ikz⟩,
which corresponds to the Fourier transform of the distribution
function M (z, t). In Figures 2, 3, the characteristic function is
plotted versus the dimensionless wave number ̃k = vk/D for different
values of the dimensionless time ̃t = Dt. We have also shown
the solution of the diffusion equation as given by the first line
of Eq. 58. We can easily see that all solutions agree with each
other at later times. This is not the case for early times where
the 2D subspace approximation and the diffusive solution differ
significantly from the numerical solution. The 10D subspace
approximation agrees very well with the numerical solution in all
considered cases.

Figures 4, 5 show the characteristic function versus time ̃t for
different values of ̃k. We can easily see agreement for smaller values
of ̃k but disagreement for larger values. However, the 10D subspace
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FIGURE 8
Numerical and analytical solutions for the μ-averaged distribution function M(z, t) versus time ̃t. Shown are plots for ̃z = 0.5 (left panel) and ̃z = 1 (right
panel). For the initial pitch-angle cosine, we have used μ0 = 0.5.

FIGURE 9
Caption is as in Figure 8, but we have considered ̃z = 2 (left panel) and ̃z = 3 (right panel).

approximation and the numerical solution agree very well with each
other. It has to be emphasized that the 10D subspace approximation
solution, which can be seen as a semi-analytical/semi-numerical
technique, is several orders of magnitude faster than standard
numerical solvers.

Figures 6–9 show the distribution function M (z, t). Figures 6,
7 show this function versus the dimensionless position ̃z = Dz/v
for different times. For late times, all considered results agree
with each other, as expected. The corresponding distributions
are well-described by the Gaussian given by Eq. 6. For early
times, however, diffusive and 2D subspace results do not agree
well with the pure numerical solution. The 2D subspace solution
contains spikes that are a consequence of the Dirac delta
(Supplementary Appendix S2). The diffusive solution is non-zero

everywhere in space. Numerical and 10D subspace solutions
correctly describe that the distribution function is exactly 0 for
|z| > vt due to the finite propagation speed of the particles.
The latter effect can be observed much better by plotting the
distribution function versus time ̃t for different values of ̃z. This is
done via Figures 8, 9.

Figure 10 shows the comparison of the time evolution ofM (z, t)
based on diffusion equation and the 10D subspace approximation.
We can clearly see the similarity for later times. For early
times, on the other hand, we observe significant differences. In
particular, the 10D solution provides M (|z| > vt) = 0 as needed.
Alternatively, we have plotted M (z, t) versus time for different
positions (Figure 11) where the aforementioned effect can be
observed more clearly.
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FIGURE 10
Time evolution of distribution functions. The left panel shows the solution of the diffusion equation as given by Eq. 6 for different times, and the right
panel shows the μ0-and μ-averaged solutions of the pitch-angle scattering equation based on the 10D dimensional subspace approximation.

FIGURE 11
Distribution functions versus time ̃t at given positions ̃z. The left panel shows the solution of the diffusion equation as given by Eq. 6 for different
positions, and the right panel shows the μ0-and μ-averaged solutions of the pitch-angle scattering equation based on the 10-dimensional subspace
approximation.

Last but not the least, we have computed the function Γk (t)
defined via Eq. 92. The latter function enters certain analytical
theories for perpendicular diffusion. According to Figure 12, the
2D subspace approximation works overall well for computing this
quantity. This explains why analytical theories for perpendicular
diffusion, in which the 2D subspace approximation was used,
agree well with performed test-particle simulations (Shalchi, 2020;
Shalchi, 2021).

5 Summary and conclusion

In this paper, we have focused on the most basic transport
equation, namely, the pitch-angle scattering equation, as given

by Eq. 1. Analytical and numerical investigations of pitch-angle-
dependent transport equations have been the subject of several
papers published during recent years. In addition to studies of the
basic pitch-angle scattering equation (Shalchi et al., 2011; Tautz and
Lerche, 2016; Lasuik and Shalchi, 2017; Lasuik and Shalchi, 2019),
authors have explored the impact of so-called focusing, an effect
which is related to a non-constantmeanmagnetic field (Danos et al.,
2013; Litvinenko and Schlickeiser, 2013; Effenberger andLitvinenko,
2014; Lasuik et al., 2017; Wang and Qin, 2020; Wang and Qin, 2021;
Wang and Qin, 2023). Even more complicated cases, including
perpendicular particle transport, have been investigated by Wang
and Qin (2024).

In this article, we have reviewed the two-dimensional subspace
approximation originally developed by Shalchi et al. (2011)
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FIGURE 12
Numerical results for the function Γk(t) as defined via Eq. 92 based on 2D and 10D subspace approximations. The left panel shows results for ̃k = 1 and
the right panel for ̃k = 10. It should be noted that it follows from the definition of this function that Γk(t = 0) = 1/3. The results for smaller values of ̃k are
not shown here, but the agreement between 2D and 10D subspace approximations would be almost perfect in such cases.

and discussed the provided solutions in configuration
and Fourier spaces. We have also demonstrated that the
two-dimensional subspace approximation is equivalent
to using a telegraph equation. Normalized solutions in
configuration and Fourier spaces are also discussed.
However, we also argue that such solutions do not often
provide appropriate results even if the pitch-angle average
is considered. Although it was often argued that the
telegraph equation is more complete than the usual diffusion
approach (Tautz and Lerche, 2016), the solution discussed
here contains artifacts that are not realistic. In particular,
we observe spikes at z = ±vt (Figures 6, 7 as well as
Supplementary Appendix S2).

Therefore, it is important to solve the pitch-angle scattering
equation numerically. However, standard approaches such as
implicit Euler or Crank–Nicolson solvers are time-consuming to
use. In this paper, we have, thus, developed an N-dimensional
subspace approach. This method can be seen as a semi-
analytical/semi-numerical method. It has the advantage of
being is several orders of magnitude faster than standard
solvers (see Figure 1 of this paper). This is in particular
the case if one is only interested in pitch-angle-averaged
solutions at a given time. Standard solvers require a high
time resolution in order to provide an accurate result. The N-
dimensional subspace technique can be applied for a single
time value if this is everything what is needed. It should
also be emphasized that the N-dimensional subspace method
can be easily parallelized since for a given k and t, one
can compute the matrix exponentials independently of other
values. This is also valid if one is looking for a μ- and
μ0-dependent result.

In this paper, we have computed several quantities such as
distribution and characteristic functions as well as the function
Γk (t) which is defined via Eq. 92 of this paper. We have compared
numerical solutions obtained by using a standard solver with results

obtained by using the N-dimensional subspace approximation
for different values of N and the diffusive solution. The main
difference is that pure numerical and 10D solutions provide
M (|z| > vt) = 0, meaning that the particles have a finite propagation
speed. All results are visualized in Figures 2–12. One can
clearly see that for N = 10, we obtain an accurate result that
agrees well with the pure numerical solution of the pitch-angle
scattering equation.

It has to be noted that the N-dimensional subspace method
presented in this paperwas specifically developed for the basic pitch-
angle scattering equation and an isotropic scattering coefficient.
However, this approach can be easily modified so that it can
be used for more general transport equations including focused
transport equations and other forms of the pitch-angle scattering
coefficient.
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