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This review explores the field of X-shaped radio galaxies (XRGs), a distinctive
subset of winged radio sources that are identified by two pairs of jetted
lobes which aligned by a significant angle, resulting in an inversion-symmetric
structure. These lobes, encompassing active (primary) and passive (secondary)
phases, exhibit a diverse range of properties across themultiple frequency bands,
posing challenges in discerning their formation mechanism. The proposed
mechanisms can broadly be categorized into those related either to a triaxial
ambient medium, into which the jet propagates, or to a complex, central AGN
mechanism, where the jet is generated. The observed characteristics of XRGs
as discovered in the most substantial sample to date, challenge the idea that
there is universal process at work that produces the individual sources of XRGs.
Instead, the observational and numerical results rather imply the absence of an
universalmodel and infer that distinctmechanismsmay be at play for the specific
sources. By scrutinizing salient and confounding properties, this review intends
to propose the potential direction for future research to constrain and constrict
individual models applicable to XRGs.
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1 Introduction

The examination of emission spectrum observed from a galaxy allows for the
categorization of galaxies into two primary types: normal and active galaxies. The emission
from the core of a normal galaxy primarily arises from stars characterized by a black-body
spectrum and is comparable to the emission from the rest of the galaxy. However, in active
galaxies, the emission from the central region (ActiveGalactic Nuclei; AGN) ismuch higher,
∼ 100–1,000 times greater than the emission from other regions of the galaxy, and produces
a distinctive double-hump non-thermal emission spectrum (Elvis et al., 1994). The active
galaxies are identified with Eddington ratios exceeding the limit of LAGN/LEDD = 10–5.
Here, LAGN is the bolometric luminosity of the AGN, and LEDD = 1.5× 1038MBH/M⊙ergs−1

is the Eddington luminosity (MBH/M⊙ represents the mass of the central massive
object, identified as black hole, in solar mass) (Urry and Padovani, 1995).
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Observations of the central regions of nearby galaxies, including
ellipticals, lenticulars, and spiral bulges, reveal the presence of
a supermassive black hole (SMBH; with mass MBH ≳ 106M⊙) in
nearly all of these sources (Tremaine et al., 2002; Graham, 2012).
Galaxy mergers, in this regard, rejuvenate galaxies by supplying
fresh gas and dust, potentially triggering AGN activity around the
SMBH, which accretes surrounding matter through an accretion
disk (Di Matteo et al., 2005; Cotini et al., 2013; Capelo et al., 2015;
Ellison et al., 2019). An actively accreting SMBH at the center of
the AGN therefore emerges to be the source of such non-thermal
emission (Padovani et al., 2017).

The evolution of the central black hole and the activity of
the AGN are intricately linked to the availability of material in
the central regions of the galaxy. In the context of hierarchical
galaxy formation models, contemporary galaxies emerge from
successive mergers of smaller galaxies (Toomre and Toomre, 1972;
Bullock and Johnston, 2005; Mancillas et al., 2019). During these
(gas rich) galaxy mergers, gas is funneled toward the center on a
timescale of approximately 108 years, thereby initiating starbursts
andAGNactivity (Gaskell, 1985;Hernquist andMihos, 1995; Barnes
and Hernquist, 1996). A widely accepted paradigm posits that
such interactions induce the inward flow of gas from the outer
regions of a galaxy to its central areas, facilitated by the loss of
angular momentum triggered by tidal forces (Mihos and Hernquist,
1996). Evidence of such deep links between galaxy mergers and
nuclear activity has been found in a variety of active galaxies (e.g.,
Keel et al., 1985; Wilson and Colbert, 1995; Springel et al., 2005;
Silverman et al., 2011; Satyapal et al., 2014; Goulding et al., 2018).

Active Galactic Nuclei are classified into two categories based
on their emission characteristics in the radio band: radio-loud (RL)
or radio-quiet (RQ) AGNs. This categorization is established by the
ratio of radio to optical flux (R = S5GHz/SB-Band) (Kellermann et al.,
1989). AGNs are designated as radio-loud if R ≥ 10, while those
with R < 10 are categorized as radio-quiet. The distinction between
the two populations can also be made based on radio luminosity.
Radio-quiet AGNs are characterized by lower luminosities (L6GHz
between 1021 and 1023.2 W Hz−1), whereas radio-loud AGNs
exhibit higher luminosities (L6GHz greater than 1023.2 W Hz−1)
(Kellermann et al., 2016).

Among radio-loud AGNs, a notable feature is the presence
of (sub)relativistic jets extending from a few parsecs (pc) to
megaparsec (Mpc) scales, perpendicular to the underlying accretion
disk (Blandford et al., 2019; Hardcastle and Croston, 2020). The jets
are believed to be formed through the interplay of magnetic field
and rotation either of the black hole (Blandford and Znajek, 1977) or
of the accretion disk (Blandford and Payne, 1982), where a fraction
of hot and ionized matter accreting onto the supermassive black
hole is expelled at high velocities. Approximately 15–20 percent
of all AGNs are identified as radio-loud based on the findings
by Kellermann et al. (1989). However, the study by Padovani et al.
(2011) indicate an even lower fraction of AGNs exhibiting jet
activity. Detected over various scales, ranging from sub-kpc to
several Mpc distances (Kharb et al., 2019; Dabhade et al., 2020;
Webster et al., 2021; Oei et al., 2022), these jetted outflows may
terminate within the host galaxy or may extend to the larger scales
of a galaxy cluster. The seminal work by Fanaroff and Riley (1974)
introduced two classifications of extended jets based on their radio
power: Fanaroff and Riley (FR) class I and II. Identification of

these extended radio galaxies into these categories is possible by
observing the absence (lower jet power) or presence (higher jet
power) of an edge-brightened feature at the jet termination point,
respectively. Studies also indicate the existence of another category
of compact sources featuring jetted structures on a parsec scale,
generally characterized by greater symmetry and displaying mildly
relativistic behavior; these sources belong to the FR 0 category,
the most abundant class of radio galaxies in our local Universe,
distinguished by higher core dominance (Baldi, 2023).

Once losing their collimation, the jets exhibit a diverse range
of sub-structures, influenced by interactions with the surrounding
environment or by the internal dynamical configurations. Notable
among these sub-structures is the phenomenon of jet bending
(e.g., Bridle et al., 1994; Krause et al., 2019; Rodman et al., 2019;
Bruni et al., 2021). In a subset of these extended radio galaxies,
the jets display significant bending, deviating markedly from their
initial propagation direction. This bending introduces additional
complexity in determining the origin of these jettted structures,
leading to the emergence of distinct and peculiar bent jetted sources.

In a small but significant subset of double-lobed radio galaxies,
a distinctive deformation is evident in their lobes, giving rise
to peculiar radio structures (Leahy and Parma, 1992; Saripalli
and Roberts, 2018; Bhukta et al., 2022a). These structures can be
categorized into two primary types based on their bent jetted
morphologies (Ekers, 1982). The first type, mirror symmetric
sources, features jetted lobes bending away from the central galaxy
in the same direction, forming elongated features resembling tails,
known as ‘tailed sources’. The second type, inversion symmetric
sources, exhibits lobes bending in opposite directions, resulting
in the formation of ‘winged sources’ characterized by extended
structures resembling wings.

Tailed radio galaxies can manifest as ‘C’, ‘U’ or ‘V’ shapes,
with twin-tailed configurations frequently observed (e.g., Mao et al.,
2010; Müller et al., 2021; Bhukta et al., 2022a). Tailed sources are in
general classified based on the alignment angle of the twin-tailed
jetted lobes, leading to distinctions such as narrow-angle tails (NAT)
and wide-angle tails (WAT). NAT radio galaxies display parallel,
tightly collimated tails (Sebastian et al., 2017), while WAT radio
galaxies exhibit broader tails fanning out from the core (O’Dea and
Baum, 2023). The consensus is that such mirror-symmetric sources
form when the galaxy is in motion relative to the ambient medium
or due to the wind flow of the ambient environment resulting from
internal turbulence. In most instances, the ram pressure of the
cluster medium and buoyancy forces contribute to the formation
of these tailed structures (Smolčić et al., 2007; O’Neill et al., 2019;
Rudnick et al., 2021; Pandge et al., 2022).

Winged radio galaxies showcase distinctive morphologies,
including ‘X’, ‘S’, ‘Z’, or ‘W’-like structures (Lal et al., 2019; Yang et al.,
2019; Bera et al., 2020; Bhukta et al., 2022b), arising from the
bending of jet lobes in opposite directions. This phenomenon is also
observed in several microquasars (Roberts et al., 2008; Martí et al.,
2017). Distinguishing between different shapes of winged sources
in low-resolution observations can be challenging. However,
advancements in telescope sensitivity and resolution, particularly
in low-frequency radio observations, facilitate the discrimination of
these morphologies (Cotton et al., 2020; Bruni et al., 2021). In these
radio galaxies, one pair of lobes undergoes active evolution as an
active jet carves out the lobe, often resulting in hotspot formation.
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FIGURE 1
L-band MeerKAT image of PKS 2014-55, an extended radio galaxy exhibiting a double-lobed structure reminiscent of a classic X-shaped configuration.
The intricate double boomerang morphology reveals the presence of several complex structures, suggesting an enriched evolutionary mechanism
associated with this source. While the giant outer radio structure, spanning nearly 1.57 Mpc, is currently evolving passively, there has been a renewed
AGN activity detected, making it a source with a wealth of enriched physical processes (Cotton et al., 2020).ⓒ Thorat et al. (in prep.).

These lobes are termed active or primary lobes. The other pair
of lobes, typically diffuse, extended, and of lower luminosity, lack
hotspots and are designated as wing or secondary lobes.

The formation mechanism of such sources remains a subject
of ongoing debate, as recent discoveries often challenge earlier
conclusions regarding the sources’ origin. In this context, a
comprehensive review has been conducted here focusing on the
formation and long-term evolution of X-shaped radio galaxies
(XRGs; Figure 1), which have proven to be efficient tools for probing
various aspects of jet evolution. This includes the evolution of the
central supermassive black hole, jet dynamics encompassing both
active and passive phases, the dynamic configuration of the ambient
mediumwith emphasis on the influence ofmagnetohydrodynamical
processes in shaping the jetted structure, and the investigation of
large-scale jet-ambient medium interaction. Moreover, the review
explores intricate connections between X-shaped radio galaxies and
their relatives, such as Z- or S-shaped winged sources. This analysis
contributes to constraining and understanding the formation
processes of winged galaxies in a broader context. Therefore, the
discussion encompasses the collective insights gained from studying
XRGs, shedding light on their multifaceted role in unraveling the
complex interplay between AGN activity, jet dynamics, and their
impact on the surrounding cosmic environments.

We delve into the discussion of the current understanding of
such extended radio sources, commencing with Section 2. This
involves an exploration of the reported samples of XRGs, their
morphological appearance in a broader sense, properties of their
host AGNs, and the ambient environment in which they reside.
Thereafter, in Section 3, we discuss the emission properties of XRGs,
indicating what the intensity, spectral, and polarization mapping

of XRGs tell us. Section 4 a comprehensive discussion on the
categorization of the XRG models, including the formulation of
models, their strengths, and caveats. In Section 5, we highlight
various prospects for future studies of XRGs. We summarize this
review in Section 6.

2 Dynamical configuration of XRGs

Here, we dive into a discussion on the macro-scale properties
of X-shaped radio galaxies, accompanied by an examination of the
reported properties of their host AGNs.

2.1 XRG morphology

Distinctive X-shaped radio galaxies, see Figure 1 for a classic
example, are identified by their unique configuration, featuring two
prominent doubled-lobed jetted structures aligned at a significant
angle to each other. The initial identification of such sources was
documented in the work conducted by Riley (1972); Hogbom and
Carlsson (1974), followed by several seminal studies on classic X-
shaped sources such as Ekers et al. (1978); Leahy and Williams
(1984); Leahy and Parma (1992); Worrall et al. (1995); Murgia et al.
(2001). The investigation of such sources has affirmed the existence
of a primary pair of lobes resembling the classical double-lobed
radio structure. This structure is characterized by the presence of
well-collimated, actively propagating bidirectional jets. Additionally,
there are secondary lobes or wings, which are diffuse, extended,
and weaker compared to the active lobes. The morphology can
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be further categorized into two types: a) Inner-deviation sources,
where the wings are observed to be connected with the central
AGN, and b) Outer-deviation sources, where the wings are observed
to originate from the end of active lobes. The former results in a
distinct X-like morphology, while the latter exhibits mostly a Z-
or S-like morphology. This differentiation has been explored in
subsequent studies by Roberts et al. (2015); Saripalli and Roberts
(2018). Nevertheless, studies has not yet conclusively established
distinctions based on these topological differences. Irrespective of
this, in general, the wings are observed to align at a significant angle
to the active lobe, with an average alignment angle of approximately
75° or greater (Capetti et al., 2002; Bhukta et al., 2022b).

Recent observations employing high-resolution and sensitive
telescopes have introduced additional intricacies to the existing
configuration of XRGs. Notable complexities include the presence
of a substantial extended tail originating from one arm of
an XRG (Hardcastle et al., 2019), active jet spine sometimes
generating prominent intrinsic S-like structures (Bruno et al., 2019;
Baghel et al., 2023), the emergence of ‘W’-like global structures in
some of these winged sources (Proctor, 2011; Lal et al., 2019), the
observed expansive, diffuse wing-lobe structure (Sejake et al., 2023),
and the existence of an arc-like filamentary structure enveloping the
X-shape (Ignesti et al., 2020).

To ascertain the general properties of X-shaped radio galaxies, a
systematic search and analysis of a representative XRG sample are
crucial. In this context, Leahy and Parma (1992) noted that ∼ 10
percent of jetted galaxies in the 3CRR catalogue exhibit X-shaped
morphology. Subsequently, Lal and Rao (2007) conducted mapping
observations of 12 XRG sources using the Giant Metrewave Radio
Telescope (GMRT) at 240 MHz and 610 MHz, covering almost all
known XRG sources at that time. Later that year, Cheung (2007)
compiled a catalog of 100 XRG sources identified from the Very
Large Array (VLA) Faint Images of the Radio Sky at Twenty-
centimeters (FIRST) survey. Utilizing an automated morphological
classification scheme on FIRST radio sources, Proctor (2011)
identified 155 XRG candidates, with 21 sources overlapping with the
Cheung (2007) sample. Furthermore, Yang et al. (2019) investigated
5128 FIRST radio sources, discovering 290 new XRGs by adopting
less stringent selection criteria in cataloging XRG candidates. This
included sources displaying short wings (or even a one-sided wing)
and those showing only a hint of X-shaped radio structure. Among
these, 25 were already part of the Proctor (2011) list. Recently,
Bera et al. (2020) cataloged 296 winged radio sources from the same
FIRST database, imposing a lower limit of 10″ on the largest radio
size. This catalog comprises 161 XRG candidates and 135 candidate
ZRGs (outer deviation sources), with 21 sources already present
in the Proctor (2011) catalogue. Consequently, the combined XRG
candidate samples from the FIRST survey itself resulted in a total of
640 XRGs.Most recently, based on the Tata Institute of Fundamental
Research (TIFR) GMRT sky survey (TGSS) catalog, Bhukta et al.
(2022b) reported 58 additional winged sources (40 inner-deviation
sources and 18 outer-deviation sources) discovered at the lower
frequency of 150 MHz, a survey that is sensitive to detection of
diffuse emission from older particles in large-sized sources.

Several studies leveraging available samples have highlighted
certain properties associated with XRGs that currently appear
to be generally applicable. Notably, studies such as Saripalli and
Subrahmanyan (2009); Bera et al. (2020); Bhukta et al. (2022b)

demonstrate that themajority of XRGs exhibit a wing-to-lobe length
ratio of less than 1 (median value of 0.9). In fact, the former study
suggested that sources with larger extents generally have smaller
wing lengths. Additionally, investigations by Saripalli and Roberts
(2018); Joshi et al. (2019) indicate that approximately 70–80 percent
of XRGs have wing lengths that are either lower or comparable to
the active lobes. However, it is also important to emphasize the
existence of sources exhibiting wings larger than the active lobes.
For instance, Bruno et al. (2019) reported an XRG with a wing-to-
lobe length ratio of 2.8 (see Gower andHutchings, 1982;Wang et al.,
2003; Ignesti et al., 2020, for other such examples). Consequently, it
is anticipated that a successful model will have to be able to describe
both groups of sources. A note of caution is warranted here, as
the measurement of such lengths is intricately dependent on the
sensitivity of the telescope in capturing emissions from relatively
cooled particles, as well as on the projection effect (Hodges-Kluck
and Reynolds, 2011; Yang et al., 2019; Giri et al., 2022b).

A limited number of XRGs exhibit passive evolution in both the
wing and the active lobe, suggesting that the phase of jet activity
responsible for producing the structure has ceased (Saripalli and
Subrahmanyan, 2009). However, a notable fraction of such sources
demonstrate a restart of jetted activity near the center, as observed
in 5 out of 8 discovered sources by Saripalli and Subrahmanyan
(2009). Classic examples of sources with this morphological feature
include PKS 2014-55 (Cotton et al., 2020) and CGCG 292-057
(Misra et al., 2023). The renewed AGN activity for PKS 2014-55
can be observed near the centre in Figure 1, although not very well
resolved. Interestingly, in all these cases, the propagating fresh jet
pair aligns along the active jet of the earlier episode, suggesting a
scenario where jet reorientation to another direction, at least for
XRGs, is not common.

2.2 Host AGN

Various studies have delved into the nuclear regions of such
radio galaxies throughmulti-wavelength observations, revealing, for
instance, 9–14 percent quasars, a few identified broad-line radio
galaxies, and blazars (Wang et al., 2003; Saripalli and Roberts, 2018;
Yang et al., 2019; Baghel et al., 2023).

The study conducted by Mezcua et al. (2011) further analyzed
the black hole masses of AGNs in 29 XRGs and compared them
with a control sample of 36 radio-loud AGNs (including 6 FR type II
sources) exhibiting similar redshifts, optical, and radio luminosities.
Their findings revealed a higher black hole mass in XRGs compared
to the control sample (∼1.5 times higher), with 60 percent of
XRGs displaying a black hole mass, log(MBH/M⊙), greater than
8.25. In 2012, they extended this analysis to another 12 XRGs,
providing further support for their conclusions (Mezcua et al.,
2012). Joshi et al. (2019) thereafter discovered, through studies of
67 XRGs [including 41 from Mezcua et al. (2011); Mezcua et al.
(2012)], an average black holemass, log(MBH/M⊙), of 8.81.However,
when compared to a sample of normal radio galaxies of FR-II type,
they found this value to be lower than the average black hole mass
for FRIIs, which is 9.07 [in log(MBH/M⊙)]. A diverse range of SMBH
masses of XRG host galaxies has been noted further in Liu et al.
(2012) ranging from log(MBH/M⊙) of 7.05 for J1348 + 4,411 to
9.08 for J1614 + 2,817. Therefore, these studies do not conclusively
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suggest any discernible pattern regarding the mass characteristics of
SMBHs in XRGs compared to straight bidirectional jetted sources,
understanding of which could offer valuable constraints in refining
formation models. A caution should also be given to the method
used to estimate black hole masses (e.g., see Tremaine et al., 2002)
which is generally applied to bulge-dominated systems, potentially
leads to underestimated mass calculations in systems without a
well-defined bulge, such as galaxies undergoing mergers (Kozieł-
Wierzbowska et al., 2012).

Studies have also been conducted to explore the possibility
of binary/dual SMBHs in the XRG host galaxies, considering
separations on the parsec/kiloparsec scale. The hypothesis is that
the lobes and wings may signify two separate jet episode events,
possibly resulting from a jet reorientation activity. An avenue
for investigating this involves examining whether the curved
morphology observed in several XRGs indicates any jet precession
activity. This investigation entails modeling the morphology,
for example, using kinematic jet precession models (Hjellming
and Johnston, 1981; Gower et al., 1982). Studies, exemplified
by observational research from Gower and Hutchings (1982);
Gong et al. (2011); Rubinur et al. (2017); Krause et al. (2019);
Nandi et al. (2021), along with pivotal simulation contributions
by Horton et al. (2020); Giri et al. (2022a), have explored different
aspects of such cases, e.g., mass ratios, precession period and
separation of the SMBH pair, shedding light on the potential
parameter space for such binaries.

Identifying potential dual/binary AGN candidates through
observations is a formidable challenge in general. For instance, the
optical nuclear spectra often exhibit double-peaked AGN (DPAGN)
emission lines, considered a potential observational signature of
dual AGN (Fu et al., 2011). However, the origin of these double
peaks can vary, with possible explanations including jet-medium
interactions or the presence of a rotating gaseous disk (Fu et al.,
2012; Kharb et al., 2015; Kharb et al., 2019; Rubinur et al., 2019).
In the context of XRGs, the presence of a dual-peak signature
has been documented in studies by Zhang et al. (2007); Kozieł-
Wierzbowska et al. (2012); Rubinur et al. (2017);Nandi et al. (2021).
Furthermore, identification of unusually broadened emission lines
in the optical spectra of AGNs may also suggest the presence
of a binary black hole system formed through a recent merger
(Peterson et al., 1987; Gaskell, 1996). Despite this, the search for
such signatures in AGNs associated with XRGs has revealed that
this is not a widely observed characteristic (Landt et al., 2010).
Nevertheless, the presence of a few XRGs exhibiting this signature
necessitates further investigation (Wang et al., 2003; Cheung, 2007;
Zhang et al., 2007).

Landt et al. (2010) additionally demonstrated that the nuclear
regions of XRGs lack a dusty environment and have higher
temperatures, providing evidence against the occurrence of any
recent (gas rich) merger. However, counterarguments challenging
this assertion can be posed based on the presence of XRGs
exhibiting a high-excitation spectral signature in their optical
nuclear spectra. The primary diagnostic for high excitation is the
[O III] λ5007 line luminosity (with a λ5007 line equivalent width
exceeding 5 Å) (Best and Heckman, 2012). These high-excitation
radio galaxies consistently display blue colors in the color–color
diagram, indicative of recent star formation triggered by a wet
merger (Baldi and Capetti, 2008; Smolčić, 2009). Among XRGs,

a notable fraction (∼50 percent; Gillone et al., 2016; Joshi et al.,
2019) exhibit a high-excitation state, while the remainder are
categorized as low-excitation XRGs, featuring redder optical colors.
Although such high-excitation radio properties are typical of FR IIs
(Buttiglione et al., 2010), implying a recent gas-rich merger, further
investigation is required to determine the recency of the merger.
Gillone et al. (2016) demonstrated that the age of formed young
stars can extend up to several Gyr, surpassing the typical age of
a radio galaxy (Harwood et al., 2017). Nevertheless, a significant
subset of XRGs has been identified to exhibit recent starburst
activity (<106 yr), as will be elucidated in the next section. The
elevated occurrence of this excitation state in XRGs, signifying
recent mergers, is notable, yet explicit merger signatures in such
galaxies are scarce. Detecting merger signatures is challenging due
to their low luminosity compared to the host galaxy, requiring
deep imaging and specialized techniques for revealing obscured
asymmetries (Mancillas et al., 2019; Giri et al., 2023a). Additionally,
minor galaxy interactions have the potential to contribute significant
amounts of gas to the primary galaxy without leaving a distinct
signature on the host galaxy (Dennett-Thorpe et al., 2002; Kaviraj,
2014). Further investigations are essential to address the observed
dichotomy in XRGs, where an almost equal fraction displays high
and low excitation classes, offering insights thatmay either challenge
or support proposed formation models.

Relevant X-ray and radio-VLBI observations have been
undertaken in several studies to gain a deeper understanding of
the cores of XRGs. The X-ray study led by Hodges-Kluck et al.
(2010a) reported the detection of X-ray jets near the cores of several
XRG systems. Notably, their investigation revealed no evidence of
misaligned additional pairs of jets in any of the XRG samples (see
also, Miller and Brandt, 2009), posing a preliminary challenge to the
theory put forth by Lal and Rao (2007) that suggested binary or dual
SMBHs at the center could be in charge of ejecting two bidirectional
jets at an angle, resulting in the formation of X-morphology. Radio
observations of a few sources’ cores also failed to detect evidence
of bidirectional jets emerging from binary systems (Murgia et al.,
2001; Nandi et al., 2021), with the exception of Yang et al. (2022).
However, the latter study does not immediately clarify how such
largely separated cores eventually produce the primary X-shaped
morphology.

2.3 Ambient environment

The host galaxies of XRGs predominantly belong to the
category of elliptical galaxies, characterized by a high degree of
ellipticity (Capetti et al., 2002). The gaseous distribution within
these galaxies (i.e., the inter-stellar medium) often exhibits an
even higher ellipticity compared to their stellar distribution
(Kraft et al., 2005; Hodges-Kluck et al., 2010a). This ellipsoidal
ambient environment trend also extends to the intra-group and
intra-cluster medium, aligning with the distribution of the host
galaxy (Hodges-Kluck et al., 2010a; Hodges-Kluck and Reynolds,
2011). Furthermore, in comparison with FR II host galaxies, the
hosts of XRGs exhibit higher median ellipticity values (Saripalli
and Subrahmanyan, 2009; Gillone et al., 2016), thus indicating a
potential correlation between XRG morphology and the ambient
environment. A handful of sources, however, indicate that it is not
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always necessary for XRGs to have an elliptical atmosphere; for
example, their hosts can exhibit a circular geometry (as seen in
6 cases discovered by Saripalli and Subrahmanyan, 2009). There
are also cases in which the XRG hosts exhibit an asymmetric
distribution of ambient environment, induced by a potential recent
galaxy merger (Heckman et al., 1982; Evans et al., 1999; Hodges-
Kluck et al., 2010b; Misra et al., 2023) or a possible cluster merger
(Hodges-Kluck and Reynolds, 2012; Hardcastle et al., 2019).

Another notable trend in XRGs is the alignment of the wing
structure almost along the minor axis of the ambient medium,
implying that the wings are aware of the host medium’s geometry
(Saripalli and Subrahmanyan, 2009; Hodges-Kluck et al., 2010a;
Gillone et al., 2016). For the active lobes, a spread of up to 50°
from the major axis of the host galaxy has been observed. In
prominent XRGs, the active lobes are typically observed aligning
along the major axis of the galaxy and wings along the minor
axis (Wang et al., 2003; Bruno et al., 2019). A similar investigation
conducted by Joshi et al. (2019) supports this claim but also
led to the identification of six XRGs exhibiting indications of
counterexamples. In these instances, the wings are reported to
align along the major axis of the ambient medium (see Hodges-
Kluck et al., 2010b; Yang et al., 2022, for individual such cases). The
existence of even a limited number of such counterexamples is
noteworthy, urging caution in endorsing any model that aims to
explain the observed general trend.

In the analysis of the interstellar medium of XRG host
galaxies using mid-infrared color measurements, Joshi et al. (2019)
identified a notable presence of a young star population and/or
enhanced dust masses in a substantial fraction of sources (∼80
percent).This implies that the replenishment of gas and dust to XRG
hosts may have occurred through galaxy merger events. However,
it remains to be determined whether these potential merger events
are recent or represent older activity (older than the lobe ages).
Other investigations, such as those by Mezcua et al. (2012), revealed
evidence of recent starburst activity in smaller fraction of XRGs
(starbust that happened 106 years ago), with an additional 50 percent
of sources exhibiting starburst activity occurring more than ∼108

years ago (substantially older than lobe ages). The study conducted
by Gillone et al. (2016) reported even a smaller fraction of their
sample (∼36 percent) displaying a young star population (with ages
less than 3 Gyr). From such analysis of the interstellarmedium in the
host galaxies or their nuclear regions (as discussed in the previous
section), the presence of dust or young stars is appearing not to
be a prevalent characteristic. If present, such activity is associated
with the dust inclusion or starburst events that occurred in
the distant past.

The above conclusion can further be supported by the findings
of Joshi et al. (2019), who determined that XRGs tend to inhabit
low-density, large-scale environments with a median richness (i.e.,
number of galaxies within a projected radius of 1 Mpc and redshift
bounds of ±0.04(1+ z) centered at the source) of approximately
∼8.9. In comparison, FRIIs exhibit environments with a median
richness of ∼11.8, and FRIs are found in environments with a
median richness of ∼29.8. Similar sparse environment has also
been reported for XRGs by Dennett-Thorpe et al. (2002). Given that
XRGs tend to reside in poor environment does not immediately
imply their host galaxy lack evolution through galaxy merger. For
example, Kozieł-Wierzbowska et al. (2012); Misra et al. (2023) have

specifically presented an example of a winged radio galaxy residing
in a low-density environment, yet exhibiting signs of a recentmerger.
Thepresence of prominent dust lanes (identified as a possiblemerger
signature, see Giri et al., 2023a) has also been observed in a few
XRGs, including 3C 433 (Miller and Brandt, 2009) and PKS 2014-55
(Cotton et al., 2020). Therefore, the notable fraction of XRG hosts
showing signs of recent starburst or enhanced dust masses may
indicate a link to recent mergers.

3 Emission characteristics of XRGs

Much investigation has been carried out to examine the X-
shaped structure across different wavelengths, ranging from radio
to X-ray bands, followed by seminal numerical works. In this
section, we delve into the implications and discussions arising from
these findings.

3.1 Total intensity continuum

X-shaped radio galaxies place themselves near the boundary
between FR I and FR II in terms of radio power (Cheung, 2007),
tending to bemore prevalent on the weaker FR II side (Gillone et al.,
2016; Saripalli andRoberts, 2018; Yang et al., 2019; Bera et al., 2020).
The question of why there is a limited population of FR I XRGs
remains a subject of ongoing debate (see, e.g., Dennett-Thorpe et al.,
2002; Saripalli and Roberts, 2018). A possible explanation is that
after jet activity ceases, edge-brightened FR II typemorphologymay
have relaxed into edge-darkened lobes of the FR I type, since many
edge-darkened XRGs are currently experiencing renewed nuclear
activity (see, e.g., Figure 1), which is seen as inner double structures
of FR II type (Saripalli et al., 2008; Saripalli and Subrahmanyan,
2009; Cotton et al., 2020). Nonetheless, there remains an unresolved
question regarding the presence of a restricted number of XRGs
exhibiting FR Imorphologies that have not yet manifested any inner
restarted activity.

Another widely accepted observation is the absence of hotspots
in the wings of XRGs. While this is a well-known characteristic, it
seems to challenge the notion that both the lobes andwings originate
from two bidirectional outflows from binary AGN systems (dual
AGN model; Lal and Rao, 2007). In general, the wings exhibit a
broad, diffuse, and lower luminosity nature, suggesting that they are
more aged structures compared to the active lobes. Consequently,
the plasma particles responsible for radio emission in wings,
evolving under a weakmagnetic field (several μG), have significantly
cooled, primarily emitting in lower frequencies than the active
lobes. To gain a more profound understanding of the morphological
extent of these structures, to refine models of the micro-physical
processes occurring within the broad cocoon structures, and
to explore the interplay between bent jetted structures and
the large-scale environment, high-resolution and sensitive low-
frequency observations are therefore imperative (Hardcastle et al.,
2019; Yang et al., 2019).

The investigation of jetted structures extends to multi-
wavelength analyses to gain deeper insights into the micro-
physical processes within the lobes. For instance, Kraft et al. (2005)
conducted a comprehensive study employing radio (VLA), optical
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(HST), and X-ray (Chandra) observations on 3C 403 to model the
compact components of the active lobes. Their findings pointed
to a synchrotron origin, positioning it as a notable example of
synchrotron X-ray emission from the jet of a potent narrow-line
radio galaxy (see also the case of 3C 433: Miller and Brandt, 2009).
Furthermore, their examination of the inhomogeneous diffuseX-ray
emission near the western lobe and wing suggested an Inverse-
Compton origin involvingCosmicMicrowave Background photons,
assuming a moderate departure from equipartition. Such detailed
modeling is crucial, especially utilizing X-shaped sources, which
exhibit both the active and passive phases of jet evolution.This helps
verify various assumptions used to quantify micro-scaled physics of
jetted sources, connecting the emission properties.

One notable assumption is the energy equipartition, which
posits an equal share of energy in the magnetic field and in the
particles within the cocoon that has been built up by the jet
structure (Hardcastle et al., 2002). This assumption is frequently
employed to determine parameters such as magnetic field strength
in the lobes and their radiative ages, subsequently governing the
determination of the jet power involved and the radio luminosity.
Note, however, that a slight deviation from the equipartition
condition in a radio galaxy can lead to substantially different spectral
and dynamical ages, consequently influencing the determination
of other crucial parameters (Croston et al., 2005; Mahatma et al.,
2020). Studies such as those by Hodges-Kluck et al. (2010b) have
brought attention to potential discrepancies between dynamical and
spectral ages in XRGs, a concern further addressed numerically
in models proposed by Giri et al. (2022a) and Giri et al. (2022b).
These modeling efforts provide a more profound understanding of
the micro-physical processes, including various cooling and particle
re-acceleration mechanisms, at play within these morphological
structures (see, e.g., Figure 2). Such insights become particularly
valuable for interpreting the anomalous spectral gradients observed
in several XRGs (further discussed in the next section). Yet a
deficiency remains in comprehensive modeling, in particular of
high-resolution observations of XRGs, and numerical simulations
on larger scales are still lacking.

3.2 Spectral index maps

Developing spectral index maps is crucial for gaining
deeper insights into the particle evolution physics in the radio
cocoon, providing key information about particle cooling and
re-energization. One of the earliest works on spectral analysis
of a rather unusual X-shaped source, 4C 18.68, was reported by
Gower andHutchings (1982), identifying the central active-lobe like
component having a flat spectrum. The spectral values tended to be
much steeper in the wing and showed a tendency to steepen towards
the wing edges. This was due to the effect of radiative and adiabatic
cooling effects operated on the particles (e.g., Kardashev, 1962; Jaffe
and Perola, 1973; Longair et al., 1973) and had been noticed in a
number of extended sources by then. A detailed analysis of NGC
326 by Murgia et al. (2001) further pointed out a similar trend, with
wings getting even steeper with higher frequency choices (an effect
of particle cooling; Fan et al., 2008). A consistent observation of this
spectral pattern in the wing-lobe structure has been documented in

numerous studies, including recent investigations employing high-
resolution and sensitive mappings of XRGs (Bruno et al., 2019;
Cotton et al., 2020; Mahatma et al., 2023). Such studies have also
observed a spectral gradient shifting from a flatter active lobe region
to a steeper wing region, consistent with the hypothesis that the
wing structure represents a relic of past AGN activity (see also
Rubinur et al., 2017; Misra et al., 2023).

However, we note that an earlier study by Hogbom (1979)
reported on XRGs 3C 192 and 3C 315, emphasizing their nearly
uniform spectral distribution, calling for deeper insight into the
secondary lobes. An overall radio spectral analysis (integrated over
the source) of the XRG 4C + 01.30, conducted byWang et al. (2003),
further revealed a spectrum that is notably flat for an extended
radio source (0.4–5 GHz spectral value of ∼ −0.6). Subsequently,
more sources with integrated spectral index values flatter than those
of normal extended radio galaxies have been noted by Bera et al.
(2020); Bhukta et al. (2022b), such as J0758 + 4,406, which exhibited
overall spectral values between 0.15 and 1.4 GHz at −0.35.

The observation of such flatter spectral values of XRGs has
prompted numerous studies to investigate the wing and lobe
structures separately (resolving individual structures in the spectral
map), revealing anomalous spectral behavior in certain sources.
For example, Rottmann (2001) delved into this issue by examining
nine prominent XRGs, further identifying 3C 223.1 and 3C 403 as
candidates where the wings exhibit flatter spectral indices compared
to the active lobes and the jet hotspots. Subsequent work by
Dennett-Thorpe et al. (2002) on these two sources also provided
evidence of comparable or flatter spectral values in the wings than
in the active lobes, with the spectral values in wing-lobe regions
varying between −0.8 to −0.6.

This discovery has spurred multiple groups to conduct detailed
mappings of XRGs, including the aforementioned sources, using
multi-frequency observations and spectral mapping. The goal is to
gain a deeper understanding of such anomalous spectral behavior,
whether it is associated with particle re-acceleration mechanisms,
enhanced radiation losses in the hotspots, or binary AGN scenarios
capable of ejecting jets. The investigation into the origin of the
anomalous spectral behavior of 3C 223.1 itself, involving different
observing bands and authors, has revealed potential connections to
internal micro-physical processes (Krishna and Dabhade, 2022) or
the possibility of binary AGN scenarios (Lal and Rao, 2005; Lal and
Rao, 2007; Lal et al., 2019).

However, analytical or numerical works to understand the
possible scenario of binary AGNs ejecting jets in forming X-shaped
radio structures and originating corresponding anomalous spectral
behavior are yet to be conducted. A handful of numerical works have
been conducted on modelling the particle evolution micro-physics
in the jet cocoon of such radio galaxies. The processes of particle re-
acceleration, as outlined by Fermi (1949), including diffusive shock
acceleration (Blandford and Ostriker, 1978; Blandford and Eichler,
1987) and turbulent re-acceleration (Rieger et al., 2007), have
been intricately modeled through numerical simulations involving
powerful jets (Fromm et al., 2016; Vaidya et al., 2018; Borse et al.,
2021; Kundu et al., 2021; Mukherjee et al., 2021). An investigation
on the similar context, conducted by Kundu et al. (2022) has
explicitly revealed the influence of particle re-energization,
especially the effect of second order Fermi process, on spectral
distribution. This investigation points toward the additional supply
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FIGURE 2
(A) Density (logρ) slice from a 3D simulation illustrating the formation of an X-shaped structure, displaying turbulent density evolution within the
cocoon and at the cocoon-ambient medium interface (at 3.78 Myr). The internal turbulence, as evidenced by the trajectories of four plasma blobs
tracked since their injection, generates random shock sites where particles become energized. (B) Evolution of the equipartition-to-dynamic magnetic
field ratio (Beq/Bdyn) for the same four plasma blobs since their injection. A value of Beq = Bdyn indicates true equipartition between radiating electrons
and the magnetic field of the radio structure. The diverse evolution and small-scale variations observed in the graph reflect the influences of various
micro-physical processes, including adiabatic cooling and diffusive shock acceleration (Giri and Vaidya, 2023a). Image reused with permission;ⓒ The
authors, and The Cambridge University Press.

of energy to evolving particles, thereby maintaining their activity
beyond what would be expected under the influence of radiative
and adiabatic cooling effects (thereby showing flatter spectra for
longer evolving time). Such conclusions may also be pertinent
to the secondary lobes of XRGs, where particles in the wings
experience re-acceleration due to internal turbulence (generates
random shock sites).

Giri et al. (2022b), in this context, delved into these issues and
demonstrated the feasibility of generating random shock sites in the
wings.This occurs as particles are redirected back to the wing cavity,
creating patches with flatter spectral index amidst the background of
evolving cooled particles. Such phenomena significantly influence
the overall wing spectra, rendering them flatter. This explanation
has been referenced in elucidating the anomalous spectral behavior
of 3C 223.1 (Krishna and Dabhade, 2022). However, Giri et al.

(2022b) also emphasized that the occurrence of these flatter spectra
depends on the choice of frequencies. Higher frequency selections
in evaluating spectral values exhibit primarily the standard behavior
observed in normal radio galaxies. Substantiating this, Patra et al.
(2023) recently conducted a statistical investigation to identify
anomalous spectral behavior in XRGs within the frequency band
of 0.14–1.4 GHz. They found such anomalous behavior to be
exceedingly rare, with only one sample exhibiting this peculiar
trait. In contrast, the study by Lal et al. (2019), which showcased
wings comparable or flatter than the active lobes, demonstrated
such behavior in a narrow frequency range of 0.24–0.61 GHz, where
spectral steepening is expected to be less pronounced (Giri et al.,
2022b; Nolting et al., 2023). However, the exploration of a few XRGs
exhibiting anomalous behavior even at higher frequency choices
necessitates further study of a larger sample.
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3.3 Polarization properties

A notable fraction of XRGs has undergone polarization analysis
to elucidate the distribution of projected magnetic field lines and
fractional (linear) polarization information. Such exploration was
conducted to primarily understand the dynamics of jets, internal
cocoon structures and the jet-ambient medium interaction. In the
active lobes, the overall behavior of magnetic field lines has been
observed to align with the jet flow or the lobe edges (Hogbom, 1979;
Black et al., 1992; Johnson et al., 1995), exhibiting a typical pattern
commonly found in FR II radio sources (Bridle et al., 1994). This is
consistent with a model wherein shock compression, arising from
the interaction between the jet and ambient medium, plays a pivotal
role in aligning the magnetic field longitudinally as shown by Laing
(1981) (see also the recent numerical works by Giri et al., 2022a;
Meenakshi et al., 2023). In this model, the jet material interacts
with an ambient medium (plows into it) containing tangled fields,
and the ensuing compression at the bow shock and shear at the
boundary layer between the jet cocoon and the shocked ambient
medium organizes the field along the lobe. The hotspots within the
active lobe reveal magnetic field lines oriented perpendicular to the
jet flow direction (Black et al., 1992; Baghel et al., 2023), suggesting
a potential compression of field lines at the termination shock of
the jet. Such a compression can be inferred by the detection of
higher fractional polarization values observed in hotspots than the
lobes (fractional polarizartion, ∼40− 50 percent in comparison to
∼30 percent; Black et al., 1992). Often hotspots are followed by
bow shock-like sheath regions where highly ordered B-field lines
are observed, displaying a distribution reminiscent of a bow-shock
pattern (Black et al., 1992; Johnson et al., 1995; Baghel et al., 2023).

The distribution of magnetic field lines in the wing is observed
to be even more ordered than in the active lobe, running parallel to
the wing edges (Hogbom, 1979; Black et al., 1992; Rottmann, 2001;
Dennett-Thorpe et al., 2002; Kozieł-Wierzbowska et al., 2012). The
assertion is supported by fractional polarization values in the
wings, with values reaching or exceeding 50 percent. Such ordered
distribution ofmagnetic field lines has been documented in sensitive
mappings of giant XRGs, as seen in the work of Cotton et al. (2020).

In numerous XRGs, the smooth transition of magnetic field
lines into wing-lobe structures suggests that the two pairs of lobes
are likely interconnected entities, implying a shared evolutionary
process rather than distinct and independent developments (e.g.,
3C 315, 3C 223.1, 3C 34, 3C 136.1, 3C 403, PKS 2014-55
Hogbom and Carlsson, 1974; Black et al., 1992; Johnson et al.,
1995; Rottmann, 2001; Dennett-Thorpe et al., 2002; Cotton et al.,
2020). Numerical simulations in this regard have been employed
to replicate the polarization patterns observed in winged sources
using various models (Rossi et al., 2017; Giri et al., 2022a). Despite
differences in the models, a consistent outcome has been observed,
i.e., the field lines within the lobes consistently align with
the flow lines, posing challenges in determining the usefulness
of polarization information for understanding the underlying
formation mechanism. Nonetheless, a comprehensive modeling
approach is crucial from both a simulation standpoint, involving
the inclusion of micro-physical processes in particle evolution
and large-scale XRGs simulation, and an observational standpoint,
requiring high-resolution mapping to discern polarization patterns
in compact components.

4 XRG formation models and
challenges

Understanding the properties described above for X-shaped
radio galaxies provides crucial insights that pave the way toward
the formulation of potential formation mechanisms. The existing
studies have identified two possible aspects contributing to the
formation of inversion-symmetric bending. These factors are
associated with either the impact of an asymmetric triaxial ambient
medium through which the jet propagates or a complex mechanism
occurring within the central AGN where the jet originates.

4.1 The back-flow diversion model

4.1.1 The model setup
Considering the association of XRGs primarily with FR type II

radio galaxies, the active lobe is likely to create back-flowing plasma
that flows backwards towards the center from the jet termination
point. This backflow originates from a pressure imbalance at the
jet head-ambient medium interface, followed by a sharp change
in entropy at that point (Bromberg et al., 2011; Cielo et al., 2017).
The trajectory of the back-flowing material can undergo mechanical
alterations in the presence of an asymmetric, triaxial medium,
directing the plasma through the influence of steepest pressure
gradient force and buoyancy force (e.g., Gull and Northover,
1973), eventually causing an almost lateral bend. This situation is
anticipated for both arms of the bidirectional jet-lobe. However, to
give rise to an X-like winged structure, the back-flowing material
from the lobes needs to bend in the opposite direction. Leahy and
Williams (1984) proposed that an ambient medium characterized
by an ellipsoidal triaxial morphology could disrupt symmetry,
subsequently causing the backflowing material to bend in the
opposite direction.

In a similar vein, Capetti et al. (2002) has put forth a comparable
argument involving the evolution of an overpressured cocoon
within an ellipsoidal triaxial medium. By following the highest
pressure gradient path, the cocoon has been observed to generate
an X-like morphology. This proposition gains further support
from Hodges-Kluck and Reynolds (2011) through extensive large-
scale simulations (on galaxy group or cluster scales), which model
the long-term evolution of XRGs, demonstrating that a higher
ellipticity of the ambient environment produces a prominent XRG
morphology. Subsequently, Rossi et al. (2017) undertook a more
realistic modeling approach focusing on the formation phase of
XRGs based on this framework (jets evolving inside a triaxial
galaxy).This involved incorporating relativistic effects andmagnetic
fields, demonstrating the formation of various wing-lobe structures
based on the propagation angle of the active jet in relation to the
major axis of the ambient medium. The model has been further
expanded by Giri et al. (2022b) to encompass pragmatic emission
signatures, taking into account the influence of particle cooling and
re-acceleration processes.

4.1.2 Strengths of the back-flow model
It is evident that the Back-flow model relies on the lateral

bend of back-flowing plasma, following the maximum pressure
gradient path as influenced by the triaxial ambient medium. In
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the case of an ellipsoidal medium, such as a galaxy, galaxy group,
or galaxy cluster with this shape, the steepest pressure gradient
path aligns along the minor axis of the medium. This naturally
explains why the wing structure of XRGs predominantly aligns
along or exhibits a minute spread with respect to the minor axis of
the ambient environment (Capetti et al., 2002; Hodges-Kluck et al.,
2010a; Gillone et al., 2016). In this context, the active lobe is
observed to propagate along or around themajor axis of the ambient
medium with a spread of ≲ 50°. Such a relatively broad spread
of active lobe propagation with respect to the major axis of the
ambient environment results from the fact that FR-II radio galaxies,
in general, show no trend in their propagation direction in relation
to the host medium’s axes (Saripalli and Subrahmanyan, 2009).

Irrespective of this, the propagating jet has been found to
generate substantial backflowing plasma from the jet-head that
eventually channels into the wing as it interacts with the denser
ambient medium, following the path of the lowest pressure gradient
(lowest rate of pressure decrement along the major axis). Notably,
numerical modeling by Rossi et al. (2017) has demonstrated that
an angle of 30° is capable of producing the observed X-like
structure based on this model. It is also anticipated that an
actively propagating jet along themajor axis of the ambient medium
would yield prominent XRGs. Furthermore, it is consequential to
understand why the wing structure lacks hotspots at their edges,
and the typical extent of the wings is primarily detectable in
lower frequencies (Yang et al., 2019), since they mostly consist of
older cooling particles (Giri and Vaidya, 2023a). The model also
offers an explanation for the propensity of XRGs to originate in
elliptical mediums characterized by higher ellipticity than typical
FR-II sources (Saripalli and Subrahmanyan, 2009).

The majority of XRGs exhibiting a wing-to-active lobe length
ratio less than 1 (Bera et al., 2020; Bhukta et al., 2022b) can be
effectively elucidated by this model. This is attributable to the
anticipated movement of back-flowing plasma, which is expected
to travel backward from the active lobe end before inflating the
wing region. This observation gains prominence from the tendency
that XRGs with larger extents typically display shorter wing lengths
(Saripalli and Subrahmanyan, 2009). Notable examples illustrating
such a scenario include PKS 2014-55, J0318 + 684, and 3C 34
(Cotton et al., 2020; Bruni et al., 2021; Mahatma et al., 2023).
XRGs with wing lengths comparable to or larger than the active
lobes can also be explained by the fact that the overpressured
cocoon scenario can induce a supersonically moving wing
(Giri et al., 2023b), which, along with the projection effect, would
generate such morphology (Hodges-Kluck and Reynolds, 2011;
Rossi et al., 2017; Giri et al., 2022b).

A natural explanation for the prevalence of these radio galaxies
in the low-powered FR IIs can also be derived from this model.
The FR I radio galaxies are believed to have minimal back-flowing
plasma, as they begin to disperse and lose collimation at the jet
head (Massaglia et al., 2016). A high-powered FR type II radio
galaxy is expected to produce increased back-flowing plasma due
to a higher pressure imbalance between the jet head and ambient
medium. However, the rapid advancement of the powerful jet
through the medium results in a faster increase in its length as well.
Consequently, despite the substantial production of back-flowing
plasma, the amount of matter channeled into the wing is reduced,
resulting in a less pronounced X-shaped structure (Rossi et al.,

2017). In this regard, a denser ambient environment is expected to
lead to a more prominent wing as the jet propagation is hindered by
increased jet-ambient medium interaction. Interestingly, X-shaped
radio galaxies are not commonly observed in denser environments.
This scarcity likely is a direct consequence of the sparser occurrence
of FR II radio galaxies in such environments (median richness of 15;
Gendre et al., 2013). Studies, such as by Joshi et al. (2019), suggest a
similar environmental richness for both FR IIs and X-shaped radio
galaxies in comparison to FR Is with median richness of ∼30. The
residence of FR II radio galaxies in low-density environments has
sparked debate, with some attributing it to central engine activity,
like conditions in the accretion flow, while others link it to the radio
jet’s interaction during its journey through the ambient environment
(Buttiglione et al., 2010; Lin et al., 2010; Capetti et al., 2017).

The model attempted to provide an explanation for winged
sources exhibiting FR-I type morphology, even though they are
exceedingly rare (Bera et al., 2020). Modeling by Hodges-Kluck
and Reynolds (2011) indicated that once the jet injection process
decays, i.e., the AGN enters a quiescent phase, the lobes are
expected to decay to luminosities more typical of FR I sources.
Therefore, the limited number of identified FR I sources may
indicate the phase of this special event. This argument is further
supported by the reporting of Saripalli et al. (2008); Saripalli and
Subrahmanyan (2009), demonstrating that a notable fraction of
these low-powered radio galaxies display inner doubles of FR II
type, suggesting a restarting AGN activity. Furthermore, additional
support for this explanation is evident from the fact that inner
deviation sources, which are indicative of XRGs, are predominantly
associated with FR II morphologies (e.g., 36 out of 37, Saripalli
and Roberts, 2018). In contrast, outer deviation sources generating
XRG candidates are found to be associated with FR Is, albeit with a
lesser fraction (only 4 show FR I characteristics out of 19 sources,
Saripalli and Roberts, 2018).

The recent discovery of anomalous spectral behavior in XRGs
challenges the idea that wing structures are older (see Section 3.2).
While this questions the Back-flowmodel’s prediction, it is crucial to
consider that particle re-acceleration mechanisms can significantly
re-energize flowing particles, concealing their actual age in contrast
to the predictions made in spectral index maps (see Section 3.2
for details). Addressing how the wing structure generates such a
turbulentmedium to energize particles, Giri et al. (2022b) suggested
that the diversion of backflowing plasma at the active lobe−wing
base may generate turbulence, forming random shock sites in the
wing where particles get re-energized.This phenomenon is reflected
in the spectral index map, making the wing flatter than expected.
Moreover, themodeling byGiri et al. (2022b) predicted that spectral
maps with a larger frequency range would exhibit the standard
behavior expected from an evolving wing, as particle cooling is
extensive in higher frequency choices. The study by Patra et al.
(2023) confirms this prediction, with all but one source showing
this anomalous spectral behavior. While Fermi processes (both first
and second order) can be active in XRGs generated from other
models, existing studies suggest that the Back-flow model is capable
of explaining such a confounding property.

4.1.3 Caveats of the back-flow model
While this model may be well-suited for explaining the X-

shaped morphology in inner deviation sources and in some of
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the potential outer deviation sources (e.g., Cotton et al., 2020),
it faces challenges in elucidating the origin of prominent outer
deviation sources like NGC 326 (Murgia et al., 2001), J1153.9
+ 5,848 (Bruni et al., 2021), and J1159 + 5,820 (Misra et al.,
2023). While the majority of XRGs exhibit wing alignment along
the minor axis of the ambient environment, recent discoveries
present instances where wings align along the major axis of the
ambient medium (Hodges-Kluck et al., 2010b; Joshi et al., 2019).
The model also faces challenges in explaining sources with hosts of
circular geometry or asymmetric distributions of stars and gas, as
documented by Heckman et al. (1982); Evans et al. (1999); Saripalli
and Subrahmanyan (2009); Misra et al. (2023). Most importantly,
the Back-flow model encounters difficulties in accounting for wings
that are noticeably longer than the active lobe, as seen in sources
reported like in Gower and Hutchings (1982); Wang et al. (2003);
Bruno et al. (2019); Ignesti et al. (2020). Despite the potential
influence from projection effects, the model struggles in elucidating
the collimation of such extended wings. This is because the
projection effects have been noticed to broaden and diffuse the
wing structure with an increase in viewing angles almost always
(Hodges-Kluck and Reynolds, 2011; Giri et al., 2022b).

While the Back-flow model provides an explanation for the
anomalous spectral behavior observed in several XRGs, it is yet to be
firmly established as the underlyingmodel for themajority of XRGs.
This is because particle re-acceleration could also be an intrinsic
component of other formation models, nonetheless, its impact on
the spectral map needs to be examined.

4.2 The jet reorientation model

4.2.1 Proposed reorientation model(s)
Another explanation for the formation of wings involves

attributing the structure to a past jet reorientation event, a
framework that has also been widely discussed. In the context of
the jet reorientation timeline, such events can be broadly classified
into two types: slow reorientation, where the jet slews gradually
over several million years, and fast reorientation, where the jet flips
to a new angle almost instantaneously. The motivation for such a
scenario can be inferred from the studies of double-double radio
galaxies, where the restarting jet has been observed to be generated
along a new direction (e.g., Saripalli et al., 2013; Nandi et al., 2021).

However, to explain the observed X-shaped morphology, the
jet reorientation event has to occur at a substantial angle (average
alignment angle of 75°; Capetti et al., 2002; Bhukta et al., 2022b).
Analytical exercises involving a diverse set of physical processes have
demonstrated that such a scenario could indeed be possible. Among
these, the inbound motion and coalescence of binary SMBHs,
influencing a shift in the spin direction of the jet-ejecting black
hole, has gathered significant attention. This is due to its diverse
range of possibilities for shedding light on topics such as the co-
evolution of galaxies and SMBHs (Yu, 2002; Bansal et al., 2017;
Kharb et al., 2017), as well as low-frequency gravitational wave
astronomy (Amaro-Seoane et al., 2012; Zhu et al., 2015).

4.2.1.1 Precession of binary black holes
In the hierarchical galaxy formation model of cold dark matter

cosmology, massive galaxies result from successive galaxy mergers

(Ji et al., 2014;Mancillas et al., 2019; Giri et al., 2023a). During these
mergers, supermassive black holes in the galactic core quickly
form hard SMBH binaries at a pc-scale separation. The binaries
may stall for a timescale longer than the Hubble time if the
gravitational potential at the galactic nucleus is spherical and stellar
relaxation is dominated by two-body scattering (Begelman et al.,
1980; Yu, 2002). Radio observations can probe this scenario when
at least one of the black holes produces a jet. The orbital motion
imposes a widening helical pattern on the jet (e.g., Kun et al.,
2015; Britzen et al., 2017; Kharb et al., 2019; Jiang et al., 2023).
Supermassive black hole binary with subparsec separations can raise
jet precession periods of the order of several Myr, significantly less
than the typical ages of observed radio galaxies spanning several
hundred Myr. This results in visible jet curvature on radio maps of
larger scaled jets (Krause et al., 2019). In the context of XRGs, in-
depth analyses employing jet precession models have scrutinized
the curved wing-active lobe structure, seeking to delineate the
parameters of potential binary black hole pairs at the center of
the host galaxies (Ekers et al., 1978; Gower et al., 1982; Gong et al.,
2011; Rubinur et al., 2017). Their identification of nearly million-
year jet precession has facilitated the inference of the separation,
mass ratio and orbital period of potential SMBH binaries at the
center. In this context, numerical simulations have been employed
to model the large-scale bent structure of the jet, incorporating
the evolution of jet precession. These simulations have successfully
generated XRGs with a similar topology, underscoring the potential
occurrence of such phenomena (Horton et al., 2020; Giri et al.,
2022a; Nolting et al., 2023).

4.2.1.2 Coalescence of binary black holes
Due to the non-spherical gravitational potential induced by the

rotating central object and massive perturbers from gas disks at
galactic centers, the separation between binary SMBHs is further
reduced, leading to their merging within a Hubble time (see
review by Merritt and Milosavljević, 2005). Merritt and Ekers
(2002) investigated the merger of binary SMBHs with a mass
ratio of M2/M1 = 1/4, exploring the instantaneous change in spin
magnitude δS during the coalescence, approximated as GM2

1/2c (G
is gravitational constant and c is speed of light). In this scenario, δS
is calculated as the difference between the resultant spin (S) after the
coalescence of the black holes and the spin of the heavier black hole
involved in the merger (S1). Introducing the parameter λ = δS/S1,
the study reveals that the average cosine of the realignment angle ζ
can be expressed as ⟨cosζ⟩ ≃ (2/3λ) for λ > 1. Notably, if the larger
black hole is initially rotating at a relatively slow rate (comparable
to, for instance, ∼0.1 GM2

1/c, thereby fulfilling λ > 1), the resulting
realignment angle is approximately ≃ 82°. Therefore, such a flipping
of the spin axis, and consequently, the jet ejection axis, can result in
the formation of an X-shaped jetted morphology.

The recent analytical work by Garofalo et al. (2020) presents a
slightly different finding in this context. It suggests the presence of
low-spinning black holes in X-shaped radio galaxies. However, the
change in the spin direction of the jet-ejecting black hole is initiated
by the transition from a retrograde to a prograde rotating state,
influenced by a recent merger.

In the above exploration of an instantaneous spin axis flip, it
has been assumed that the underlying accretion disk does not fall
apart, allowing the jet ejection process to persist post-reorientation.
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It is noteworthy that Liu (2004) conducted an analytical study,
emphasizing the substantial role played by the strong coupling
between binary black holes and the accretion disk during black hole
mergers in reorienting the spin axis of the jet-ejecting black hole.
Subsequently, Liu et al. (2012), focusing on the intricate relationship
between mass ratios of colliding black holes and the spin axis flip
angle, indicated that for a significant spin axis flip, the mass ratios
of colliding black holes need to be comparable (≳ 0.3), suggesting
majormergers of black holes (see also, Gergely andBiermann, 2009).
This implies that such a spin flip scenario may only occur in major
galaxy mergers, justifying the low occurrence of XRGs given the
substantial rate of galaxy mergers (e.g., see Giri et al., 2023a, for
merger rate in the local Universe). The latter study underscore the
requirement for high-spinning black holes.

4.2.1.3 Inhomogeneousmass accretion
The presence of matter with angular momentum, not aligned

with the spin of the central SMBH, can prompt a realignment of the
spin axis. In galaxy mergers, where the merging orbit is expected to
be random, the misaligned gas and dust resulting from the merger
tend to converge towards the gravitational center (Ji et al., 2014;
Wang et al., 2020), influencing the stability of the accretion disk and,
consequently, affecting the spin axis of the black hole. The Lense-
Thirring effect, described by Lense and Thirring (1918), elucidates
the coupling between the spin of a rotating black hole and the
angular momentum of orbiting matter. This effect induces a torque
by the central black hole on the orbiting matter, especially for orbits
that are not in the equatorial plane, and feels an equal and opposite
absolute torque. Therefore, the Lense-Thirring effect provides a
mechanism for the alignment of the spin axis of the central SMBH
with the misaligned angular momentum of the accreted matter.

Bardeen and Petterson (1975) applied this concept to accretion
disks around rotating black holes and indicating that a portion of
the misaligned accretion disk undergoes Lense-Thirring precession
with an angular velocity (ω) given by ω = 2J/r3 where, J represents
the angular momentum of the black hole, and r corresponds to
the radius from the black hole. Bardeen and Petterson (1975)
demonstrated that a critical radius exists, where the infall time of
matter onto the black hole becomes equal to the orbital period.
Beyond this critical radius, the precession rate ω accumulates
over multiple orbits, resulting in the development of a stable,
large-scale warp in the accretion disk (see also, Liska et al., 2019).
This warped disk, with its significant angular momentum at
larger radii, eventually leads to a change in the spin axis of the
supermassive black hole.

In this context, the study by Babul et al. (2013) proposes a
relation connecting the maximum flip angle ζmax of the black hole
to the ratio between gas inflow ΔMgas and the black hole massMBH,

ζmax ≈ tan−1(73.5
ΔMgas

MBH
) (1)

When considering a relatively modest gas inflow, such as
ΔMgas ≈ 3× 107M⊙, Equation 1 shows a resulting tilt angle of
approximately ∼65° for MBH = 109M⊙. It is important to note that
this magnitude of the tilt angle is specifically applicable to slowly
rotating black holes. In the case of a rapidly spinning black hole,
Liska et al. (2018) illustrated amechanismwherein a tilted accretion
disk exhibiting jet precession, when extended to large scales, can give

rise to XRGs depending on the viewing direction (Horton et al.,
2020; Giri et al., 2022a; Nolting et al., 2023). Further exploration,
exemplified by Lalakos et al. (2022), adds support to this hypothesis,
suggesting that the jet ejection axis undergoes a substantial flip to
a large angle due to inhomogeneous mass accretion, resulting in
erratic wobbling.

Therefore, a large-angle flip can also occur driven by
inhomogeneous mass accretion, resulting in the formation of an
X-shape. This scenario is most likely associated with gas-rich minor
mergers, which may not leave prominent merger signatures on
the ambient galaxy of the XRG host, explaining the infrequent
occurrence of merger signatures in XRG hosts. In such cases, the
gas from a minor galaxy merger can be funneled to the central
black hole with minimal disturbance to the host galaxy’s stellar
distribution (Dennett-Thorpe et al., 2002).

4.2.2 Strengths of the jet reorientation model
The wings, which are remnants of past jetted activity, presently

exist as traces of jet emissions, explaining why there are no
hotspots at their edges. These observations are consistent with the
jet reorientation model. The model excels in providing a natural
explanation for the varying length of wings compared to active
lobes, including sources with significantly longer wings, while also
accounting for their collimation (Giri et al., 2023b). Additionally, it
sheds light on the origins of the inner and outer deviation sources,
yielding strong and candidate XRG morphologies, respectively
(e.g., Dennett-Thorpe et al., 2002; Gopal-Krishna et al., 2003; Zier,
2005; Rubinur et al., 2017; Misra et al., 2023). The discoveries of
XRGs with wings aligning along the major axis of the ambient
medium (e.g., Hodges-Kluck et al., 2010b; Joshi et al., 2019) find an
explanation based on this model, as numerically shown by Giri et al.
(2023b) on larger scales.

The presence of recent starburst activity (around several
million years old) in the hosts of several XRGs (Mezcua et al.,
2012), prominent merger signatures in the hosts of some XRGs
(Heckman et al., 1982; Evans et al., 1999; Hodges-Kluck et al.,
2010b; Misra et al., 2023), and the identification of XRG hosts with
a projected circular shape of the ambient medium (Saripalli and
Subrahmanyan, 2009) provide evidence that the merger-driven jet
reorientationmodel is a plausible explanation for the origin ofXRGs.
Additional support for the model may arise from the detection of
S-like intrinsic shapes observed in several active lobes of XRGs,
indicating a precessing jet (e.g., Bruno et al., 2019; Baghel et al.,
2023), supported by seminal numerical works reproducing
similar structures following the evolution of a precessing jet
(Nolting et al., 2023).

4.2.3 Caveats of the jet reorientation model
The jet reorientation model is not exempt from limitations that

require further investigation. The reason why the host galaxies of
XRGs, or the host environment in general, exhibit higher ellipticity
than normal radio galaxies (Saripalli and Subrahmanyan, 2009;
Hodges-Kluck et al., 2010a), lacks a comprehensive explanation
from this model. In a broader context, XRGs are often found
in sparser environments, where the probability of galaxy mergers
decreases significantly (Joshi et al., 2019). This notion is further
supported by the absence of recent starburst activity in a substantial
sample of XRGs (Gillone et al., 2016), coupled with the lack of gas
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and dust in the nuclear region and a relatively higher temperature
of the nuclear environment (Landt et al., 2010). It is essential to
highlight that a dry merger involving elliptical galaxies will lack
significant star formation activity and show the absence of gas
and dust, nonetheless, forming the binary black hole. In this case,
high-resolution observations of host galaxies are crucial to trace
interaction signatures arising from such dry mergers (Giri et al.,
2023a), serving as a valuable method to constrain this prediction.

The distinct characteristic of XRGs, where wings align along
the minor axis of the ambient medium, finds an explanation in the
binary black hole coalescence model, as indicated by Liu (2004).
In a galaxy merging system, as gas is expected to settle in the
galactic plane with low gravitational potential, it forms an accretion
disk within that plane. According to the Bardeen–Petterson effect,
plasma jets are then directed perpendicular to the accretion disc,
and consequently, perpendicular to the galactic plane.Therefore, the
wings of XRGs, as the remnants of past jet activity, are positioned
vertically to the galactic plane (i.e., along the minor axis of the
host galaxy). In this regard, the orientation of active (reoriented)
jet is aligned with the rotation axis of the binary black hole and is
anticipated to be randomly distributed. While it has been observed
that active lobes can exhibit a spread of up to 50° from the
host galaxy’s major axis (Saripalli and Subrahmanyan, 2009), the
wings also show a broad spread of angles (≥40°) with respect to
the major axis (Gillone et al., 2016), challenging the above idea.
Furthermore, this mechanism also needs to explain the formation
of wings along the major axis of the host galaxy, as observed
in studies by Hodges-Kluck et al. (2010b); Joshi et al. (2019) and
produced in large-scale simulations by Giri et al. (2023b). Finally,
this explanation seems at odds with inhomogeneous mass accretion
scenarios (e.g., Babul et al., 2013; Lalakos et al., 2022), which is also
likely to generate winged sources; the distribution of gas in a galaxy
merging scenario may not always align with themajor axis direction
(Wang et al., 2020).

It is also noteworthy that XRGs are notably absent in FR I
sources and powerful radio galaxies, with their prevalence primarily
observed in the low-powered FR IIs (Saripalli and Roberts, 2018;
Bera et al., 2020).

If the jet reorientation event is the mechanism behind the
formation of XRGs, it needs to be explained why such reorientation
happens only once in the lifetime of an XRG. One plausible
explanation is that the time elapsed since the reorientation event
may influence the detectability of emission from the faded lobes,
given the typical age of radio lobes is on the order of 107–108 years
(Harwood et al., 2017; Turner et al., 2018). However, the challenge
arises when considering the discovery of sources exhibiting three
cycles of AGN restart (Randall et al., 2015; Chavan et al., 2023),
making it difficult to account for the unavailability of winged
sources with multiple episodes of activity. Furthermore, restarted
activity has been observed to occur mostly along the preexisting
lobe direction (Nandi and Saikia, 2012; Mahatma et al., 2019),
even for XRGs (Saripalli et al., 2008; Saripalli and Subrahmanyan,
2009), indicating that a jet flip to a large angle maybe less
likely event.

To illustrate the limitations of individual processes causing jet
reorientation, a few situations can be considered. For example, the
precessing jet producingX-likemorphology has to be observed from
a fortuitous line-of-sight angle (Rubinur et al., 2017; Horton et al.,

2020; Giri et al., 2022a; Nolting et al., 2023). This process has then
problem in explaining the observed frequency of XRGs. Although
studies, such asMezcua et al. (2012), indicate that XRGs have higher
mass black holes than normal FR II sources, results from studies
like Kuźmicz et al. (2017); Joshi et al. (2019), which includes the
sources from Mezcua et al. (2012), show evidence for lower mass
black holes than FR IIs. Liu et al. (2012) also demonstrated a diverse
range of black hole masses in XRG host galaxies, starting as low as
log(MBH/M⊙)of 7.05. Such resultsmay seem to contradict the binary
black hole merger hypothesis. These models must also account
for the observation by Saripalli and Subrahmanyan (2009) that
XRGs with larger extents, in general, exhibit less massive wings
than the active lobes (e.g., Cotton et al., 2020; Bruni et al., 2021;
Mahatma et al., 2023).

While a jet re-orientation ad hoc may nicely explain the
observed XRG morphologies as detailed above, the physical
processes involved in the flipping mechanism, and in particular
in the jet launching are complicated, and its details are far from
understood. For example, jet launching is commonly attributed
to spinning black holes (the Blandford-Znajek mechanism), or
the collimation of disk winds (Blandford-Payne mechanism).
Essentially, both processes involve the existence of a strongmagnetic
field, threading either the disk of the black hole, removing
energy and angular momentum from these central bodies, and re-
distributing them into the outflow. Furthermore, the launching of
collimated high speed jets seem to require a certain amount of
axisymmetry of the system as magnetized disk systems without
such symmetry rarely show strong jets (e.g., cataclysmic variables
or pulsars).

The question arises how both the accretion disk structure as
well as the magnetic field is evolving during a postulated re-
orientation process. When the central source is flipped by the
processes discussed above, it will require a certain amount of time
until the geometry of components of the central sourcewill find back
to an axisymmetric structure, and also until the disturbed magnetic
field structure has re-established a strong poloidal flux that could
again accelerate material to relativistic speed. We note that while
a pure hydrodynamical flow that could be in principle cut off and
reconnected again, this is not easily possible with a magnetic field.
In ideal MHD magnetic field lines cannot be ‘cut’.

In resistive MHD, however, physical reconnection can happen
and lead to a re-configuration of the magnetic field alignment.
This is a well known process, although not understood in all
details and on all time scales, that can be actually observed in
nature, for example, above the solar surface. Reconnection is also
considered to be responsible for high-energy particle acceleration
in the magnetospheres of compact stars and in the coronae of
accretion disks. It can also happen in jets and jet launching regions
and may generate plasmoids ejected along the jet. However, in all
these examples mentioned, reconnection, while being an energetic
process, is considered as a local process.

In the scenario of a MHD jet re-orientation, so the disruption
and re-generation of a (resistive) MHD flow, reconnection must be
considered on a global scale, however. The energies involved in a
global jet reconnection event are huge. Assuming a jet radius of
≃ 100pc and a ≃ 0.1mG jet magnetic field we estimate an energy
release involved of ≃ 1052erg. Simply assuming a jet disruption time
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scale of the order of the light crossing time1 τ ≃ 100pc/c ≃ 300years,
we calculate a luminosity involved in such a potential catastrophic
event of about 3.5× 1042ergs−1. This would be comparable to a
quasar luminosity and could hardly be imagined to happen, and also
has not yet be observed to our knowledge.

Diffusing away the magnetic field and re-establishing a new,
strongmagnetic flux is a process that takes time.Therefore, although
a sudden flip may happen to the central source of the jet, it requires
time to build up a new physical setup that allows for jet launching.
The time scale and systemic parameters will certainly depend on
the source of the magnetic field. In fact, it has been shown that
an accretion disk dynamo can build up a strong, jet-launching
magnetic field in a reasonable time (Stepanovs et al., 2014; Vourellis
and Fendt, 2021), typically years for AGN, which would still allow
for a rapid re-start of a jet flow.

Liska et al. (2018) demonstrated, with numerical simulations,
that jets can be constantly emitted from a system that is hosting a
miss-aligned accretion disk. On the other hand, these authors show
that turbulent processes in the accretion disk slow down precession
and alignment. In respect of the flipping scenario, this state when
precession has decayed, may correspond to the state of a new, steady
jet ejection after the flipping process.

5 Potential future prospects

In the following, we highlight a number of important, potential
future investigations that can help to elucidate and constrict the
viable conditions under which individual models for XRGs can be
applied and can function optimally.

5.1 X-ray cavities associated with the XRGs

One underexplored facet in the study of X-shaped radio
galaxies is to investigate the effects of the bent jet structures
on the surrounding environment, particularly focusing on the
morphological impact in the ambient gas. While detailed X-ray
imaging studies have explored the interaction between jets and
ambient media in normal jetted sources, the focus on bent jets
has been sparse. Commonly, in such studies, straight, bi-directional
jets create over-pressured cocoons, displacing ambient material
to form cavities surrounded by shocked shells, as evident in X-
ray observations, such as emission depression regions enclosed
by bright rims (Gitti et al., 2010; Hlavacek-Larrondo et al., 2012;
Hlavacek-Larrondo et al., 2015; Shin et al., 2016; Vagshette et al.,
2017; Vagshette et al., 2019).

However, recent deep exposure maps have unveiled X-ray
cavities that exhibit a notable level of complexity. Observations in
galaxy clusters like Perseus show off-axis cavities, rims, and intricate
pressure wave distributions (Fabian et al., 2017). Similarly complex
structures are observed in other systems such as M84 (Bambic et al.,
2023),NGC5813 (Randall et al., 2015), A2052 (Blanton et al., 2011),
NGC 5044 (David et al., 2011), Cygnus A (Smith et al., 2002),
MS0735.6 + 7,421 (McNamara et al., 2009). This complexity in

1 A better estimate may be the Alfvén time scale

cavity structures may indicate deflections in the path of the jets
involved, highlighting a possible jet reorientation phenomenon. A
limited set of numerical simulations, as well suggests that the jets
in these sources have deviated from their anticipated straight paths
through a recent jet re-slewing event (Falceta-Gonçalves et al., 2010;
Cielo et al., 2018; Lalakos et al., 2022). Therefore, the deviations in
jet morphology not only affect the radio structure, but also leave
discernible signatures on the surrounding medium, as they are
highly intertwined.

The intricate connection observed between jet morphology and
the surrounding medium in the above scenarios may also hold true
for XRGs, a topic that warrants detailed investigation. In Figure 3,
we depict a 3D visualization of the results of a numerical simulation
capturing the initial formation phase of an X-shaped structure as it
drills through and pushes aside the ambient gas in both the active
lobe and wing directions, illustrating the interconnected nature of
the jet lobe and ambient environment. The double-lobed structure
of XRGs is expected to produce complex cavity signatures in the
ambient medium, detection and analysis of which could provide
evidence to constrain the underlying formation mechanism. This
is because different levels of interaction between the wings and the
ambient gas can be expected, depending on whether the structure
forms from a back-flow model or a jet reorientation model.

In this context, the study by Hodges-Kluck et al. (2010b)
illustrates the generation of such intricate structures, providing
evidence for identifying multiple cavity systems associated with
the XRG 4C + 00.58 that has been labeled as a strong candidate
source for jet reorientation. Later, in a low-exposure X-ray map,
a prominent cavity has been associated to the wing structure in
NGC 326 (Hodges-Kluck and Reynolds, 2012), which has long been
suggested to be another candidate with jet slewing. Recognizing
the significance of such studies, a few numerical works have been
conducted relying on jet flip model (Cielo et al., 2018; Lalakos et al.,
2022; Giri et al., 2023b), further emphasizing their effectiveness in
generating such structures in the ambientmedium.The later studies,
specifically focused on XRGs, have identified four clear cavity
systems, as exemplified by the observational work of Bogdán et al.
(2014); Ubertosi et al. (2021) in NGC 193 and RBS 797, where the
cavities align almost with a right angle to each other.

In order to discern whether such signatures differ from those
produced by the double-lobed structure of XRGs in the Back-flow
model, the study by Giri et al. (2023b) has investigated this aspect
in a large-scale environment, considering the long-term evolution
of the jetted structure for a more realistic representation of the
environment of such extended sources. The authors highlighted that
the depth and geometric alignment of the evolved cavities may serve
as promising characteristics of XRGs, potentially contributing to the
distinction of the underlying formation models. These intriguing
findings, however, require confirmation by deep X-ray observations
of the XRG ambient medium, an area that has been sparsely
explored thus far.

5.2 Comprehensive modelling to resolve
the caveats

In order to explore the formation of the X-shaped structure
and its long-term time evolution, we have discussed above in detail
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FIGURE 3
Volume-rendered 3D representation of an XRG evolving inside a galactic environment, captured during the formation phase at 3.9 Myr. The jet material
is depicted by a gray-colored contour, superimposed on the ambient material represented by the magenta color bar. This depiction illustrates the
interconnected nature wherein the jet lobes push aside ambient material along their evolution path, generating cavities enclosed with shocks when
observed in X-rays. Unit density is 1 amu/cc and unit length is 4 kpc. Image reused with permission; Giri and Vaidya (2023b),ⓒ The authors, and The
Cambridge University Press.

the general behaviour anomalousities, focusing on the Back-flow
and the Jet reorientation models. Highlighting the caveats of these
models XRG formation models and challenges, we underscore that
these challenges remain open questions awaiting resolution through
the application of individual mechanisms.

Tackling these issues requires an intricate numerical analysis,
addressing both the formation and larger-scale evolutionary
phases within a realistic environment. Additionally, comprehensive
modeling of emission processes, considering the impacts of particle
cooling and re-acceleration, becomes indispensable. This necessity
arises because, in contrast to observational investigations, only
a limited number of numerical modeling studies have been
conducted, yet, providing a wealth of information on the dynamical
evolution of such systems.

The absence of systematic emission modeling and long-term
evolution studies for XRGs in a realistic medium remains a
critical gap, but is essential for addressing the caveats discussed
above. For instance, the study by Giri et al. (2022b) has shown the
importance of incorporatingmicro-physical processes in addressing
the anomalous spectral behavior reported in several XRGs. Still, it is
yet to be understood whether this behavior is intrinsic to all other
formation models as well.

Regarding the large-scale evolution of XRGs, hydrodynamical
modeling of jet propagation in a highly ellipsoidal medium
has been performed by Hodges-Kluck and Reynolds (2011);
however, the existence of such a highly ellipsoidal environment
is not always obvious. Recently, Giri et al. (2023b) performed a
comprehensive large-scale evolution of XRGs in a less ellipsoidal
triaxial medium incorporating both back-flow and jet reorientation
models, highlighting detailed dynamical configurations. However,
there is a gap in studies addressing the evolution of XRGs in a more
asymmetric or nearly spherical ambient medium (Black et al., 1992;

Kraft et al., 2005; Saripalli and Subrahmanyan, 2009; Hodges-Kluck
and Reynolds, 2012). This aspect may pose challenges in generating
XRGs from the back-flow model. Simulation works delving into jet
precession modeling have been conducted by Horton et al. (2020),
however, their pragmatic emission imprints need to bemodeled for a
comprehensive understanding of the evolution processes of particles
inside the cocoon (e.g., Nolting et al., 2023). This remains essential
in order to explain whether jet precession is capable of addressing
the observed population of XRGs along with the existence of
anomalous XRGs.

In-depth observational efforts, featuring both high resolution
and sensitivity, are also imperative to detect, analyze, and
document additional complexities associated with X-shaped
structures. Addressing such intricacies (e.g., the presence of
long-tail, and filamentary structures associated with XRGs,
Hardcastle et al. (2019); Ignesti et al. (2020), see also Figure 1)
demand comprehensive and complimentary observational and
numerical approaches to uncover subtle features, and thereby
providing valuable insights into the underlying processes
shaping XRGs.

6 Summary

X-shaped radio galaxies represent a subset of winged radio
galaxies, where two double-lobed radio structures are observed to
orient at a large angle to each other, forming an inversion-symmetric
configuration. The formation mechanism of these peculiar sources
remains debatable, in spite of recent high-resolution and sensitive
observations that include the analysis of both micro- and macro-
scale properties, thus providing a diverse range of information
compared to earlier studies.
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The analysis of these multi-frequency studies of such radio
galaxies in fact allows for a variety of formationmechanisms, each of
them with its own strengths and limitations, thus requiring further
analytical and numerical modeling as well as more observations.
Nonetheless, the proposed ideas can be broadly categorized into
two primary hypotheses: one connecting the formation mechanism
with a triaxial ambient medium, and the other involving a complex
activity of the central AGN that is mechanically changing the
direction of the jet ejection. The range of properties observed in a
substantial sample of XRGs until now is diverse. They may, both,
support or contradict the proposed scenarios, and have thus lead to
the notion that there may not be a universal model explaining all the
properties of these radio galaxies. Instead, it has been suggested that
different mechanisms may be at play in the individual cases.

In this comprehensive review, we have delved into these
diverse characteristics of X-shaped radio structures, spanning from
their large-scale ambient dynamics to the micro-physical processes
governing radio cocoon evolution.Our exploration covered both the
salient features and the confounding properties of these intriguing
sources. Despite the wealth of observational findings, a notable gap
exists in numerical modeling, particularly focusing on individual
mechanisms, which is crucial for constraining the parameter space
governing their genesis. This modeling is not only essential for a
deeper understanding of these bent-jetted sources but also holds the
key to unraveling their potential role in probing critical topics like
the galaxy-SMBH co-evolution.

Our review also underscores significant deficiencies in the
observational domain. The lack of detailed mapping of the larger-
scale dynamics of the ambient environment where the jet terminates
hampers our ability to comprehensively study enhanced feedback
mechanisms. Additionally, the dearth of high-resolution mapping
and spectral analysis of the nuclear region impedes the identification
of signatures indicative of the complex AGN mechanisms at play.
Bridging these gaps is imperative for advancing our understanding
of X-shaped radio structures and determining whether they
represent a distinct class of sources resulting from specific events
or are a natural consequence of certain conditions affecting normal
radio galaxies.
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