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Primordial black hole formation
during slow-reheating: a review
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In this paperwe review the possiblemechanisms for the production of primordial
black holes (PBHs) during a slow-reheating period in which the energy
transfer of the inflaton field to standard model particles becomes effective at
slow temperatures, offering a comprehensive examination of the theoretical
foundations and conditions required for each of formation channel. In particular,
we focus on post-inflationary scenarios where there are no self-resonances and
the reheating epoch can be described by the inflaton evolving in a quadratic-like
potential. In the hydrodynamical interpretation of this field during the slow-
reheating epoch, the gravitational collapse of primordial fluctuations is subject
to conditions on their sphericity, limits on their spin, as well as a maximum
velocity dispersion. We show how to account for all conditions and show that
PBHs form with different masses depending on the collapse mechanism. Finally
we show, through an example, how PBH production serves to probe both the
physics after primordial inflation, as well as the primordial powerspectrum at the
smallest scales.
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1 Introduction

While the existence of supermassive and stellar-mass black holes today is thoroughly
demonstrated, the possibility of a third species of black holes has been hypothesized in recent
decades: the formation of primordial black holes (PBHs) during the early stages of evolution
of the Universe [see, e.g., Refs. (Yu, 2010; García-Bellido, 2017; Sasaki et al., 2018; Carr and
Kuhnel, 2020; Anne, 2021; Carr et al., 2021; Albert et al., 2022;Özsoy andTasinato, 2023) for
recent reviews]. These objects may be key to understand fundamental aspects of cosmology
and particle physics.

One epoch in which primordial black holes might have emerged is the reheating
phase that immediately followed the period of cosmic inflation [see, e.g.,
Refs. (Allahverdi et al., 2010a; Amin et al., 2014)]. The inflationary paradigm
postulates that the early Universe experienced a period of rapid and exponential
expansion in its earliest moments [see, e.g., Refs. (Linde, 1984; Keith, 1990;
Lyth and Riotto, 1999; Liddle and Lyth, 2000; Baumann, 2011; Martin, 2020;
Odintsov et al., 2023)]. This inflationary period played a crucial role in explaining
the observed flatness of the Universe and the uniformity of the cosmic microwave
background radiation, also offering an elegant explanation for the large-scale
structure of the Universe [see, e.g., Ref. (Langlois, 2010; Alberto Vázquez et al.,
2020)]. After inflation, the Universe entered a reheating phase characterized by
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the decay of the inflaton field, resulting in the transfer of its energy to
matter and radiation. This process eventually led to the emergence
of a hot and dense environment, providing the necessary conditions
for the subsequent stages of cosmic evolution.

The process of reheating represents a crucial yet relatively
understudied chapter in cosmology. It not only determines
the thermal properties of the early Universe but also plays a
fundamental role in particle production and the subsequent
formation of cosmic structures [see, e.g., Refs. (Allahverdi et al.,
2010a; Allahverdi et al., 2010b; Amin et al., 2014; El Bourakadi,
2021)]. Among the various possibilities that arise during reheating,
the formation of PBHs has garnered significant attention due to their
particular characteristics and potential cosmological implications
[see, e.g., (Harada et al., 2016; Carr et al., 2017; Harada et al., 2017;
Juan Carlos Hidalgo et al., 2017; Carr et al., 2018; Martin et al.,
2020; Carrion et al., 2021; De Luca et al., 2022; Padilla et al., 2022;
Bhattacharya, 2023; Harada et al., 2023; Hidalgo et al., 2023;
Padilla et al., 2023)].

A key aspect of PBH formation during reheating
lies in the collapse threshold for the density contrast
compared to the formation process in a radiation-dominated
background. During the inflationary phase the rapid expansion
of space stretches small-scale quantum fluctuations to
macroscopic and cosmological scales. Once inflation ceases
and scales slowly re-enter the horizon, these fluctuations
undergo substantial growth due to the dynamics of the
reheating process. Consequently, localized regions with
remarkably high density emerge. If the density within
these regions surpasses a critical threshold, they may
collapse and form PBHs.

Understanding the formation and characteristics of PBHs
during the reheating phase poses a challenge spanning
the fields of cosmology, particle physics, and astrophysics.
By investigating the mechanisms of PBH formation, their
mass spectrum, and cosmological abundance, we may gain
insights into the fundamental physics that governed the
early Universe. Moreover, such PBHs hold potential in
elucidating intriguing astrophysical phenomena, including
dark matter [see, e.g., (Ivanov et al., 1994; Frampton et al.,
2010; Carr and Kuhnel, 2020; Anne, 2021; Villanueva-
Domingo et al., 2021; Carr and Kuhnel, 2022)], gravitational
waves [see, e.g., (Eroshenko, 2018; Franciolini, 2021;
Papanikolaou et al., 2021; Ballesteros et al., 2022; Bavera et al.,
2022; Papanikolaou et al., 2023)], and the origins of supermassive
black holes [see, e.g., (Duechting, 2004; Kawasaki et al.,
2012; Luis Bernal et al., 2018; Dolgov et al., 2019)]. All
these possibilities further emphasize the significance of
PBHs in our quest for a comprehensive understanding
of the Universe.

In this paper we intend to present a comprehensive
review of the formation of PBHs during the reheating
epoch. Starting with the theoretical foundations, we discuss
the various formation mechanisms. By studying the details
of PBH formation during reheating, we aim to contribute
to the understanding of the early Universe and shed light
on the nature of black holes, providing potential avenues
for future research and novel insights into the cosmic
dark sector.

FIGURE 1
Schematic inflationary and reheating phases. Initially, the inflaton
slowly rolls along its potential until it reaches a critical point where ϵ ≃1
at φ ≃ φend. Subsequently, the inflaton transits rapidly towards the
bottom of the potential, where it oscillates rapidly at around the
minimum. At such stage the process of reheating takes place.

2 Inflation, preheating and the
reheating epochs

2.1 Inflation setting the initial conditions
for reheating

As mentioned above, cosmological inflation [see, e.g., (Alan,
1981; Langlois, 2010;Alberto Vázquez et al., 2020)] refers to a period
of accelerated expansion of space. In the framework of general
relativity, inflation usually stipulates the existence of a scalar field as
the dominant energy content of the Universe during this period. In
its simplest form, the inflationary scenario is described by the action

S = ∫d4x√−gL = ∫d4x√−g[1
2
∂μφ∂

μφ−V(φ)] . (1)

For the inflaton φ to drive the inflationary epoch, its energy must
be dominated by a nearly constant potential energy V(φ). In this
case, the inflaton field behaves effectively like a cosmological
constant, causing the Universe to expand exponentially. When
the kinetic part of the inflaton field is subdominant compared
to the potential part V(φ), inflation kicks in, whereas when both
quantities become comparable, the inflationary period ends. This
requirement is typically expressed in the slow-roll conditions
ϵ ≡ (1/2)[V′(φ)/V(φ)]2 ≪ 1 and η ≡ |V″(φ)/V(φ)|≪ 1 for the
inflaton to produce inflation and ϵ ≃ 1 to end the inflationary epoch
(see also Figure 1 for a sketch of the inflationary potential).

The scalar perturbations during the inflationary epoch are of
special importance since they are attributed the generation of the
initial inhomogeneities that gave rise to the large scale structure in
the Universe. Inflaton fluctuations may also get to form PBHs in the
early Universe. That is, if an initial perturbation is dense enough
when it reenters the cosmological horizon, it can collapse under
its own gravity to form a black hole.1 Hence, in order to assess the

1 In this reviewwe focus on PBHs formed at horizon entry. For PBHs formed

inside the horizon see however Refs. Lyth et al. (2006); Zaballa et al.

(2007); Torres-Lomas et al. (2014).
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probability of formation of PBHs in the earlyUniverse, it is necessary
to determine precisely the average amplitude of scalar perturbations
generated during inflation, that is, the primordial power spectrum.

The evolution of the scalar field is governed by the Klein-
Gordon equation. In order to calculate the amplitude distribution
or power spectrum of the field fluctuations δφ, the perturbed
Klein-Gordon equation must be solved. Adopting the flat gauge,
δφ is turned into the Sasaki-Mukhanov variable [see, e.g., Ref.
(Malik and Wands, 2009)] and it proves convenient to define a new
variable (in Fourier space)

uk ≡ aδφk, (2)

where k is a comoving wavenumber scale. This allows us to rewrite
the perturbed Klein-Gordon equation as the so-called Sasaki-
Mukhanov equation (Sasaki, 1986; Viatcheslav, 1988):

u″k +(k
2 − z
″

z
)uk = 0, (3)

where a prime (′) denotes a derivative with respect to the conformal
time dτ = dt/a, z ≡ a φ̇b/H, and the subscript b is used to refer
to background quantities. Note that the comoving curvature
perturbation Rk is given in terms of the perturbed scalar field (in
flat gauge) δφk as

Rk =
a′

aφ′b
δφk. (4)

It is in terms of this quantity that the power spectrum of scalar
perturbations is defined. Explicitly, the dimensionless primordial
power spectrum of curvature perturbations is

PR (k) ≡
k3

2π2 |Rk|
2|

k≪aH
. (5)

The power spectrum is normalized to the amplitudes derived
from the CMB at large scales, setting the normalization scale as the
pivot scale at k∗ = 0.05Mpc−1. The usual parametrization for the
spectrum follows the evidence that at large scales the spectrum is
almost scale-invariant. Thus

PR (k) =As(
k
k∗
)
ns−1
, (6)

with the CMB normalization dictating ln (1010As) = 3.044± 0.014
and the spectral index ns = 0.9649± 0.0042 (Akrami et al., 2020).

Such prescription for the power spectrum would produce a tiny
amplitude of fluctuations and produce an extremely small number
of PBHs [see, e.g., (Carr et al., 1994; Emami and George, 2018)].
The spectrum, however, may suffer modifications at small scales,
where features in the potential may arise and impact the amplitude
of fluctuations significantly (see, e.g., the setting in Section 7). It
is precisely such possibilities what we aim to explore, and possibly
constrain, through the probability of PBH formation in a fertile
scenario; the reheating epoch.

2.2 Inflaton evolution after inflation

2.2.1 Reheating
The reheating of the Universe refers to the process through

which the energy stored in the inflaton field, responsible for driving

the inflationary expansion, is transferred to other particles present
in the Universe. This energy transfer takes place at the end of the
inflationary period (see Figure 1) and is believed to have created
the necessary conditions for the formation of primordial nuclei
and structures within the Universe.2 Historically, reheating was first
treated perturbatively (Abbott et al., 1982; Albrecht et al., 1982) and
in this section we review a simple version of this process.

For transferring energy, it is usual to consider a non-minimal
coupling of the inflaton with, say, a second scalar field χ through an
interaction in the lagrangian. That is,

Lint = −gΣφχ2, (7)

where g is a dimensionless coupling constant and Σ is a mass term.
The decay rate of the inflaton field into χ particles is thus given by
(Greene and Kofman, 1999)

Γ =
g2Σ2

8πm
, (8)

where m is the “effective” inflaton mass. The energy loss of the
inflaton through its conversion to χ particles can be approximated
by the following Klein-Gordon equation (Allahverdi et al., 2010a)

φ̈b + 3Hφ̇b + Γφ̇b = −dV(φ)/dφ. (9)

A typical form of the potential used for the reheating epoch is the
quadratic potential, V(φ) =m2φ2/2, since, in order to have efficient
reheating, it is necessary for the inflaton to oscillate around its
globalminimum.This precise form of the potential is not necessarily
followed during the inflationary epoch and, in fact, for inflation to
yield the correct observations given by Planck data (Akrami et al.,
2020), a power law of the form V(φ) ∼ φα, with α < 1 is required.
However, there are many realizations that meet this condition at
large values of the field and that converge to the simple quadratic
form at small field values. Some examples of such potential are
shown in Figure 2.This class of potentials are considered in thiswork
as our main study cases.

To proceed with the analysis, let us note that in the case of
an small coupling constant (Γ≪H), the interaction term Γ can be
neglected and the equation of motion of the inflaton reduced to

φ̈b + 3Hφ̇b +m
2φb ≃ 0. (10)

This form suggests that in the limit in which m≫H (a limit that
is fulfilled during the reheating epoch) the field φb experiences
damped oscillatory motion about φb = 0,

φb (t) = √
8
3
MPl

m
1
t
sin (mt) . (11)

2 This is the simplest and most widely accepted mechanism by which

it is assumed that the reheating of the Universe took place. There are

however, alternative scenarios such as a reheating generated by moduli

fields, a massive metastable particle, or reheating from PBH evaporation

[see, for example, (Allahverdi, 2020)]. In this paper we will focus on the

simplest case of reheating due to the inflaton field, although many of the

results shown here can be easily extended to the other mechanisms.
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FIGURE 2
Different normalized inflationary potentials as a function of φ. The
dotted red line corresponds to the typical chaotic potential V(φ)∼ φ2.
The brown, blue, and black lines correspond to a polynomial (Kallosh
and Linde, 2022; Iacconi and David, 2023), T-models (Ellis et al., 2013;
Kallosh et al., 2013; Kallosh and Linde, 2013), and generalized
α-attractor T-models (Germán, 2021; Francisco, 2023), respectively. In
the plot, we used M =1.

Here all quantities are displayed in units of the Planck mass
MPl. In terms of the scale-factor and averaging over several
oscillations we obtain

ρb (a) = ρend(
aend

a
)

3
, (12)

where the background energy density is ρb = φ̇b/2+V(φb), and we
have used the subscript end to refer to quantities evaluated at the
end of inflation. The above result shows a pressure-less matter
behavior, which in the background can be adoptedwhile the inflaton
dominates the overall energy density.

Once the Hubble expansion rate decreases to values comparable
to Γ, the χ-particle production becomes efficient, and the energy
associated with the inflaton is transferred to the field χ. The
temperature at the time at which Γ =H is known as the reheating
temperature and is given by TR ∼ √ΓmPl.

As shown in Eq. 8, Γ is proportional to the square of g and, since
typically g≪ 1, we should expect that the reheating temperature
occurs at low energy scales (low compared to the energy scale of
inflation, at around 1014GeV). This temperature can be as low as the
scale of Big Bang Nucleosynthesis (BBN, at around 10MeV), since
this is the maximum energy scale at which we have evidence of a
radiation-dominated Universe. This allows us to consider a scenario
where reheating could have lasted a few e-foldings. This so called
slow-reheating process is the scenario we explore in this review.
We mainly look at the implications of a slow-reheating brings on
the formation of PBHs, the conditions for collapse in this scenario,
and the kind of inflationary models that can be constrained with
this observable.

To start, it is important to define the stages of the evolution
of overdensities of the inflaton field during slow-reheating. In the
canonical mechanism, the k-modes associated with the quantum

fluctuations of the inflaton field have a fixed amplitude when they
stretch beyond theHubble horizon during the accelerated expansion
phase. Once inflation ends, these modes reenter the cosmological
horizon after

NHC (k) = 2 ln(
kend

k
) (13)

e-folds of expansion, where the subscript HC refers to quantities
evaluated at the horizon crossing time. Inside the cosmological
horizon, two regimes are distinguished, which are separated by the
scale kQ, usually referred to as the quantum Jeans scale or simply the
Jeans scale, given by (Suárez and Chavanis, 2015)

kQ = (16πGρ0m
2a4)1/4. (14)

Inhomogeneities can be characterised by the density
contrast δ = δρ/ρb, for which the time evolution (neglecting the
decaying mode) is

δ (a;k) = δHC (k)
a

aHC
, for kH < k < kQ. (15)

Here kH = aH is the scale associated to the size of the cosmological
horizon. Thus, density fluctuations with a characteristic scale k > kQ
undergo damping via oscillations, while at scales kH < k < kQ
fluctuations experience a growth in amplitude proportional to the
scale factor3.

2.2.2 Preheating
The preheating instability is a non-perturbative mechanism

that arises in theories with non-minimal couplings between the
inflaton and other fields, say χ (El Bourakadi, 2021). The dynamics
of the inflaton during the preheating process can be described
by the Mathieu equation, which is related to periodic or quasi-
periodic oscillating systems (Norman, 1964; Kofman et al., 1994;
Bassett et al., 2006). Furthermore, its solutions exhibit exponential
instabilities, that is, χk ∝ exp (μ(n)k mt) within a series of resonance
bands, located at specific frequency ranges Δk(n) (here labeled by
the integer index n). Such instabilities lead to an exponential growth
in the occupation numbers of quantum fluctuation modes, denoted
as nk̄(t) ∝ exp (2μ(n)k mt), which are interpreted as the production
of χ particles (Abbott et al., 1982; Kofman et al., 1997; Bassett et al.,
2006; Lyth and Liddle, 2009). In short, preheating describes the
process through which the energy density of the created particles,
calculated within the above formalism, is extracted from the energy
density of the oscillating inflaton field.

3 PBH formation during preheating

The production of PBHs during preheating was first studied in
Ref. Anne and Malik (2001). In such work, the authors studied a
two-field chaotic inflation model and found that for a wide range of
parameters the resonant amplification of modes during preheating

3 This resonance band appears naturally when doing a perturbative analysis

of the system, where the resonance is obtained from a Mathieu-type

equation (Kofman et al., 1997; Jedamzik et al., 2010a).
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leads to an overproduction of PBHs, before backreaction terminates
the resonance.

In order to handle the non-perturbative and non-minimal
interaction between fields, the Preheating process has beenmodeled
through lattice field theory simulations that evolve the scalar field
equations on a homogeneous background (Kofman et al., 1994;
Khlebnikov and Tkachev, 1996; Felder and Kofman, 2001; Micha
and Igor, 2004; Felder and LATTICEEASY, 2008; Khlebnikov et al.,
2012; Jo and Rubio, 2016; Dux et al., 2022), though neglecting the
backreaction of inhomogeneities on the local spacetime metric4.

With the use of lattice simulations came the development of
computational techniques that captured the non-linear aspects of
the problem and showed the importance of various factors on PBH
formation (Niemeyer and Jedamzik, 1999; Shibata and Sasaki, 1999;
Harada et al., 2013; Nakama et al., 2014a; Nakama et al., 2014b).
These factors encompassed the equation of state, the nature of
the inflationary potential, and the presence of additional fields
or interactions5. Importantly, even small inflaton self-interactions
can accumulate over multiple oscillations, triggering the resonant
growth of non-zero momentum inflaton modes, which constantly
interact with the homogeneous component. This process of self-
fragmentation in the inflaton field not only redistributes the initial
energy density but also leads to the formation of localized soliton-
like structures referred to as oscillons [see, e.g., (Bogolyubsky and
Makhankov, 1976; Linde, 1990; Gleiser, 1994; Kolb and Tkachev,
1994; Copeland et al., 1995;Honda andChoptuik, 2002; Fodor et al.,
2006; Amin et al., 2012a; Antusch et al., 2018; Hong et al., 2018)].
The presence of large numbers of oscillons has motivated the
search for PBH production and the implications for reheating,
placing constraints on various single-field inflation models and
other models accommodating oscillon solutions [e.g., (Cotner et al.,
2018; Cotner et al., 2019)]. Specifically, Ref. Cotner et al. (2018)
shows that the fragmentation of the inflaton into oscillons can
give rise to the formation of PBHs in single-field inflation models
or other models permitting oscillon solutions. Subsequently, Ref.
Suyama et al. (2005) showed that PBH production in preheating
does not exceed astrophysical bounds because the mass of
PBHs is small enough to evaporate before BBN. As a result,
these PBHs are not constrained by observation, even if they
are overproduced, unless they leave behind Planck mass relics
(Barrow et al., 1992).

It has also been argued that the assumption of a Gaussian
probability distribution for density perturbations at horizon crossing
is crucial. Since the density perturbations that lead to PBH formation
are very rare and sensitive to the tail of the distribution, on
average, PBHs are not overproduced during the violent non-
equilibrium phase of preheating that follows the end of many
inflationary models. In Ref. Anne and Malik (2001) a linear
approximation estimated the time when backreaction becomes

4 Backreaction effects become important when overdensities grow large

enough for gravity to be of the same order as self interactions in the field

(Frolov, 2008; Figueroa et al., 2021; Figueroa et al., 2023).

5 In fact, in Refs. Nadezhin et al. (1978); Novikov and Polnarev (1980), this

dependence was investigated, illustrating within a spherically symmetric

analysis the process of PBHs formation and their accretion for different

equation state values.

significant and when the amplitude of density perturbations
surpasses a certain threshold, treating them separately. This leads
to a criterion for PBH formation. It is important to note that
even a small error in determining the backreaction time can
lead to incorrect conclusions due to the exponential growth of
perturbation amplitude. This discrepancy highlights the sensitivity
of the results to the precise timing of backreaction and its potential
impact on the predictions for PBH production or overproduction.
On the other hand, Ref. Torres-Lomas and Arturo Ureña-LAlpez
(2013) modified a version of HLattice to numerically solve the
relevant equations of motion and analyze the mass variance as a
means to explore the formation of structures during the preheating
phase. The study revealed that preheating has the potential to
generically produce PBHs. However, the results highlighted the
influence of the smoothing scale values and emphasized the need
for backreaction, to confirm the obtained results. Subsequently,
Ref. Angelo et al. (2022) found strong backreaction effects in the
system, invalidating the standard perturbation theory approach.
They also observed that the non-Gaussianity of the comoving
curvature perturbation is large in the linear regime but gets
suppressed as the dynamics become nonlinear. This suppression
of non-Gaussianity relaxes the bounds on PBH overproduction,
allowing instead for an observable gravitational wave signal at
interferometer scales.

4 PBH formation during
slow-reheating: direct gravitational
collapse

The transition of the Universe to the standard Big Bang
cosmology prior to the BBN epoch can be achieved through a variety
of mechanisms. One possibility is the fragmentation of the inflaton
condensate into its own quanta, triggered by self-resonance (Amin,
2010; Amin et al., 2010; Lozanov and Amin, 2018; Fukunaga et al.,
2019). In the same context, as mentioned above, particles coupled
to the inflaton can be resonantly produced (Kofman et al., 1994;
Kofman et al., 1997) leading to prompt thermalization (Lozanov
and Amin, 2017) or a potential oscillon dominated epoch (Amin,
2010; Amin et al., 2010; Amin et al., 2012b; Lozanov and Amin,
2018). During this epoch, the formation of PBHs is possible
due to the gravitational collapse of the perturbations that were
resonantly amplified.

In contrast, if parametric resonance is not present, the particle
production occurs through a more gradual, perturbative processes
[as described in, e.g., (Abbott et al., 1982; Albrecht et al., 1982)]. As
discussed in Section 2.2, these processes can take place during a
relatively long period of expansion when the Universe is governed
by a nearly homogeneous condensate, in a (nearly) φ2 potential,
and when Γ≪H. Eventually, the condensate fragments due to
the gravitational growth of perturbations (Jedamzik et al., 2010b;
Easther et al., 2011), in what is dubbed a primordial structure
formation process, where inhomogeneities virialize. When the
matter concentration is sufficiently high, the hoop conjecture
prescribes that some of these structures may instead collapse and
form PBHs. The mass of such black holes should be close to the
mass of the cosmological horizon evaluated at the time of horizon
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crossing, conveniently expressed as:

MPBH (k)
7.1× 10−2g

= γ1.8× 1015GeV
Hend

(
kend

k
)

3
, (16)

Here, γ is a constant that encrypts the efficiency of the collapse.
The precise value of γ ought to be determined through numerical
calculations currently in progress for the reheating scenario
[partial progress has been reported in (Padilla et al., 2021a;
Eloy de Jong et al., 2022)]. For the sake of the argument, we will
adopt the value γ = 1. In this and the following two sections, we
review the conditions for which PBH formation may occur in a
slow-reheating scenario.

Since the inflaton during reheating behaves like pressureless
matter, one may be tempted to extrapolate the perfect fluid criterion
limw→0δth→ w (Harada et al., 2013) and deduce a copious formation
of black holes, following the Press-Schechter formalism usually
employed in the standard caculation, and as exemplified for this
case in Appendix A. Such approach is an over-simplification of the
problem since, as we havementioned in Section 5.3–andwill discuss
in more depth in the following, the inflaton presents an effective
pressure due to its quantum nature, which prevents the formation
of PBHs from overdensities of infimum amplitude. Moreover, the
collapse criteria used for dust-like overdensities can be adopted and
complement those derived for a cosmological scalar field. In the
following we review the diverse criteria with the aim of assessing
PBH formation in a slow-reheating scenario.

4.1 The sphericity criterion

One of the most widely used criteria to describe the
formation of PBHs in a slow-reheating scenario was discussed
early in the develpment of the theory (Khlopov and Polnarev,
1980; Polnarev et al., 1985). Physically, this criterion limits the
configurations of initial pressureless overdensities to be sufficiently
close to spherical symmetry, so as to collapse onto a black hole.
Inspired by this, Ref. Harada et al. (2016) presents a more detailed
analysis of the so-called sphericity criterion for the collapse
of overdensities. The latter article investigates the formation of
PBHs in the matter-dominated phase of the Universe, where
nonspherical effects in gravitational collapse play a crucial role.
The authors apply the Zel’dovich approximation (Zel’dovich, 1970),
Thorne’s hoop conjecture (Wheeler and Klauder, 1972), and
Doroshkevich’s probability distribution (Doroshkevich, 1970) to
derive the production probability β0 of PBHs. In summary, in the
limit of a small variance of δ evaluated at the horizon crossing
time, the relation

β0 ≃ 0.05556σ
5, (17)

approximates the initial abundance of PBHs as a function of
the variance σ2 in a dust dominated Universe. Note that this
is not directly linked to a threshold amplitude, but instead
this prescription alone may overproduce PBHs even for a
scale-invariant power spectrum, if reheating lasts long enough
(Juan Carlos Hidalgo et al., 2017).

4.2 Conservation of angular momentum
criterion

The initial angular momentum of overdensities plays an
important role in the formation of PBHs. In Ref. Harada et al.
(2017) it was shown that this can lead to a significant suppression
of the production rate. In particular, it was found that the
limit on the ammount of angular momentum allowed for
collapse provides a threashold value for PBH formation which
complements the sphericity criterion. Specifically, the production
probability β0 is restricted to

β0 ≃ 1.9× 10
−7 fq (qc)I

6σ2 exp[−0.15I
4/3

σ2/3
], (18)

whereI is a parameter of orderO(1) and fq(qc) is the fraction ofmass
with a level of quadrupolar asphericity q smaller than a threashold
qc. Comparing this result with (Eq. 17) and assuming I = fq(qc) = 1
[as assumed in Ref. Harada et al. (2017)] it is evident that the angular
momentum criterion of Eq. 18 is more stringent than the sphericity
criterion of Eq. 17 for a standard deviation σ ≲ 0.005 (the relevance
and matching of these constraints is illustrated in Figure 6).

We conclude this section by mentioning that according to the
study conducted in Ref. Eloy de Jong et al. (2023). on the formation
of spinning PBHs during an early matter-dominated era, the
efficiency of mass transfer was found to be approximately 10%,
while the efficiency of angular momentum transfer was estimated
to be around 5%. That reference further suggests that unless the
matter era is short, the final dimensionless spin of PBHs is expected
to be negligible.

4.3 Reheating time criterion

Another employed criterion for characterizing the generation
of PBHs arising from an slow-reheating epoch can be found
in Ref. Martin et al. (2020) (see also, e.g., (Goncalves, 2000;
Carr et al., 2018), for earlier work that considers this criterion of
PBH formation). Unlike the previous criteria that consider the
morphology and angular momentum of the initial inhomogeneity,
this criterion is mainly focused on studying the time required for the
collapse of configurations. In this way, one can impose a condition
on the contrast density evaluated at the horizon crossing time that
a perturbation must meet in order to form a PBH. In this section,
we will review the most important results of such work, considering
that the reader interested in the details of the calculations presented
here will be able to review the original papers.

As previously argued in Section 2.2, modes within the resonance
band kH < k < kQ are expected to behave as standard pressureless
matter fluctuations, which may therefore collapse to form a
primordial structure such as a PBH. The time tc required for such
collapse in the spherical collapsemodel is given byGoncalves (2000):

Δtc (k) ≡ tc (k) − tbc (k) =
π

Hbc (k)δbc(k)
3/2
. (19)

Here the subindex bc is related to quantities evaluated at the time
when the mode k transitions across the instability band. Note
that there are two ways in which a k− mode may enter the
instability band. First are those scales which exited the cosmological
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horizon during inflation and reenter (entering from above) after
the inflationary epoch. The second possibility is for those scales
that enter the instability band from below, due to the fact that
the quantum Jeans scale decreases in size as ∼ a−1/4. Following
the work of Ref. Martin et al. (2020), in this section we shall only
concentrate on the scales which enter the instability band from
above and thus we equate tbc = tHC. Additionally, we can also re-
express Eq. 19 in terms of the number of e-foldings. Considering
that during a matter-dominated Universe we have H = 2/(3t) and
assuming 3π/(2δ3/2

HC(k)) ≫ 1, which is a good approximation in the
perturbative regime, we obtain

ΔNc (k) ≡ Nc (k) −NHC (k) ≃ ln(2.81δ−1HC (k)) (20)

We can identify the last mode to enter into the instability band
from above as kΓ = aΓHΓ, where subindex Γ indicates quantities
evaluated at the time the inflaton field decays. We can then
relate the scale kΓ with the scale at the end of inflation, kend by
kΓ/kend = (ρΓ/ρend)

1/6. Consequently, the scales that can collapse
gravitationally during the slow-reheating epoch to form a PBH are
those within the interval

(
ρΓ

ρend
)

1/6
< k
kend
< 1. (21)

The condition adopted in (Martin et al., 2020) to determine if
a scale k can collapse to form a PBH was to require that the time
for the collapse of the perturbation be smaller than the total period
that the slow-reheating epoch spans. Noting that such a time can be
expressed as

tΓ − tHC (k) =
2

3HHC (k)
[(

aΓ

aHC (k)
)

3/2
− 1], (22)

and using Eq. 19, we obtain that the condition for a perturbation to
collapse is given by

δth (k) < δHC (k) < 1, (23)

where

δth (k) ≡ (
3π
2
)

2/3
[( k

kend
)

3
√
ρend

ρΓ
− 1]
−2/3

, (24)

and the maximum value in this context is determined by the
requirement for the horizon-crossing fluctuation to be within
the perturbative regime (Martin et al., 2020), imposing this
upper bound should not significantly impact the abundance
of PBHs, considering that the amplitudes of density contrasts
are exponentially suppressed, preventing an overly abundant
production (Niemeyer and Jedamzik, 1998; Harada et al., 2017).

To calculate the abundance of PBHs β0 formed in this
context, we can adopt the Press-Schechter formalism (see
Appendix A for details):

β0 (MPBH) = −2MPBH
∂R

∂MPBH

∂ℙ[δ > δth]
∂R
, (25)

where ℙ[δ > δth] is the probability that a smoothed density field
exceeds the threshold value δth and is given by

ℙ[δ > δth] =
1
2
erfc(

δth

√2σ (R)
). (26)

In the above expression R = 1/k, erfc(x) = 1− erf(x) is the
complementary error function, and σ(R) is, as previously defined,
the variance of δ evaluated at the horizon crossing time.

It is important to note that this formation criterion assumes that
all perturbations with a collapse time shorter than the remaining
time for reheating will gravitationally collapse to form PBHs.
Consequently, this criterion is likely to overestimate the actual
abundance of PBHs formed, β0. This is due to the omission of
significant physical effects discussed throughout this review. In the
following we focus on the physics of fluctuations from an oscillating
scalar field, while in Section 6 we address the PBH formation criteria
in such environment.

5 Dynamics and structure formation in
a slow-reheating epoch

In the preceding section, we described the process of PBH
formation during a period of slow-reheating, assuming a dust-
like behavior for the governing inflaton field. However, such
approximation oversimplifies the dynamics of a cosmological scalar
field, as it neglects its inherent quantum nature. In order to describe
more accurately the evolution of the post-inflationary epoch one
must solve the Einstein-Klein-Gordon (EKG) system of equations
in a cosmological background. However, such task presents the
practical difficulties described below.

The post-inflationary regime for an (almost) free field is subject
to the condition m ≳Hend. As indicated by Eq. 11, the oscillation
frequency of the homogeneous inflaton field is precisely m. On
the other hand, the Universe evolution is characterized by the
Hubble time 1/H ∼ a3/2.Thus, a few e-folds after the end of inflation,
the condition turns into 1/H≫ 1/m. This thus stipulates two
dissimilar characteristic time scales in the numerical evolution of
the complete EKG equations, which turn the evolution over several
Hubble times computationally unfeasible. Efforts in this direction
are found in Refs. Alcubierre et al. (2015); Rekier et al. (2016);
Eloy de Jong et al. (2022).

Here we follow a different approach, acknowledging the
similarities between a slow-reheating epoch and the phase of
structure formation in the scalar field dark matter (SFDM) model.
Such parallelism was initially proposed in (Nathan et al., 2020)
and has extended in subsequent studies (Juan Carlos Hidalgo et al.,
2017; Jens, 2020; Carrion et al., 2021; Eggemeier et al., 2021;
De Luca et al., 2022; Eggemeier et al., 2022; Padilla et al., 2022;
Chavanis, 2023; Eggemeier et al., 2023; Hidalgo et al., 2023;
Padilla et al., 2023). Taking advantage of the extensive literature on
SFDM models, we aim for a better understanding of the Universe
right after inflation. In the upcoming sections, wewill review various
SFDM results that can be adapted to the slow-reheating scenario.
With such results at hand, in the following section, we formulate the
conditions under which the primordial structures of this periodmay
undergo gravitational collapse, resulting in the formation of PBHs.

5.1 The Schrodinger-Poisson picture

Let us look at a few approximations to simplify the treatment
of the post-inflationary Universe. For instance, when a particular
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scale becomes non-linear, it is expected to be well within
the Hubbet horizon and with a bulk motion exhibiting a
nonrelativistic behavior, with large occupation numbers. These
specific characteristics in the system are the precise requirements
to apply the Newtonian approximation, where the EKG system can
be reduced to the Schrödinger-Poisson (SP) system of equations.
In such approximation, matter is represented by the non-relativistic
wavefunction ψ, and the (Newtonian) gravitational potential Ψ
is determined by solving the Poisson equation. Below we quickly
review how the Newtonian description of the system is reached.

In the slow-reheating era, it is possible to describe gravity
through theweak-field approximation.Well within the cosmological
horizon, we adopt a spatially flat background metric and deal with
scalar perturbations in the Newtonian gauge (see, e.g., Ref. Malik
and Wands (2009)),

g00 = −(1+ 2Ψ (x, t)) , g0j = 0,

gij = aδij (1+ 2Φ (x, t)) . (27)

Considering that the anisotropic stress of a minimally coupled
scalar field vanishes, we can identify the Newtonian potential as
Ψ = −Φ. This allow us to write the Einstein-Hilbert action for
subhorizon scales (k≫ aH) and by considering quantities at first
order in the potential and at second order in spatial derivatives as
(Niemeyer, 2019)

SEH = ∫dx4a3[− (∂iΨ)
2

8πGa2
+( 1

2
(1−4Ψ)φ̇2− 1

2a2
(∂iφ)

2

−(1−2Ψ) m
2

2ℏ2
φ2)]

(28)

Further simplification is achieved through the following
considerations; while φ oscillates at a frequency m, the density field
changes slowly within the nonrelativistic regime. To account for the
rapid oscillations, we can introduce the complex field ψ, as follows:

φ = ℏ
√2ma3
(ψe−imt/ℏ +ψ∗ eimt∕ℏ) . (29)

With such definition, disregarding oscillatory terms that involve
powers of exp(±imt/ℏ), and subsequently incorporating the
simplifying assumptions above justified, namely, ψ̇≪mψ and
m≫H, Eq. 28 is simplified to

S =∫d4x[ iℏ
2
(ψ̇ψ∗−ψψ̇∗ )− ℏ

2(∂iψ)(∂iψ
∗ )

2ma2

−m(ψψ∗−⟨ψ∗ψ⟩)Ψ− a
8πG
(∂iΨ)

2].
(30)

wherewewrite explicitly theℏ factors to restore units and emphasize
the quantum nature of the system here described.

After varying the above action Swith respect to the gravitational
potential Ψ and the field ψ, we finally arrive at the SP system
of equations:

iℏ∂tψ = −
ℏ2

2ma2∇
2ψ+mΨψ, (31a)

∇2Ψ = 4πG
a
(ρ− ⟨ρ⟩) . (31b)

Here ⟨ρ⟩ is the smooth background value of the density of the
scalar field, ⟨ρ⟩ =m⟨ψψ∗⟩.

5.2 Quantum hydrodynamics equations

One of the great advances in the study of the SP system was
the realisation that this pair of equations can be reformulated
like classical hydrodynamics. The hydrodynamic version of the SP
system introduces an additional quantityQ, known as the “quantum
potential” or, in some instances, the “Bohm potential” (Bohm,
1952a; Bohm, 1952b). As a result, these equations are commonly
named as the “quantum hydrodynamics” (QHD) equations (we
recommend (Wyatt, 2005) for a textbook presentation of these
equations). It is important to emphasize that both the hydrodynamic
and the field expressions of the SP system, are equivalent and
offer robust methods for addressing the nonlinear dynamics of a
cosmological scalar field. Let us outline in this section two methods
for deriving these QHD equations.

5.2.1 The Madelung–Bohm formulation of
quantum hydrodynamics

We can consider a Madelung transformation (Erwin, 1927)
of the form

ψ = √
ρ
m
eimθ/ℏ = √neimθ/ℏ. (32)

If we define the bulk flow velocity of the field v as v = ∇θ, we can
reexpress the SP system of equations as

∂tρ+
1
a2∇ (ρv) = 0, (33a)

∂tv+
1
a2 (v∇)v+∇Ψ+∇Q = 0, (33b)

where Q is given by

Q = − ℏ2

2m2a2 (
∇2√ρ

√ρ
) (33c)

This set of equations constitute the QHD system. The first
of these equations, Eq. 33a, corresponds to a continuity equation,
typically found in classical fluid dynamics. Such an equation is used
to describe the conservation ofmass within the system.Additionally,
the second equation, Eq. 33b is an Euler-like equation stating
momentum conservation. However, instead of the conventional
terms associated with a fluid pressure gradient, in these QHD
equations, we encounter a novel potential Q that encapsulates the
quantum properties of the scalar field.

5.2.2 Phase space formulation
We can also obtain the QHD equations by taking

momentum moments of the SP system of equations (Takabayasi,
1954). Following Ref. Taha et al. (2021), we sketch the steps
in the following.

We define the Wigner function (Wigner, 1932) as

W (x,p, t) = 1
(2πℏ)3
∫ψ∗ (x+ y/2, t)ψ (x− y/2, t)eip⋅y/ℏd3y. (34)

From this expression, the number density at a point in coordinate
space is determined by the integral of W over momentum space,

n (x, t) = ∫W (x,p, t)d3p. (35)
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Moreover, the local average of a quantity A over momentum
space is computed through

⟨A⟩(x, t) = 1
n (x, t)
∫AW (x,p, t)d3p. (36)

As an example, if we use the bulk velocity v = p/m and we perform
the above integration, we arrive at the same bulk velocity in terms
of ∇θ as before. One can also calculate the velocity dispersion
tensor as follows

σ2
ij (x, t) =

1
n (x, t) ∫

(pi − ⟨pi⟩)(pj − ⟨pj⟩
m2 W (x,p, t)d3p

= (⟨pipj⟩ − ⟨pi⟩⟨pj⟩)/m
2.

(37)

To derive the equation of motion for the Wigner function, we
compute the partial time derivative (∂W/∂t) and incorporate it into
the SP system of equations. The outcome is known as the Wigner-
Moyal equation, which bears resemblance to the collisionless
Boltzmann equation (CBE), also known as the Vlasov equation.
For this particular case, the Wigner-Moyal equation introduces
additional terms that encode the quantum characteristics of
the scalar field.

When computing momentum moments of the Wigner-Moyal
equation, it is possible to derive, from the 0th moment the continuity
equation, Eq.33a and from the first moment an Euler-like equation
from classical fluid mechanics. Once again, in this formalism a new
pressure-like term emerges, referred to as the “quantum pressure”
tensor, Πij, which is linked to the velocity dispersion tensor as

Πij = ρσ2
ij = (

ℏ
2m
)

2
(1
ρ
∂ρ
∂xi

∂ρ
∂xj
−

∂2ρ
∂xi∂xj
). (38)

It is worth mentioning that, in general, there is not a real
difference between the first moment equation and Eq. 33b, since
both equations coincide once the quantum potential Q is defined as

∂Q
∂xi
= 1
ρ
∂Πij

∂xj
, (39)

which reduces to the explicit form of Eq. 33c.
Note that Eqs. 38, 39 stipulate that the force originating from the

quantum potential term in the momentum equation corresponds
to the effective “pressure” present in the momentum flux density
associated with the internal distribution of momentum in the phase
space derivation. In both situations, these “quantum” terms arise
from the kinetic term of the SP equations and represent the wave-
like behavior of the scalar field. In practice this represents a force
opposing gravitational collapse.

5.3 Some important scales

As shown above, the hydrodynamic formulation of the SP
equations is a system that closely resembles the description of the
nonlinear dynamics of a pressure-less fluid, with the exception
of an additional term that accounts for the quantum properties
of the scalar field. In this formulation it is easy to see that
the quantum potential term becomes important only when its
contribution is comparable to the kinetic and gravitational potential.
This happens for scales that fulfill R ∼ λdB, where R (λdB ≡ ℏ/(mv)) is

the characteristic scale (de Broglie wavelength) of the configuration
[see, for example, (Niemeyer, 2019)]. At scales R≫ λdB the expected
behavior of the scalar field configurations should be very similar
to that of a dust-like component, while for scales with R ∼ λdB the
quantum contribution must be considered.

In order to estimate the timescales at which the quantum
characteristics of the scalar field become significant, one may look
at the gravitational scattering time for wave scattering within a
condensate6. In the absence of external influences, the scattering
rate Γs, inversely proportional to the time interval τ, is dependent
on the scattering cross section σg , the average relative velocity
⟨v⟩ = √2v, and the number density n = ρ/m. Namely, Γs ∝ σg⟨v⟩n.
However, when the final state experiences macroscopic occupation,
the rate is further enhanced by the scalar field phase space density,
often referred to as the occupation number N . Such enhancement
is due to the phenomenon of Bose-Einstein stimulation [see
(Niemeyer, 2019)] with

N = h
3n
Vp
= 6π2ℏ3n

m3v3
. (40)

Correspondingly, the scattering time is given by Levkov et al. (2018)

τ ≃ mv6

6√2π3ℏ3G2n2 logΛ
, (41)

where the momentum-transfer cross section σg for Rutherford
scattering is given by σg ≃ πG2m2v−4logΛ, with Λ ≃ R/λdB.

This implies that over period of order O(τ) we may expect effect
due to the quantum nature of the scalar field. One of such effect,
which we shall discuss in more detail later, is the formation of
solitonic structures through the Bose-Einstein condensation.

5.4 Soliton solutions

If we set the scale factor a = 1 and assuming ρ≫ ⟨ρ⟩7, the SP
system of Eq. 31 admits solutions of the form

ψ (x, t) = ϕ (r)eiEt/ℏ, (42)

where r is the radial coordinate and E is the energy associated to
the configuration. The system described by the SP Eq. 31 and the
above ansatz has numerous solutions satisfying appropriate initial
and boundary conditions (Siddhartha Guzman and Arturo Ureña-
Lopez, 2004; Siddhartha Guzman and Arturo Ureña-Lopez, 2006).
These solutions, often referred to as Newtonian boson stars (NBS),
are characterized by the number of nodes present in ψ before the

6 A Bose-Einstein condensate is an exotic state of matter where particles

clump together and behave as a single quantum entity. The idea in this

studied context is that the inflaton must condense during the post-

inflationary Universe, forming structures (such as solitons) as a result of

this process.

7 Normalizing a = 1 we are taking periods of evolution of the system that are

not very large compared to the period of evolution of theUniverse. On the

other hand, the condition ρ≫ ⟨ρ⟩ would be met for virialized structures

that form in the post-inflationary Universe.
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solution asymptotically decays. The solution without nodes, the
soliton solution, is the ground state of the SP system, presenting
the lowest energy. Accordingly, solutions with nodes are called the
excited NBSs.

The soliton solution is the most widely studied in the
literature [see, for example, (Ruffini and Bonazzola, 1969;
Seidel and Suen, 1991; Seidel and Suen, 1994a; Alcubierre et al.,
2002; Siddhartha Guzmán and Arturo Ureña López, 2004;
Siddhartha Guzmán and Arturo Ureña-López, 2006; Chavanis,
2011; Alvarez-Ríos and Francisco, 2022)]. This is because the
soliton is the attractor solution of the SP system: scalar field
configurations with arbitrary initial conditions tend to migrate
through a “gravitational cooling” mechanism to the ground state
solution of the SP system [see (Seidel and Suen, 1994b)]. In
addition, it has been also shown in Levkov et al. (2018) that
initially homogeneus scalar fields with Gaussian-distributed initial
conditions in momenta evolve to form localized soliton profiles by
Bose-Einstein condensation in a timescale t ∼ τ. After its formation,
a soliton accretes mass according to

Msol (t) ≃Msol,0(
t
τ
)

1/2
. (43)

Note that the condensation time τ dictates the timescale at which the
soliton structures form and evolve.

Once a soliton structure is virialized, its properties are mostly
related to its mass Msol. For example, the half-mass radius R1/2 and
the virial velocity vvir are given by [see, for example, appendix B in
Ref. Lam et al. (2017):

R1/2 ≃
4ℏ2

GMsolm
2 , v2vir ≃ 0.4

GMsol

R1/2
. (44)

Additionally, the coherent length λdB for the virial velocity is:

λdB =
ℏ

mvvir
≃ 0.8R1/2, (45)

which implies that the solitons formed from an scalar field present
sizes of the order of the de Broglie wavelength associated to the
configuration.

From the QHD system, Eq. 33, the physical nature of the
soliton profile can be clearly understood. Since soliton solution
is a static configuration, ∂tv = 0 = v. If we set for simplicity ∇ ∼
1/Rsol, where Rsol is a characteristic radius of the soliton profile
(typically λdB), we obtain,

∇Q ∼ − ℏ2

2m2R3
sol

, ∇Ψ ∼
GMsol

R2
sol

. (46)

And the condition of equilibrium configuration yields,

∇Ψ = −∇Q ⇒ ν
GMsol

Rsol
= ℏ2

2m2R2
sol

, (47a)

and
∂ρ
∂t
= 0.

In the above expression ν is a dimensionless constant.
From the above expression we can see then that the soliton

profile can be understood as a result of the equilibrium between the
forces generated by the quantum and the gravitational potentials.

FIGURE 3
Mass-radius relation for the soliton profile obtained from the
Newtonian approximation, Eq. 44, and the General
Relativistic treatment.

Using Eq. 47a it is also evident that the soliton profile must fulfill
the condition

Rsol =
1
2ν

ℏ2

GMsolm
2 , (48)

whichmaintains the same parameter dependence found in the exact
numerical treatment, Eq. 44.

A general-relativistic regime.-Wecan anticipate from the relation
Msol ∝ R−11/2 (from Eq. 44) that for certain soliton masses we should
expect that a general relativistic treatment must be necessary
to describe the configurations adequately. In fact, when general
relativistic effects are incorporated to the system a different mass-
radius relation for the soliton profile is obtained for small radius
(large masses)8 (see Figure 3). In particular, a limiting maximum
mass is predicted to exist for the soliton profile. Such criticalmass has
been widely studied in the literature (Ruffini and Bonazzola, 1969;
Seidel and Suen, 1991; Seidel and Suen, 1994a; Alcubierre et al.,
2002) and is given by:

M(crit)sol ≃ 0.633
m2

Pl

m
. (49)

Above this critical mass, no stable soliton solutions are expected
to exist. This is because, for soliton structures with larger masses,
we anticipate that the force generated by the quantum potential
is insufficient to balance the gravitational force resulting from the
self-gravity of the system. This phenomenon is equivalent to the
Chandrasekhar mass limit for white dwarf stars but associated to
soliton structures.

In the case of configurations that include excited states of a
scalar field with a specific mass, it has been demonstrated that the
resulting configurations can possess larger masses (Seidel and Suen,
1990; Hawley and Choptuik, 2003; Ureña-López, 2009; Bernal et al.,
2010; Ureña-López and Bernal, 2010). However, as previously
discussed, these excited states have been found to be unstable
and undergo gravitational cooling, ultimately transitioning to the
ground state solution.

8 See Ref (Guzmán, 2009) for a recent review in how to obtain the soliton

solution for the complete EKG system of equations.
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5.5 The Schrödinger-Vlasov
correspondence

As mentioned earlier, we can use either the SP or the QHD
equations to explain the process of structure formation during
the slow-reheating epoch. However, this approach necessitates
addressing the characteristic length scale λdB, which is significantly
much smaller than the cosmological horizon in the post-inflationary
Universe. Consequently, modeling the gravitational collapse of a
structure using either of the previously discussed formulations
becomes a challenging task in general.

Nonetheless, there exists an alternative approach, although it is
approximate in nature, which allows us to simplify the resolution of
the λdB scale and capture the significant effects arising from the wave
mechanics of the field on large scales (much larger than λdB). This
method involves smoothing out the intricate details of the dynamics
occurring at small scales (less than or approximately equal to λdB)
governed by the SP equations.We shall elaboratemore on the details
of this description in this section.

Based on the studies conducted in (Skodje et al., 1989; Lawrence,
1993; Kopp et al., 2017; Mocz et al., 2018; Taha et al., 2021) we
choose to utilize the Husimi representation of ψ, which is
a smoothed phase space representation. This representation,
introduced in (Kôdi, 1940), involves smoothing out ψ using a
Gaussian window with a width parameter η and subsequently
performing a Fourier transform of the form

Ψ̃ (x,p, t) = 1
(2πℏ)3/2

1
(η√π)3/2

×∫e−
(x−y)2

2η2 ψ (y, t)e−i
p⋅(y−x/2)

ℏ d3y.

(50)

The Husimi distribution function, which defines an smoothed mass
density structure of phase space, is defined as

F (x,p, t) = |Ψ̃ (x,p, t) |2. (51)

The methodology for handling this distribution closely mirrors the
techniques used in conventionalWigner function analysis.However,
in this context, we replace the Wigner function with the newly
introduced distribution functionF . Consequently, we can apply the
samemethods as before to derive local number density, bulk velocity,
and velocity dispersion.

Furthermore, we can calculate the equation of motion for F
in a manner akin to the Wigner-Moyal equation. This involves
computing ∂F/∂t and then replacing it into the SP equation. The
resulting equation, when smoothed over scales significantly larger
than λdB (η≫ λdB), simplifies to the CBE or Vlasov equation:

dF
dt
= ∂F

∂t
+
pi
m

∂F
∂xi
− ∂Ψ
∂xi

∂F
∂pi
= 0. (52)

This last equation is the same equation that is typically used to
describe the structure formation process for a dust-like component,
as it is the case, for example, of the CDM model for dark matter.
The only difference is that in the case of dust, we would replace F
with the phase space distribution function of its collisionlessN-body
particles. Other than that, both formalisms are entirely equivalent,
implying that at scales larger than λdB, the dynamics of dust and the
dynamics of a scalar field must be entirely identical.

5.5.1 The fluid approximation
Similarly than in Section 5.2.2, it is also possible to find fluid

equations from this description by computingmomentummoments
of the CBE. Such procedure is well explained in (Taha et al.,
2021), which the reader should consult for a more comprehensive
discussion. However, in particular the 0th and first momentum of
Eq. 52 are found to mimic the continuity and momentum equations
of classical hydrodynamics

∂ρ
∂t
+
∂(ρvi)
∂xj
= 0, (53a)

∂vi
∂t
+ vj

∂vi
∂xj
+ 1
ρ
∂Pij
∂xj
+ 1
m

∂Ψ
∂xi
= 0. (53b)

The quantity Pij is defined as Pij ≡ ρσ2
ij, where σ2

ij represents the
phase space velocity dispersion. Remarkably, this Pij serves as an
effective “pressure” term, analogous to the quantum pressure tensor
Πij found in the exact QHD equations.

Comparing the results from Section 5.2.2 with the system
in Eq. 53, we note that the process of smoothing over scales
much greater than λdB reduces the “quantum pressure” tensor
Πij to an effective velocity dispersion tensor Pij derived from
the CBE. Thus, this tensor accounts for the effects of the
quantum potential/pressure on large scales. This velocity
dispersion plays a crucial role in the process of structure
formation, as it is essential for the stability of galactic systems,
opposing the gravitational collapse and maintaining dynamical
equilibrium in the system. Clearly, a small velocity dispersion
can result in collapse, while excessive dispersion may cause
the system to disintegrate. In summary, the effective pressure
resulting from the velocity dispersion, generated by the
quantum potential of the scalar field, may act to prevent
PBH formation at scales above the characteristic de Broglie
wavelength. Such effects were investigated in detail in Ref.
Padilla et al. (2022). [see also (Harada et al., 2023)]. In a subsequent
section, we describe the necessary conditions under which
the collapse of inflaton perturbations can indeed take place
and form PBHs.

5.6 Soliton cores and its halo-like exterior

In the context of dark matter, the first realistic simulations
of a scalar field considering cosmological initial conditions were
conducted by Refs. Schive et al. (2014a); Schive et al. (2014b)
In that work, the authors solved the SP system of equations,
Eq. 31, considering a scalar field as the only constituent of
the Universe. One of their key findings was that the final
structures formed from this cosmological scalar field can be
well-described by an inner soliton profile (described by the
theory we reviewed in Section 5.4 surrounded by an NFW-like
envelope from a radius determined by the incoherent fluctuations
of the scalar field9. A schematic plot of such configurations
is shown in Figure 4. This soliton-envelope structure has been

9 Note that this configuration aligns completely with the Schrödinger-

Vlasov correspondence discussed in Section 5.5; if we smooth the profile

Frontiers in Astronomy and Space Sciences 11 frontiersin.org

https://doi.org/10.3389/fspas.2024.1361399
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Padilla et al. 10.3389/fspas.2024.1361399

FIGURE 4
In dotted blue is plotted a halo-like structure that is formed in
cosmological simulations whereas in dashed black is plotted the
soliton profile, predicted by the theory reviewed in Section 5.4.

confirmed to exist by several studies that considered simpler
scenarios (Jan and Niemeyer, 2016; Schwabe et al., 2016; Alvarez-
Ríos et al., 2023), e.g., in the nearly simultaneous merger of
several soliton configurations (Mocz et al., 2017). In the context of
reheating, such core-envelope structures have also been reported
(Eggemeier et al., 2022).

Numerical simulations prescribe a soliton-halo10 mass relation
given by Msol ∝M1/3

halo/m. Several hypotheses have been proposed
to justify this relation. For instance, it has been suggested
that the specific energy of the central soliton and the host
halo are of the same magnitude (Bar et al., 2018), while others
suggest that their specific kinetic energy is what is comparable
(Bar et al., 2019). There is also the suggestion that the velocities
of the soliton and the host halo, such as the circular, virial, or
dispersion velocity, are equivalent (Mocz et al., 2017; Chavanis,
2019). Regardless of the interpretation, the above studies agree in the
following relation:

GMsolm
ℏ
≃ √

3GMhalo

10Rhalo
. (54)

In the above expression Mhalo = (4π/3)ρ200(aNL)R
3
halo is the total

mass of the halo structure, which should coincide with the mass
of the cosmological horizon evaluated at the horizon crossing
time (see Eq. 16),

Rhalo is the virial halo radius, ρ200(aNL) = 200ρb(aNL), and
subindex NL refers to quantities evaluated at the time the k-

derived from simulations over scales larger than λdB, we should obtain a

final distribution similar to that of an NFW profile, typically obtained in the

conventional dust-like scenario.

10 For the sake of clarity, we use here the term ‘halo’ to define the

composite structure consisting of the central soliton together with the

NFW-like envelope.

mode becomes non-linear11. We can re-express Eq. 54 more
conveniently as follows:

(
Msol (k)

2.4× 10−5 g
) ≃

ρ1/6
11 (aNL)
m5
(

Mhalo (k)
7.1× 10−2 g

)
1/3
, (55)

Or equivalently, with some more algebra,

Msol (k) ≃ 10
√δHC (k)

m5
g. (56)

In the above expressions m5 ≡m/(10–5mPl) and ρ11(a) ≡
ρ200(a)/(10

11 GeV)4. This is an important result since, for a given
m5, we anticipate that the mass of the solitons formed in the post-
inflationary Universe (during reheating) must be closely related
to the amplitude of the perturbations δHC(k) and independent of
the mass of its host halo. For example, in the case where m5 = 1
and δHC ∼ 10–5 (typically predicted by CMB observations) we have
that the solitons formed in this context should have a mass of
Msol(k) ≃ 6.54× 10−4 g.

6 PBH formation during
slow-reheating: Collapse from
primordial structures

6.1 New criteria of PBH formation in a
slow-reheating scenario

Aswepreviously shown, if reheating lasts long enough, two types
of structures could form during this phase. Firstly, the formation
of halo-like structures that resemble a typical NFW profile when
smoothing over scales larger than λdB. On the other hand, when
considering scales R ∼ λdB, the formation of soliton-like structures
is expected. In this section, we will investigate the conditions under
which we can expect the gravitational collapse of both types of
structures onto PBHs, closely following Ref. Padilla et al. (2022).

6.1.1 Halo collapse
If the halo-like structures that arise following inflation are

massive enough, they could become gravitationally unstable and
collapse, resulting in the formation of PBHs. Specifically, a reliable
indicator of such collapse is when overdensities reach a state of
virialization within a radius for the associated halo comparable to,
or smaller than, the Schwarzschild radius; that is, RSch ≡ 2GMhalo. In
other words, if Rhalo ≤ RSch, the collapse to PBHs is likely to occur.
By comparing the halo’s virial radius with the Schwarzschild radius,
we can determine that PBH formation will always take place when
the following condition is satisfied:

Mhalo ≥
3.144× 1034

√ρ11 (aNL)
GeV. (57)

11 The number of e-folds after horizon crossing necessary for a

perturbation to become nonlinear can be simply expressed as ΔNNL(k) ≡

NNL(k) −NHC(k) = ln (1.39δ−1HC(k)) (Padilla et al., 2022). The discrepancy

between this value and Eq. 20 is less than one e-fold of expansion. In

this paper we will interchangeably use both quantities.
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When this inequality is combined with Eq. 12 and the mass of the
halo (which coincides with the mass of the cosmological horizon at
the horizon crossing time), it reduces to the following condition:

ΔNNL (k) ≡ NNL (k) −NHC (k) ≤
2
3
ln [14.14] . (58)

By using the relationship ΔNNL(k) = ln [1.39δ−1HC(k))] (see footnote
11), we can finally obtain the condition for PBH formation:

δHC (k) ≥ δ
(halo)
th ≡ 0.238. (59)

6.1.2 Soliton collapse
In accordance with our previous discussion in Section 5.4, there

is a maximum possible mass for soliton structures, as described by
Eq. 49. This maximum mass is reached when the quantum pressure
resulting from the Heisenberg uncertainty principle is insufficient
to counterbalance the self-gravitational forces within the soliton
structure. By substituting this maximum mass into Eq. 56, we can
determine a critical threashold value δ(soliton)th beyond which the
central soliton becomes unstable and may collapse to form a PBH.
The condition for PBH formation in this scenario is given by12:

δHC (k) ≥ δ
(soliton)
th ≡ 0.019. (60)

6.2 Overview of the mechanisms of PBH
formation in slow-reheating

Let us describe the integral picture of the variety of mechanisms
leading to the formation of PBHs during reheating. Figure 5
summarizes this general timeline, which we will discuss in more
detail below.

As previously stated, during the slow-reheating phase we expect
a few perturbation modes (the ones at the smallest scales in the
spectrum) to reenter the horizon. The number of e-folds at horizon
reentry NHC(k), after inflation ends, can be calculated using the
following equation:

NHC (k) = 2 ln(
kend

k
). (61)

Once perturbations reenter the horizon, they grow as δ ∼ a (see
Eq. 15) and may reach a nonlinear stage. The number of e-folds
necessary to reach this regime depends on the wave number k and
the density contrast amplitude at horizon crossing δHC(k), and it can
be expressed as (see footnote 11):

NNL (k) = NHC (k) + ln[1.39δ−1HC (k)] . (62)

When inhomogeneities reach a nonlinear amplitude, halo-like
structures or PBHs are expected to form within a Hubble time.
Expressed in terms of e-folds, this happens at:

Nhalo (k) = NNL (k) +
2
3
ln(1+ H−1

tNL (k)
) , (63)

12 In the context of the SFDM, this mechanism has been also proposed to

explain the formation of supermassive black holes in the model (see, for

example, (Padilla et al., 2021b)).

FIGURE 5
Evolutionary stages of density fluctuations during the reheating period
as a function of the number of e-folds after inflation concludes (Nend).
After the onset of reheating, a mode with a specific wavenumber k
reenters the horizon NHC(k)e-folds later, reaching a nonlinear
amplitude at NNL(k). This nonlinear state gives rise to the formation of
a halo-like structure (or a PBH) after a Hubble time, at Nhalo(k). Once
the halo undergoes virialization, the condensation of the inflaton at its
core generates a soliton-like structure (or a PBH), emerging at
Nsoliton(k). Reheating is expected to reach completion and achieve
thermalization at Nreh. However, if this final event occurs earlier, the
sequential progression is disrupted, and only some or none of the
k-dependent processes may occur.

where tNL(k) = [2/(3Hend)][eNHC(k)1.39/δHC(k)]
3/2. The collapse

time (or the number of e-folds up to collapse) approximately
corresponds to the time derived in Eq. 20, indicating that this
collapse criterion is necessary but not sufficient for PBH formation.

During the collapse, three important effects may hinder the
gravitational collapse into PBHs. To wit, the sphericity of the
configurations, the conservation of angular momentum, and the
velocity dispersion. The first two criteria limit the abundance of
PBHs as a function of the variance of fluctuations (as discussed
in Section 4). The latter effect can be expressed in terms of a
threshold amplitude for collapse, as shown in the previous section.
With the aid of the Press-Schechter integral, we can express the
abundance at the time of formation, β0, in terms of the variance
by assuming a Gaussian probability density. We thus bring all these
effects together in Figure 6, which shows limits to the abundance at
the time of formation, β0, that should be carefully interpreted. In
the consideration of direct collapse, the velocity dispersion criterion
(the halo collapse/black curve), seems to impose the most stringent
bound to the production of PBHs. However, if configurations do
not virialize, one could follow the evolution of fluctuations as that
of dust, which subjects the abundance of collapsed objects to the
sphericity (blue line) criterion at larger variance values. Note that the
distribution of spin in the initial fluctuations yields the limit imposed
by the green line, which is never the most stringent bound to the
production of PBHs.

The above is, however, not the full story. If reheating extends
sufficiently to reach tsoliton(k) = tNL(k) + τ(k), a soliton-like structure
gets to form at the core of virialized haloes.Then, a new type of PBHs
may emerge at the center of the halo-like structures via the collapse
of the Bose-Einstein condensate. The condensation process initiates
when the inhomogeneity becomes nonlinear, and it can be described
by the following equation:

τ (k)
tNL (k)
= 8.168× 10−18(m2

5M
2
PlMhalo (k)Rhalo (k))

3/2 (64)
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FIGURE 6
The PBH density fraction β0 plotted as a function of the variance of the
density contrast σ. The blue and green lines are plotted by following
Eqs. 17, 18, respectively. The solid black and dashed cian lines were
plotted by using the standard Press-Schechter formalism, Eq. 25, and
the threashold values (Eq. 59) and (Eq. 60), respectively. For
comparison, we also included the PBH density fraction β0 calculated
in a standard radiation-dominated universe, where we took
δ(rad)th = 0.41 [see, for example, (Harada et al., 2013)]. In the plot we have
also included the brown and purple circles, which denotes the points
at which the sphericity criterion becomes more restrictive for PBH
formation (for larger σ) than the criterion related to velocity dispersion
or the case in which the PBH formation happens in a
radiation-dominated universe, respectively.

In the above expression, we use the condensation time τ from Eq. 41
and reexpress it in terms of halo quantities. The condensation time
thus determines the number of e-folds necessary for soliton/PBH
structures to form:

Nsoliton (k) = NNL (k) +
2
3
ln(1+

τ (k)
tNL (k)
) . (65)

The criterion for discriminating PBHs from solitons is given
by the threshold value of the overdensity at horizon crossing,
presented in Eq. 60. The associated abundance as a function of the
variance is presented in Figure 6 by the dashed line. This is an
alternative route to the direct collapse and the abundance is thus
not subject to the sphericity or spin criteria. Let us emphasize that
if reheating is terminated early enough, the soliton collapse will not
take place.

In concluding this section, we highlight a final possibility,
not been previously mentioned in this paper. In the process of
formation of structures, such as halos or solitons, with a mass
below their critical collapse threshold, the process of accreting
matter from their surroundings can be achieved if reheating lasts
long enough. Consequently, the structures can grow in mass until
they reach the critical value required for them to collapse and
the formation of black holes. This particular possibility has been
explored in Ref. De Luca et al. (2022). Illustrating this mechanism
in a plot equivalent to Figure 6 is a task to be tackled in
future work.

FIGURE 7
Power spectrum as a function of the scale wavenumber k. The red,
blue, and cyan lines represent the minimum k-modes relevant to the
reheating epoch, the formation of halo-like structures, and the
formation of solitonic structures. It is worth noting that this figure
bears a striking resemblance to Figure 2 in (Hidalgo et al., 2023), with
the sole distinction being that it considers a reheating period lasting
for Nreh =30e-folds of expansion, as opposed to the 40 e-folds used in
(Hidalgo et al., 2023).

7 Testing the mechanisms in a simple
setting

Let us apply the presented hypothesis to a relevant inflationary
scenario. We consider a power spectrum parameterized by the
following expression

PR (k) =As(
k
k∗
)
ns−1
+Bs exp[

[
−
(k− kp)

2Σ2
p

]

]
, (66)

where k∗ = 0.05Mpc−1 is a pivot scale. We thus approximate
the power spectrum with the usual slow-roll approximation
plus a Gaussian peak located at kp and with a variance Σ2

p.
For this example we shall consider the model parameters As =
2.099× 10−9,ns = 0.9634,Bs = 0.084, Σp = 0.03kend, kp = 0.6kend, and
kend = 0.346m

−1. The power spectrum generated for this set of
parameters is sketched in Figure 7.

From the bound in the tensor-to-scalar ration (r ≤ 0.032)
(Tristram et al., 2022), we can impose a constraint on the
Hubble parameter evaluated at the horizon crossing time of
the pivot scale k∗ :

H∗ = √
Asr
2

πMPl ≤ 4.44× 10
13 GeV. (67)

Assuming that H∗ ≳Hend and using the Friedmann equation, we
limit the energy scale at witch the end of inflation took place:

ρend ≤ (1.368× 10
16 GeV)4. (68)

For definiteness we adopt the maximum value allowed,
ρend = (1.368× 10

16 GeV)4.
We turn our attention to the value of the density contrast δHC(k)

evaluated at the horizon crossing time. If we consider the mean
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amplitude of density perturbations as that of the configurations to
collapse, taken as,

̄δHC (k) = (
δρ
ρ
)
k=aH
= √Pδ (k), (69)

we can compute the number of e-folds necessary for each
particular scale to reenter the cosmological horizon, Eq. 61, then
form halo-like structures, Eq. 63, and finally form soliton-like
structures, Eq. 65.13

Having computed that, in Figure 7 we mark the minimum k’s
(largest scales) that undergo each of these three processes. Let us
stress that we have assumed a reheating period that lasted for 30
e-folds of expansion.

For each one of the scales that manage to form halos or
solitons, we compute the probability of PBH formation. For this
purpose, we use the Press-Schechter formalism [see Appendix A],
where we calculate the variance of the contrast density following
Eq. (A3) and use the threshold values given by Eqs. 59, 60.The result
obtained is shown in Figure 8. For comparison, we also included
the abundance of PBH predicted by the sphericity criterion, Eq. 17,
and the conservation of angular momentum criterion, Eq. 18, that
would modulate the PBH production in the case of pure dust. As
expected, the velocity dispersion criterion reduces the abundance of
PBHs with respect to the other criteria.

On the other hand, we can observe that due to the small value
of the threshold for collapse of soliton structures, in this example we
would have a much larger abundance of PBHs due to the collapse
of the central soliton of the halos. It is worth mentioning that in
the case of PBHs formed by solitons we would not have a one to
one relationship of scale vs. mass of the PBH. This is due to how the
soliton’s mass depends on the total mass of its host halo (see Eq. 56).
For a more detailed discussion of this, we refer the reader to Ref.
Hidalgo et al. (2023).

It is evident that the given power spectrum may result in the
formation of PBHs with different mass ranges, depending on the
duration of reheating and the dominant matter content. Specifically,
our analysis shows that PBHs with masses around 0.74, 202, or
17 g are more prominently produced when they originate from the
collapse of scalar field solitons, scalar field halos, or overdensities
in a radiation-dominated Universe, respectively. Each of these
PBH populations influence specific phenomena at astronomical
and cosmological levels, thus meeting different constraints
depending on their mass.

In Figure 8, we have included the respective constraints
applicable to each scenario. To derive these constraints, we used the
publicly available software PBHBeta (Gomez-Aguilar et al., 2023),
which enabled us to determine constraints for PBHs at various
mass ranges in extended reheating scenarios. These constraints were
adjusted for two cases: one where the reheating period lasts for
Nreh = 30e-folds of expansion (to calculate the constraints in the case
of collapsing halo- and soliton-like structures) and another with

13 In amore accurate approximation, δHC(k) follows a Gaussian distribution,

with a specific number of e-folds required for the collapse of each

amplitude. By taking the period required for collapse from the mean

amplitude, we are underestimating themass of primordial structures and

overestimating the collapse time of the tail of the distribution.

FIGURE 8
The density fraction β0 as a function of MPBH for the collapse of
solitons (cian) and halo-like structures (black). We have also included
the sphericity criterion (blue) and the conservation of angular
momentum criterion (green). For comparison, we have included the
abundance of PBHs formed in a radiation-dominated universe. We
also showed the current constraints on the abundance of PBHs for
each of the scenarios studied and the mass range of PBHs formed. In
particular, the dashed cian, black, and red lines are constraints that
apply for PBHs that form due to the collapse of solitons, halos, and
perturbations during a radiation-dominated epoch, respectively (see
main text for further discussion).

Nreh = 0 to obtain constraints for the collapse during the radiation-
dominated scenario. Interestingly enough, our analysis shows that in
the case of PBH formation during a radiation epoch, the abundance
of PBHs formed would be well below the limits imposed by
observations. On the other hand, for PBHs formed from the collapse
of Inflaton halos, the abundance is much closer to the limit value.
Finally, for the same primordial power spectrum, we would observe
an overabundance of PBHs resulting from the collapse of solitonic
structures, surpassing the limits imposed by observations.

To conclude this section, it is necessary to mention that the
abundances obtained in this example would indicate that models
with features similar to that in Eq. 66 would be strongly ruled out in
a scenario of extended reheating where reheating lasts long enough.
However, in a short reheating period, where PBHs from the peak in
the primordial power spectrum do not have time to form, or where
the peak in the primordial power spectrum becomes smaller, the
simple model (Eq. 66) still satisfies the constraints imposed by the
Planck mass relics and cannot be ruled out. Of course, to draw more
realistic conclusions for different inflationary models existing in the
literature, it would be necessary to compare such models with the
criteria for PBH formation discussed here [as was done, for example,
in Ref.Padilla et al. (2023)].

8 Summary and outlook

In this article, we have reviewed the criteria for the formation
of Primordial Black Holes (PBHs) in the context of a slow-reheating
scenario. We focus on an extended reheating stage dominated
by an oscillating field in a quadratic potential. Specifically, we
have examined how the gravitational collapse of primordial
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inhomogeneities re-entering the cosmological horizon can be
influenced by three significant effects: the effects related to the
morphology of the initial perturbation (how spherical or non-
spherical it is), the possible angular momentum it might have
presented, and the effects due to velocity dispersion. We have
described in detail how the latter emerges from the quantum
nature of the dominating scalar field once it is averaged over
scales much larger than the associated de Broglie scale. Each of
these effects prescribes a bound to the abundance of PBHs, as
illustrated in Figure 6. In particular, we have found in the case in
which σ ≤ 0.04 that the criterion for PBH formation due to velocity
dispersion effects is more restrictive than the criteria considering
the morphology of the perturbation and its angular momentum. As
a result, this criterion is the most important to consider for those
values of σ. On the other hand, in the case in which σ > 0.04, the
most important effect preventing the collapse of perturbations into
PBHs is the one related to the morphology of the system.

At scales comparable to the de Broglie wavelength of the scalar
field, we have seen that the formation of a solitonic-like structure
(due to the Bose-Einstein condensation process) is expected at the
center of virialized configurations that form in the post-inflationary
Universe. In this article, we have also reviewed the necessary
condition for the formation of PBHs due to the gravitational collapse
of these solitons and we have calculated the abundance of PBHs that
should be expected by this mechanism (which can be also seen in
Figure 6). In the figure it is easy to see that the collapse of solitons
into PBHs is much more likely to occur than in the case of the
collapse of the total perturbation.

We emphasize that in order to achieve the formation of PBHs
due to either of these two formation mechanisms (collapse of
the total perturbation or solitonic center), reheating should last
sufficiently long to allow for each of these processes to take place.The
timeline for this process is presented in Figure 5. Another important
remark is that we have assumed the dominating scalar field during
reheating to be the inflaton field itself, oscillating around the bottom
of a quadratic potential. The extension to scalar fields of other
nature, such as axion monodromy (Silverstein and Westphal, 2008;
McAllister et al., 2010), curvaton (Enqvist and Martin, 2002; Lyth
andWands, 2002) ormultiple fields (Iacconi et al., 2022; Iacconi and
Mulryne, 2023), is still work in progress.

This work has been carried out as a review article aimed at
guiding the reader through the different criteria for PBH formation
in the context of a slow-reheating scenario. Our study considers
exclusively the case of a scalar field (inflaton or another) oscillating
around the minimum of a quadratic potential and dominating the
Universe prior to the standard radiation domination. Extensions to
(self-)interacting fields have beenmentioned in Section 3, where the
computation of PBH formation requires numerical analysis. This
alternative reheating scenario shall thus be addressed elsewhere.

Our intention is to provide the proof of principle and the tools
for the reader to adapt the mechanism to specific models of the

early Universe, in order to test different inflationary models with
this PBH formation and explore the detection window. To this end,
we have also included a simple example that considers a primordial
power spectrum with a Gaussian peak at small scales, showing the
possibility of overproduction of PBHs. This is an exciting possibility
that we shall study in more detail elsewhere.
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Appendix A Press-Schechter
formalism

In the Press-Schechter formalism (William, 1974), the likelihood
of having collapsed objects with masses greater thanM is analogous
to the probability that a density field, after being smoothed, surpasses
the threshold value δth:

ℙ[δ > δth] = ∫
∞

δth
P( ̃δ)d ̃δ. (A1)

Adopting that the probability distribution function of δ,P(δ), follows
a Gaussian distribution, i.e.,

P (δ) = 1
√2πσ (R)

exp(− δ2

2σ(R)2
), (A2)

with σ(R) the variance of δ evaluated at the horizon crossing time,

σ2 (R) = ∫
∞

0
W̃2 ( ̃kR)Pδ ( ̃k, tHC)d ln ̃k, (A3)

W̃(kR) = exp (−k2R2/2) the Fourier transform of the window
function used to smooth the density contrast over a scale R = 1/k,
andPδ the power spectrum of density perturbations, we can rewrite
Eq. (A1) as

ℙ[δ > δth] =
1
2
erfc(

δth

√2σ (R)
). (A4)

In the above expression erfc(x) = 1− erf(x) is the complementary
error function. We can finally compute the abundance of PBHs
of a given mass M at the time of formation, β0(M), by using the
expression

β0 (M) = −2M
∂R
∂M

∂ℙ[δ > δth]
∂R
, (A5)

where the factor 2 is included to fit the cloud in cloud correction.
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