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While the mission’s primary goal was focused on exoplanet detection and
characterization, Kepler made and continues to make extraordinary advances
in stellar physics. Stellar rotation and magnetic activity are no exceptions. Kepler
allowed for these properties to be determined for tens of thousands of stars
from the main sequence up to the red giant branch. From photometry, this
can be achieved by investigating the brightness fluctuations due to active
regions, which cause surface inhomogeneities, or through asteroseismology
as oscillation modes are sensitive to rotation and magnetic fields. This review
summarizes the rotation and magnetic activity properties of the single main-
sequence solar-like stars within the Kepler field. We contextualize the Kepler
sample by comparing it to known transitions in the stellar rotation andmagnetic-
activity evolution, such as the convergence to the rotation sequence (from the
saturated to the unsaturated regime of magnetic activity) and the Vaughan-
Preston gap. While reviewing the publicly available data, we also uncover one
interesting finding related to the intermediate-rotation gap seen in Kepler and
other surveys. We find evidence for this rotation gap in previous ground-
based data for the X-ray luminosity. Understanding the complex evolution and
interplay between rotation and magnetic activity in solar-like stars is crucial, as it
sheds light on fundamental processes governing stellar evolution, including the
evolution of our own Sun.
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1 Introduction

Low-mass stars with convective outer layers, also known as solar-like stars, can sustain
internal dynamos and have the potential to harbor magnetic activity. Magnetic fields and
magnetic cycles are generated by an interaction between differential rotation and convection
(see Brun and Browning, 2017, for a recent review). As the strong magnetic fields emerge at
the stellar photosphere, they form active regions, where dark spots appear, usually in pairs
or groups of opposite polarity (e.g., Hale et al., 1919; Solanki, 2003; Hathaway, 2015). Such
active regions can be associated with eruptive events like flares and coronal mass ejections
(e.g., Zirin, 1970; Solanki, 2003). As active regions decay their magnetic fields disperse and
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concentrate at the edges of the convective cells, forming the
bright faculae (e.g., van Driel-Gesztelyi and Green, 2015). In
the chromosphere, these regions of intermediate magnetic-field
strength appear as bright plage. All these phenomena are part of
the star’s magnetic activity, which varies at different timescales. In
particular, the Sun undergoes an 11-year cycle of magnetic activity.
Analogously, other stars are known to exhibit magnetic activity
cycles (e.g., Baliunas et al., 1995; Oláh et al., 2009; García et al.,
2010; Boro Saikia et al., 2018; Karoff et al., 2018), with cycle periods
ranging froma few years to over 20 years. As the dynamomechanism
is powered by the interplay of convection and rotation (e.g., Brun
and Browning, 2017), the cycle and rotation periods are found to
be related, with slow-rotating stars having longer cycles than fast-
rotating stars. Stars are often seen to group along two branches:
active and inactive (e.g., Brandenburg et al., 1998; Böhm-Vitense,
2007). However, there is still debate whether these are properly
determined or even exist (e.g., Boro Saikia et al., 2018; Bonanno and
Corsaro, 2022).

The level of magnetic activity is also intrinsically linked
to rotation (e.g., Kraft, 1967; Pallavicini et al., 1981; Walter
and Bowyer, 1981; Noyes et al., 1984; Soderblom et al., 1993;
Pizzolato et al., 2003). At the beginning of their main-sequence
lifetime, stars are relatively fast rotators and exhibit high activity
levels (e.g., Skumanich, 1972; Barnes, 2003b; Fritzewski et al., 2021a;
Brown et al., 2021). Stars gradually lose angular momentum due to
their magnetized winds (e.g., Kraft, 1967; Weber and Davis, 1967;
Skumanich, 1972; Kawaler, 1988; Pinsonneault et al., 1989; Gallet
and Bouvier, 2013;Matt et al., 2015), in a process known asmagnetic
braking. The rate at which the stars spin down depends on their
rotation, with faster rotators losing angular momentum faster than
slower rotators. Eventually, stars will converge into the so-called
slow-rotation sequence (see for example, Figure 3 in Gallet and
Bouvier, 2013), and from that point onwards the rotation rate decays
proportionally to the square root of the age, known as the Skumanich
spin-down law (Skumanich, 1972). The spin-down process is
also mass-dependent, with lower-mass stars taking longer to
converge into the rotation sequence than higher-mass stars, but once
reached, lower-mass stars spin down faster than higher-mass stars
(e.g., Barnes, 2003b; Barnes, 2007; van Saders and Pinsonneault,
2013; Matt et al., 2015). The magnetic activity also decays with
time: as stars evolve and spin down, they gradually become less
active (Wilson, 1963; Skumanich, 1972; Soderblom et al., 1991).
Therefore, generally, fast-rotating stars have stronger magnetic
activity than slow-rotating stars. This activity-rotation relationship
can be represented as a function of the Rossby number, Ro
(Noyes et al., 1984). Ro can be defined as the ratio between the
star’s rotation period and its convective turnover timescale. The
latter corresponds to the typical timescale for convective motions
in the stars’ envelopes and remains mostly constant during the
main-sequence lifetime, increasing as the effective temperature
decreases (e.g., Lehtinen et al., 2021). Metallicity, however, can
complicate this picture. Due to a larger opacity, metal-rich stars
have deeper convection zones than their metal-poor counterparts
(e.g., van Saders and Pinsonneault, 2012). A deeper convection
zone leads to a more vigorous dynamo, consequently to higher
magnetic activity. Observational evidence for this effect has been
found in both large samples (See et al., 2021; See et al., 2023) and
in the particular case of the seismic solar-analog HD 173701 (KIC

8006161). This ∼1M⊙ star exhibits a magnetic cycle with more than
twice the amplitude of the solar cycle (Karoff et al., 2018). Strong
magnetic activity, in turn, would lead to a more efficient loss of
the angular momentum. Thus, metal-rich stars are expected to spin
down faster than metal-poor stars (Amard and Matt, 2020) and, so
far, this theoretical expectation has been supported by observations
(e.g., Amard et al., 2020; Santos et al., 2023).

The Skumanich spin-down law led to the development of
gyrochronology (e.g., Barnes, 2003b; Barnes, 2007; Mamajek and
Hillenbrand, 2008; García et al., 2014a; Angus et al., 2015; Lu et al.,
2023), enabling estimation of stellar ages from surface rotation.
Analogously, magnetochronology and magnetogyrochronology
relations have also been established (e.g., Mamajek andHillenbrand,
2008; Pace, 2013; Lorenzo-Oliveira et al., 2018; Mathur et al., 2023;
Ponte et al., 2023). As rotation and magnetic activity measurements
are available for large numbers of stars, these techniques are
powerful tools for estimating stellar ages. However, the evolution
of stellar rotation and magnetic activity is not yet fully understood,
as we will discuss below.

The stars’ magnetic fields can be measured through Zeeman
Broadening of spectral lines and Zeeman Doppler Imaging (ZDI;
e.g., Semel, 1989; Donati and Brown, 1997; Reiners et al., 2022;
Vidotto et al., 2014; See et al., 2019a; Brown et al., 2022, see also
Kochukhov, 2021 for a recent review). These techniques shed light
on the evolution of stellar magnetic fields and allow the large-
scale magnetic field topology to be recovered. The ZDI technique
has been used to follow entire stellar magnetic cycles which, in
the case of 61 Cyg A, share many similarities to that of the solar
cycle (Saikia et al., 2018). However, due to the challenges of directly
measuring magnetic fields, indirect measures are often used. These
aremagnetic activity proxies and link to phenomena associated with
the presence of strong magnetic fields, which can be constrained by
spectroscopic and photometric observations.

In spectroscopy, magnetic activity is often constrained through
the analysis of particular spectral lines. Examples of such lines
are the Ca II H & K lines in the near ultra-violet (NUV)
and the Ca II infrared triplet (IRT). In the presence of active
regions, these absorption lines show emission at their cores due to
chromospheric heating. By measuring such emission and removing
the basal and photospheric contributions, these lines provide proxies
for magnetic activity in the chromosphere (e.g., Leighton, 1959;
Wilson, 1968; Wilson, 1978; Baliunas et al., 1995; Karoff et al., 2016;
Fritzewski et al., 2021a; Gomes da Silva et al., 2021). Since active
regions go in and out of view as the star rotates, these activity
proxies can show short-term quasi-periodic variations, allowing
to constrain rotation periods (e.g., Suárez Mascareño et al., 2017;
Lorenzo-Oliveira et al., 2019). Another activity proxy that can
be derived from spectra is the spot filling factor (e.g., Gully-
Santiago et al., 2017; Cao and Pinsonneault, 2022; Gosnell et al.,
2022), which follows upon the fact that magnetic spots in solar-like
stars are cool features in comparison to their surroundings.

In white-light photometry, active regions lead to variations
in the stellar brightness, known as rotation modulation. Once
again, as active regions co-rotate, in this case with the stellar
surface, the periodicity of these brightness variations is related
to the surface rotation period at the latitudes where the active
regions are formed (e.g., Gaidos et al., 2000; Reinhold et al., 2013;
García et al., 2014a; McQuillan et al., 2014; Lanzafame et al., 2018;
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Gordon et al., 2021; Santos et al., 2021; Lu et al., 2022; Claytor et al.,
2023; Distefano et al., 2023). The amplitude of the brightness
variations relates to the surface coverage by active regions
(e.g., Basri et al., 2010; García et al., 2010; Mathur et al., 2014b;
Salabert et al., 2017) and is found to be well correlated with
chromospheric activity proxies (Salabert et al., 2016; Ponte et al.,
2023). One of the advantages associated with the advent of
photometric space missions is that they allow the retrieval of
magnetic activity proxies and rotation for stellar samples orders of
magnitude larger than those from ground-based surveys.

Stellar flares can also be detected and characterized from white-
light photometry (e.g., Davenport, 2016; Ilin et al., 2019; Ilin et al.,
2021; Yang and Liu, 2019; Günther et al., 2020), providing a proxy
for magnetic activity. Another widely used magnetic activity proxy
is X-ray emission from hot plasma confined in coronal loops
(e.g., Schmitt et al., 1995; Pizzolato et al., 2003; Pillitteri et al., 2006;
Wright et al., 2018), which is correlated with the stellar wind
mass-loss rates (Wood et al., 2021). Other activity indicators used
in the literature are the Hα emission and NUV excess (e.g.,
Findeisen et al., 2011; Newton et al., 2017; Godoy-Rivera et al.,
2021b; Zhong et al., 2023).

Asteroseismology can also be effective in measuring rotation
and magnetic activity in solar-like stars, thanks to the acoustic
modes (p modes) being sensitive to both properties. In this
case, solar-like acoustic oscillations give information mostly from
subphotosphere layers (e.g., Basu et al., 2012; Benomar et al., 2015).
Rotation can bemeasured from the splitting of themodes’ azimuthal
orders if the stellar inclination angle is not too small (Gizon
and Solanki, 2003; Ballot et al., 2006, inclination of 90° and 0°
correspond, respectively, to observing the star equator-on and
pole-on). In addition to an average rotation (e.g., Gizon et al.,
2013; Davies et al., 2015; Hall et al., 2021), asteroseismology also
allows us to obtain information about surface latitudinal differential
rotation (Benomar et al., 2018; Bazot et al., 2019). Unfortunately,
main-sequence solar-like stars pose a significant challenge in
the determination of their radial differential rotation due to
uncertainties in observations and stellar models (Benomar et al.,
2015; Schunker et al., 2016b; Schunker et al., 2016a; Nielsen et al.,
2017). Moreover, the number of visible modes is limited, as
well as their sensitivity to greater depths in the stellar interiors.
Magnetic activity affects different properties of the acoustic modes
(e.g., Woodard and Noyes, 1985; Elsworth et al., 1990; Jiménez-
Reyes et al., 1998; Jain et al., 2009; García et al., 2010; Tripathy et al.,
2011; Broomhall et al., 2014; Kiefer et al., 2017; Santos et al., 2018).
Particularly, the mode frequencies are observed to increase with
the magnetic activity level, while mode amplitudes decrease. For
low-degree modes, those that are possible to observe for stars
other than the Sun, modes of different angular degrees are
affected differently by stellar activity (e.g., Jiménez-Reyes et al., 1998;
Chaplin et al., 2004; Broomhall et al., 2012; Salabert et al., 2015),
depending on the latitudes where active regions emerge (active
latitudes). This fact reveals another capability of asteroseismology,
in this case, to constrain active latitudes in stars by investigating
the magnetic signatures in modes of different angular degrees, as
it was done for the well-characterized solar-analog HD 173701
by Thomas et al. (2019). However, the suppression of mode
amplitudes by magnetic activity prevents the detection of acoustic
modes in stars with strong magnetic activity (Chaplin et al.,

2011; Mathur et al., 2019; Gehan et al., 2022; Gehan et al., 2024).
Therefore, seismic samples are biased towards weakly active
slow rotators.

The Kepler mission (Borucki et al., 2010), launched by NASA
(National Aeronautics and Space Administration), provided
one of the most significant contributions to the expansion of
stars with known surface rotation and measured activity levels
(e.g., McQuillan et al., 2013; McQuillan et al., 2014; Nielsen et al.,
2013; Reinhold et al., 2013; Reinhold et al., 2023; García et al.,
2014a; Ceillier et al., 2017; Santos et al., 2019; Santos et al., 2021).
Comparatively, Gaia, launched by ESA (European Space Agency),
has yielded a much larger number of rotation measurements
(Lanzafame et al., 2018; Distefano et al., 2023). Nevertheless, Kepler
and Gaia yields are complementary (e.g., Lanzafame et al., 2019),
with Kepler probing typically slower rotators than Gaia, including
stars similar to our Sun (for reference, at 5,000 K, the 5th and 95th
percentiles of Kepler Prot distribution are 8.2 and 38.8 days, while
the analogous limits for Gaia are 0.4 and 12.6 days). Kepler revealed
two potential deviations to the Skumanich spin-down law, whose
origins are still under debate.

Most of theKepler main-sequence sample has already converged
to the slow-rotation sequence, where the Skumanich spin-down law
is generally assumed to be valid. However, Kepler data suggests
the existence of a transition within this regime, with the surface
rotation distribution being bimodal (e.g., McQuillan et al., 2013;
McQuillan et al., 2014; Davenport and Covey, 2018; Santos et al.,
2019; Santos et al., 2021), which is particularly evident at low
temperatures, resulting on an intermediate-rotation gap (∼15 days
at 4500 K). Spin-down stalling, likely associated with this gap, is
evident in stellar clusters with ages around 1 Gyr (Curtis et al.,
2019). Recently the intermediate-rotation gap was found in
K2 (Howell et al., 2014) and ground-based data for partially
convective stars (Reinhold and Hekker, 2020; Gordon et al., 2021;
Lu et al., 2022), but is absent in fully convective stars (Lu et al.,
2022). Different hypotheses to explain the gap were proposed,
with the core-envelope coupling theory gaining traction (e.g.,
McQuillan et al., 2014; Angus et al., 2020; Spada and Lanzafame,
2020; Gordon et al., 2021; Lu et al., 2022). In this scenario,
the angular momentum transfer between the stars’ fast core
and slow envelope would momentarily stall the spin-down.
Once the coupling is completed, the Skumanich-like spin-down
would resume.

The second transition Kepler unveiled concerns relatively
old main-sequence stars, around the age of the Sun and
older. Given their asteroseismic ages, some of these stars spin
faster than expected if their spin-down was consistent with
the Skumanich law (Angus et al., 2015; van Saders et al., 2016;
Hall et al., 2021). This observation led to the formulation of the
weakened magnetic braking (WMB), which would take place
around the middle of the main-sequence lifetime, at a given
critical Ro (e.g., Metcalfe et al., 2016; van Saders et al., 2016;
Metcalfe and van Saders, 2017; Saunders et al., 2023). Despite the
observational support for WMB, its physical cause(s) remains
unclear. As the efficiency of angular momentum transport is
primarily governed by the stellar magnetic field (Réville et al.,
2015), one possible explanation is that the stellar dynamo
becomes less efficient, leading to a weaker or more complex
magnetic field configuration (explored in numerical experiments,
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e.g., Brun et al., 2022). This hypothesis has been investigated
using spectropolarimetric observations of solar-like stars, which
recover the large-scale magnetic field strength and topology
(See et al., 2019b; Metcalfe et al., 2021; Metcalfe et al., 2022). Other
explanations range from the influence of latitudinal differential
rotation (Tokuno et al., 2023), to decreases in the stellar wind
mass-loss rates due to closed magnetic fields (Garraffo et al.,
2016) or less efficient wind heating/acceleration (Shoda et al.,
2020). As the Sun lies around this transition, attempts have been
made to measure the present-day solar wind braking torque
(Finley et al., 2019b). Both observations and numerical models
show the braking torque to be a factor of two to three times
smaller than required by the Skumanich relation (Matt et al.,
2015; Finley et al., 2018), lending support to the weakened
braking hypothesis.

Looking to the magnetic-activity evolution, another transition
may exist, the so-called Vaughan-Preston (VP) gap (e.g.,
Vaughan, 1980; Vaughan and Preston, 1980; Henry et al., 1996;
Gomes da Silva et al., 2021). The VP gap is characterized by a lack
of stars with intermediate Ca II H & K emission. However, there
is extensive debate in the community surrounding its existence.
In particular, when exploring larger and more complete samples,
the VP gap attenuates and in some cases almost disappears (e.g.,
Boro Saikia et al., 2018; Brown et al., 2022). Although Brown et al.
(2022) did not find a clear gap, the authors also found evidence
supporting a phase of rapid evolution, consistent with the parameter
space of the VP gap. Therefore, it is not clear yet whether the VP
gap is a result of a transition in the magnetic-activity evolution or
a result of observational bias. So far, there is no evidence for it in
Kepler data.

These recent discrepancies between the observations and the
expected behavior reinforce the need for a better understanding
of rotation and magnetic-activity evolution. This review places the
Kepler rotational sample in the context of the known transitions
during the main sequence and describes them in more detail in the
following sections.

2 Kepler main-sequence solar-like
rotation sample

The Kepler mission provided exquisite data for stellar physics.
In addition to high-precision photometry, Kepler monitored the
same stars in a continuous, long-term manner, spanning up to 4
years of observations. Still, Kepler data are not free of systematics
and instrumental artifacts. Therefore, it is important to correct
and calibrate them (e.g., Jenkins et al., 2010; García et al., 2011;
2014b), while preserving stellar signals at long timescales, such
as the rotation modulation of slow rotators. Once processed,
Kepler data constrained surface rotation periods and photometric
magnetic activity for several tens of thousands of solar-like
stars from the main-sequence to the red-giant phase (e.g.,
García et al., 2014a; McQuillan et al., 2014; Ceillier et al., 2017;
Santos et al., 2019; 2021). While the focus of this review is
the main-sequence (MS) solar-like stars, it is worth noting
that magnetic fields and activity are also found in earlier
spectral types (e.g., Balona, 2015; Balona, 2019; Mathys, 2017;
Henriksen et al., 2023).

We begin with the sample of 55,252 stars with known rotation
periods from Santos et al. (2019), Santos et al. (2021)1, which
included subgiant stars by design. To select solely the MS stars we
adopt the selection criteria based on the color-magnitude diagram
(CMD) from Gaia Data Release 3 (Gaia Collaboration et al., 2023),
as detailed in Appendix A of García et al. (2023). The magnitudes
were corrected for extinction and the selection criteria also remove
potential binaries and outliers that sit above or below the MS in
the CMD, as well as targets with large (≥1.2) renormalized united
weighted error (RUWE; Gaia Collaboration et al., 2023),Gaia radial
velocity variables (Katz et al., 2023), stars in the Gaia non-single-
star sample (Gaia Collaboration et al., 2023), and eclipsing binaries
(Kirk et al., 2016). As we do not yet fully understand the rotational
signals from targets flagged as close-in binary candidates in
Santos et al., 2019; Santos et al., 2021, we keep those that pass the
criteria (1,311 targets). This leaves us with a reference Kepler sample
of 34,898 single MS stars with known rotation rates. The selection
criteria are relatively stringent to ensure a clean sample. Applying
the same criteria to the sample of McQuillan et al. (2014) would
reduce it to 21,685 stars. Comparing the respective clean samples,
we verify that the latest catalog still pushed the upper edge of the
rotation-period distribution towards slower rotators (see Figure 12
in Santos et al., 2021).

The top panel of Figure 1 shows the Kepler rotation MS sample.
The dashed lines mark the upper and lower edges of the Prot
distribution, corresponding to the 95th and 5th percentiles, whose
origin is discussed in more detail below. In general, hotter stars
are fast rotators than cooler stars, which is expected, as for most
of the MS, the magnetic braking is more efficient for less massive
stars (van Saders and Pinsonneault, 2013;Matt et al., 2015). Another
feature that can be seen in the Kepler sample is the so-called
intermediate-Prot gap, leading to a bimodal Prot distribution. For
cooler solar-like stars (K and M), a lower-density region, in between
two populations or sequences of stars, can be found. For G dwarfs,
the lower density region disappears but the Prot distribution is still
bimodal (e.g., Davenport, 2017). The dot-dashed line indicates the
intermediate-Prot gap computed for the clean sample as described in
Santos et al. (2023).

For the Kepler sample, the magnetic activity is quantified from
the rotational modulation in the light curve using the activity
proxy Sph, computed in Santos et al. (2019), Santos et al. (2021)
as defined by Mathur et al. (2014a), Mathur et al. (2014b), see
also García et al. (2010). The bottom panels of Figure 1 show
the activity-rotation diagram for the Kepler MS sample split
by spectral type (Teff boundaries at 3700, 5200, and 6000 K).
Generally, fast rotators are more magnetically active than slow
rotators. The black solid lines show the respective density contours,
as reference for the figures below. GKM stars are color-coded
according to their location concerning the intermediate-Prot
gap. The color code for the F stars indicates whether their
Teff is below or above the Kraft break (6250 K; Kraft, 1967).
While the activity and rotation of cool F stars are correlated,
similarly to the case of the GKM stars, hot F stars tend to

1 KEPSEISMIC light curves were adopted in these works and are available on

MAST (Mikulski Archive for Space Telescopes): DOI: 10.17909/t9-mrpw-

gc07; https://archive.stsci.edu/prepds/kepseismic/.
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FIGURE 1
Summary figure of the sample of Kepler MS solar-like stars with known Prot, illustrating the parameter space probed by Kepler. (A): Prot as a function of
Teff. The dashed black lines mark the upper and lower edges of the Prot distribution. The black dot-dashed line marks the intermediate-Prot gap. The
subpanel shows a zoom-in into the low-temperature regime. To better see the intermediate-Prot gap, we removed the lines. (B): Activity-rotation
diagrams for each spectral type. The solid lines mark the density contours. Orange and beige symbols correspond to stars faster and slower than the
intermediate-Prot gap, respectively. Dark and light blue show F stars cooler and hotter than the Kraft break, respectively. The side panel shows the
corresponding Sph distributions and median values.

be fast rotators with low activity levels (see also Appendix
B in Santos et al., 2021). The solid blue lines show the Sph
distribution for F stars cooler and hotter than the Kraft break,
whose median values are indicated by the dashed and dot-
dashed lines (287.8 ppm and 185.8 ppm, respectively). This
behavior can be explained by the shallow convective envelopes
of the latter, which are unable to produce a strong magnetic
field yielding inefficient magnetic braking (e.g., van Saders and
Pinsonneault, 2013).

Below we discuss the transitions and detection biases in the
Kepler rotation sample.We discuss other transitions that happen in a
regime not probed byKepler or, if probed, are not observed inKepler
data. In the activity-rotation figures, we opt to show Prot and not Ro,
as Prot can be measured directly from the observations. In addition,
the comparison between Ro numbers from different studies is not
straightforward, as Ro depends on the adopted definition for the
convective turnover timescale. Nevertheless, to split the samples into
different regimes, when possible, we adopt the Ro number and the
respective transitions as determined by the authors in the respective
original studies.

3 From saturated to unsaturated:
convergence to the rotation sequence

The members of young open clusters exhibit a wide
range of rotation periods (e.g., Stauffer and Hartmann, 1987;
Soderblom et al., 1993; Barnes, 2003b), consistent with stars
transitioning from an ultra-fast rotation (a result of spin-up due
to contraction onto the main sequence) to the converged rotation
sequence.These two regimes are separated by a lower-density region,
i.e., a gap at ultra-fast rotation (few days, depending on Teff; Barnes,
2003b). The signature of this transition can also be identified in
the magnetic activity of low-mass stars, particularly in their X-
ray emission (Wright et al., 2011). Two regimes in the coronal
magnetic activity are found by Wright et al. (2011): a saturated
regime where X-ray emission is almost independent on Prot; and
a unsaturated regime where X-ray emission strongly depends
on rotation, corresponding to the converged rotation sequence.
The ultra-fast-Prot bimodality found by Barnes (2003b) marks
the transition from saturated to unsaturated magnetic activity.
[Barnes (2003a), Barnes (2003b), hereafter B2003] proposed that
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this transition is related to the core-envelope coupling, where the
core and envelope would be coupled for stars in the converged
rotation sequence (B2003’s interface sequence), and decoupled for
ultra-fast rotators (B2003’s convective sequence). However, fully
convective M dwarfs also follow the same activity-rotation relation
characterized by the saturated and unsaturated regimes (Wright
and Drake, 2016; Wright et al., 2018). Alternatively, Brown (2014)
attributed the rotation gap to a transition between weak (saturated)
to strong (unsaturated) coupling with the stellar wind, which in turn
might be related to a transition from complex to simple magnetic
field morphology (Réville et al., 2015; Garraffo et al., 2018).

Physically motivated models of angular momentum evolution
can describe the observed convergence of rotation, particularly
reproducing the mass-dependence of the spin-down (e.g.,
van Saders and Pinsonneault, 2013; Matt et al., 2015). Lower-mass
solar-like stars spendmore time in the saturated regime than higher-
mass solar-like stars, which converge earlier into the unsaturated
regime. Moreover, the efficiency of magnetic braking depends on
the rotation period: stars born with fast rotation spin down faster
than stars born with slow rotation. Eventually, they converge into
the same sequence, the unsaturated regime, where they lose angular
momentum following the Skumanich law and, thus, gyrochronology
becomes valid.

Placing the Kepler sample in context, most of the MS stars
have already converged into the unsaturated regime. This is not
surprising as the Kepler sample corresponds to field stars, with a
mix of populations of typical ages of several Gyr, and thus stars
have had time to spin down. In fact, the transition between the
saturated and unsaturated regimes happens at faster rotation rates
than the lower edge of the Kepler Prot distribution. Both saturated
regime and transition are very sparsely populated in the Kepler
field. Furthermore, this region of the parameter space, particularly
Prot < 7 days, is found to be dominated by tidally-synchronized
binaries, as determined by Simonian et al. (2019) and Angus et al.
(2020). Close-in binary candidates identified by Santos et al. (2019,
2021) that survived the selection criteria (Sect. 2) were kept in the
Kepler MS sample, but they are found to occupy the same region
of the parameter space as the tidally-synchronized binaries (with
some common targets). It is, thus, unclear whether the surviving
Kepler rapidly-rotating targets are young solar-like stars still in the
saturated regime or tidally-synchronized binaries, which were not
identified as such yet.

Figure 2 compares the parameter space of rotation and
activity for the X-ray emission sample in Wright et al. (2011, from
where we take Teff, Prot, and color index) and for the Kepler MS
sample. The left panel show the Prot-Teff diagram, while the right
panels show the activity-Prot diagram, where F stars were ignored
as they are only a few. The color index is used to compute the
convective turnover timescale, according to Eq. 10 in Wright et al.
(2011), which in turn, together with Prot, is used to compute Ro.
Ro can vary across different works, depending on the definition
of the convective turnover timescale (e.g., the location where it is
measured). In this review, we adopt the Ro values as determined
by each work, but we focus on the observable Prot. Later in this
section, we will compare the different Ro values. In what follows,
the subscript of Ro indicates to which work they refer, particularly
we use the initial of the first author and the year of the publication:
e.g., W2011 for Wright et al. (2011).

In Figure 2, we split the X-ray emission sample into saturated
and unsaturated regimes according to Wright et al. (2011), with
the transition RoW2011 set at 0.13 (saturated: RoW2011 ≤ 0.13;
unsaturated: RoW2011 > 0.13).The lower edge of the Prot distribution
of the Kepler sample lies above the transition between saturated
and unsaturated regimes in X-ray luminosity. This comparison
emphasizes the fact that, with Kepler, we have access mostly to the
stars in the unsaturated regime. Interestingly, it is noticeable that
the relation between X-ray emission and rotation (right-hand side)
shows a change in slope around the intermediate-Prot gap, i.e., where
the shape of the Kepler contours change. Indeed, one can notice that
change in the original figures by Wright et al. (2011). This is also
shown in Figure 3, where the color code indicates the distance to
the intermediate-Prot gap (δ logProt). The top right panel displays
the X-ray emission against RoW2011. Stars in the saturated regime
(brown hexagons) are partly omitted to better show the unsaturated
regime. Around the intermediate-Prot gap (lighter symbols), there
is a decrease in the dispersion compared to the remainder of the
unsaturated regime. At Prot longer than the gap (δ logProt > 0),
stars seem to follow a steeper relation than before. This can be
seen through the comparison between the model by Wright et al.
(2011, dashed blue line) and the smoothed data (solid red line). In
the unsaturated regime, at δ logProt < 0, the smoothed line closely
follows the model, while deviating at δ logProt > 0. Indeed, splitting
the unsaturated regime in two and fitting them separately, we
find slopes of −1.92 and −2.46 for δ logProt < 0 and δ logProt > 0,
respectively. The behavior change can also be seen in the bottom
panels, where particularly for the K stars it is noticeable that stars
with δ logProt < 0 and δ logProt > 0 follow different sequences. This
transition in the unsaturated regime was naturally not seen by
the authors and is noticed now thanks to the knowledge acquired
through the Kepler sample, which revealed this intermediate-Prot
gap. It is now clear that the unsaturated regime itself presents
multiple regimes.

The transition from saturated to unsaturated regime
corresponding to the ultra-fast-Prot bimodality can also be found
in other magnetic activity proxies besides X-ray emission. For
the Pleiades, with an age of ∼125 Myr (Stauffer et al., 1998), the
saturated and unsaturated regimes are identified, for example,
in the photometric magnetic activity measured from K2 light
curves (Brown et al., 2021) and in the spot filling factor measured
from APOGEE (Apache Point Observatory for Galactic Evolution
Experiment) spectra (Cao and Pinsonneault, 2022).

Brown et al. (2021) discovered a new contribution to the stellar
brightness variations, the mid-frequency continuum (MFC). The
MFC corresponds to an excess of power between ∼20 and ∼300 μHz
in comparison with the models for the acoustic background in
the power spectrum, which account for photon-shot noise, activity,
and two granulation components. Interestingly, the MFC scales
with RoB2021, suggesting that it is related to stellar magnetism.
Given its timescale, the MFC might be related to the supergranular
internetwork (see Rincon andRieutord, 2018 for a review).However,
the MFC and the photometric magnetic activity (σH, measured as
the amplitude of the rotation harmonics, H, in the power spectrum,
which is well correlated with Sph) do not vary in phase or follow
a similar relation with RoB2021. Brown et al. (2021) found that the
MFC also shows two regimes, with the MFC transition taking place
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FIGURE 2
Comparison between the rotation and magnetic activity of the Kepler sample (gray and black lines) and the X-ray emission sample in (Wright et al.
2011, colored symbols): Prot-Teff diagram (A) and activity-Prot diagram per spectral type (B). The saturated and unsaturated regimes identified by
Wright et al. (2011) are shown by the brown hexagons and orange triangles respectively. The solid lines in the activity-Prot diagram show the density
contours of the Kepler sample for reference (see Figure 1). The activity proxy of the Kepler sample is Sph (left y-axis), while RX (right y-axis) corresponds
to the ratio between the X-ray and the bolometric luminosities for the X-ray emission sample. The right panels employ dual y-axes, avoiding the need
to convert an activity proxy into the other. As the Prot spans roughly the same interval in both samples, we simply align them.

at smaller RoB2021 (shorter Prot) than that associated with the ultra-
fast-Prot bimodality. This is illustrated in the top panels of Figure 4,
where the stars saturated in MFC are shown by the turquoise
squares. For the photometric magnetic activity, the transition
between the saturated and unsaturated regime (brown hexagons and
orange triangles) is consistent with the ultra-fast-Prot bimodality,
i.e., with the saturated and unsaturated X-ray regimes. In the top
panel of Figure 4, we take the MFC transition from Brown et al.
(2021, logRoB2021,MFC = −1.65), while for the photometric activity,
we adopt logRoB2021,H = −0.7, which is slightly shifted from the
value indicated by the authors (logRoB2021,H = −0.5). This change is
motivated by the fact that the stars lying around that RoB2021 have
already transitioned to the unsaturated regime. Teff, Prot, RoB2021,
harmonic and MFC amplitudes (σH and σMFC) are adopted from
Brown et al. (2021).

In comparison, Cao and Pinsonneault (2022) used APOGEE
spectra of the Pleiades cluster to estimate the spot filling factor
( fspot), based on the temperature contrast between spots and quiet
surroundings. As the activity proxies estimated fromK2 light curves
and APOGEE spectra are both related to spots, they are expected
to show the same behavior. Indeed, that is the case, except with
the rotation sequence from Cao and Pinsonneault (2022), which is
located at slightly shorter Prot than that from Brown et al. (2021, see
middle panel of Figure 4). To split the fspot sample into saturated
and unsaturated regimes for Figure 4, we consider the transition
at log RoC2022, fspot

= −0.677 as determined by Cao and Pinsonneault
(2022) with their power-law model. The authors identified potential
binary or multiple systems, which are neglected for the graphical
representation.

The saturated-unsaturated transition associated with the ultra-
fast-Prot bimodality can also be seen in the chromospheric activity
proxy measured from the emission in the Ca II IRT (log R′IRT).
Fritzewski et al. (2021b), Fritzewski et al. (2021a) investigated the
rotation and magnetic activity of NGC 3532, whose age is estimated
to be around 300 Myr old (Fritzewski et al., 2019). The rotation and
magnetic-activity data of this cluster show saturated and unsaturated

regimes (bottom panels in Figure 4), consistent with the ultra-
fast-Prot bimodality. We adopt Teff, Prot, log R′IRT, and RoF2021 from
Fritzewski et al. (2021a). According to the authors all the stars
with RoF2021 < 0.06 are in the saturated regime, while stars with
RoF2021 > 0.11 have converged to the rotation sequence. Stars in
between would be transitioning from one to the other regime.

Figure 5 compares the activity-Ro diagrams for the stellar
samples in Figure 2 and Figure 4. Each panel shows the Ro values
as computed in the different works, where the respective best fits
are overlaid. Because of the different definitions, the transition from
saturated to unsaturated regime happens at different Ro values.
However, as seen above, the transitions for the different activity
proxies correspond to the same parameter space in terms of the
observable Prot. We prefer to focus on Prot here, but when comparing
Ro from different works, it is recommended to place them in a
uniform scale (e.g., by normalizing to the solar value according to
the respective definition).

Reiners et al. (2022) tracked down the transition from the
saturated to unsaturated regime in the average magnetic field
strength, ⟨B⟩, of M dwarfs (and some K) from CARMENES spectra
(Figure 6). Similarly, to the magnetic activity proxies above, the
transition identified by the authors at their RoR2022 = 1.3 takes place
near the lower edge of the Prot distribution of Kepler M dwarfs. For
the Kepler sample, this edge is not well defined at low Teff due to
small sample sizes. Also, theM-dwarf sample of Reiners et al. (2022)
is near the location where the gap closes for fully convective stars
(at ∼3500 K; Lu et al., 2022). Some of the ⟨B⟩ measurements are an
upper limit. These are mostly located in the more dense region with
small ⟨B⟩, constituting 37% of the stars with Prot longer than the
intermediate-Prot gap. We split the ⟨B⟩ unsaturated regime into two
according to their location in relation to the intermediate-Prot gap
of the Kepler sample. In Figure 6 we also show log⟨B⟩ as a function
of RoR2022, which was computed using the convective turnover
timescale and Prot provided by Reiners et al. (2022).

Gaia also provides photometric data that allow themeasurement
of rotation periods. Focusing on the targets with a relatively large
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FIGURE 3
Comparison of the Kepler and X-ray emission samples, with respect to the intermediate-Prot gap. As in Figure 2, brown hexagons correspond to the
stars in the X-ray saturated regime. Dots (Kepler sample) and circles (X-ray emission unsaturated regime) are color-coded by their distance to the
intermediate-Prot gap (δ logProt). The (A) shows the Prot-Teff diagram. Note that the axes scale differs from the remainder figures, to better show the
relevant parameter space. The (B) shows the X-ray emission as a function of the Rossby number, where the white crosses are the F stars, committed
elsewhere in this figure. The dashed blue and solid red lines show the model found by Wright et al. (2011) and the smoothed data, respectively. The
residuals between the data and the model are presented in the subpanel. The (C,D) show the X-ray emission as a function of Prot for the K and G stars
(left and right, respectively). The solid lines show the contours for the Kepler sample.

number of visits and long temporal coverage, Gaia reports Prot
and the respective photometric activity proxy (AGaia, being the
amplitude of the rotation signal) for several hundreds of thousands
of stars (Lanzafame et al., 2018; Distefano et al., 2023). Indeed, the
Gaia DR3 sample, with the most reliable Prot estimates, includes of
474,026 stars (Distefano et al., 2023). To complement the rigorous
Prot vetting and selection by the authors, which removed evolved
stars, we neglect potential binaries (52,933 stars) according to
the same criteria used for the Kepler sample (Section 2). Figure 7
compares the final Gaia (421,093 stars) and Kepler samples (34,898
single MS stars). Prot and AGaia were taken from Distefano et al.
(2023), while Teff was taken from Andrae et al. (2023). The
parameter spaces probed by Gaia and the Kepler barely overlap as
noted by Lanzafame et al. (2019) and Distefano et al. (2023). Since
Gaia is not very sensitive to long Prot values due to its scanning
pattern, all its M stars are still in the saturated regime (Figure 7).
Gaia G and K stars are spread between both the saturated regime
and the “tip” of the unsaturated regime. For those in the unsaturated
regime, it is possible to recognize the expected trend with Prot
generally decreasing with increasing Teff. Gaia also unveiled the
existence of stars with Prot < 1 day and very low activity (ultra-fast
rotator branch), in contrast to the stars in the saturated regime.
Lanzafame et al. (2019) hypothesize that stars can either evolve from
the saturated regime directly to the unsaturated regime, or to the

ultra-fast rotator branch first and from this to the unsaturated
regime. This region of the parameter space cannot be explored
through the Kepler sample, as its majority has already converged to
the unsaturated regime.

The comparisons above suggest that the lower edge of the Kepler
distribution reflects the transition to the unsaturated regime (see
also Matt et al., 2015).

4 Intermediate-Prot gap: regimes
within the unsaturated regime

The intermediate-Prot gap and the associated Prot bimodality
were first discovered in the Kepler field of view by McQuillan et al.
(2013), McQuillan et al. (2014). One of the original hypotheses was
that the Prot bimodality resulted from two different star formation
episodes and it was a feature of theKepler field (e.g.,McQuillan et al.,
2014;Davenport, 2017;Davenport andCovey, 2018).However, since
then it has also been recovered in the different campaigns of K2
(Reinhold andHekker, 2020; Gordon et al., 2021), which focused on
different fields of view, and in ground-based data (from the Zwicky
Transient Facility survey) covering the full northern hemisphere
(Lu et al., 2022). Therefore, these findings suggest that the Prot
bimodality and intermediate-Prot gap are linked to stellar evolution.
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FIGURE 4
Same as Figure 2, but for the Pleiades and NGC 3532. Their activity proxies are σH (A), fspot (B), and log R′IRT (C), while σMFC is the MFC amplitude (A). The
top right panels show K and G dwarfs together, while the middle and bottom right panels split the spectral types. The orange and brown symbols
correspond to the unsaturated and saturated regimes, respectively. The turquoise shows the MFC-saturated Pleiades members, while the orange
crosses show the transitioning NGC 3532 members.

A second hypothesis was postulated by Montet et al. (2017)
and Reinhold et al. (2019). These works found evidence for the
stars below the intermediate-Prot gap being spot-dominated, while
those above the gap being facula-dominated. This led to the
proposition that this gap would be related to the transition from
the spot-to facula-dominated and it would result from observational
biases due to the canceling between dark spots and bright faculae
(Reinhold et al., 2019). However, other observational evidence and
successful modeling support a third hypothesis.

The hypothesis proposes that this gap has its origin in the core-
envelope coupling (McQuillan et al., 2014; Angus et al., 2020; Spada
and Lanzafame, 2020; Gordon et al., 2021; Lu et al., 2022), which
leads to a stalling in the envelope’s spin-down followed by a period

of quick evolution once the coupling is completed (Gordon et al.,
2021; David et al., 2022). Before and after this transition, stars’
envelopes (and thus their surface rotation periods) would follow
the Skumanich spin-down law. Starting with a decoupled core-
envelope, the surface of the stars below the gap would brake due
to magnetized winds. During the coupling between the fast core
and the slow envelope, the surface spin-down would stall for a
relatively short timescale. Once the coupling is completed, the spin-
down would resume. In this light, fully convective stars would not
face this transition. Indeed, that was what Lu et al. (2022) found in
ground-based photometric data of field stars. The authors retrieve
a rotational gap in the partially convective stars, but not for fully
convective M dwarfs.
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FIGURE 5
Comparison between the activity-Ro relations for samples shown in Figure 2 and Figure 4. The symbols and colors have the same meaning as above,
with the addition of the beige circles which represent stars with δ logProt > 0, splitting the unsaturated regime in two. Ro is represented according to
each work, which is indicated by the subscript. The blue dashed lines show the best fits found in the respective works. In the top right panel, the
opaque symbols correspond to the rotation-harmonic component, while the small transparent symbols and dotted line correspond to the MFC. The
x-scale is kept the same in all panels to better illustrate the differences in Ro.

FIGURE 6
Same as Figure 2, but for the M dwarfs in the CARMENES survey. The magnetic activity is measured through the average magnetic field strength ⟨B⟩.
The Sph-axis scale is slightly different from the other plots. As in Figure 5, the beige symbols represent stars with δ logProt > 0. The downwards triangles
identify the stars for which ⟨B⟩ is an upper limit.

The rotational sequence of the 1 Gyr NGC 6811 open cluster is
consistent with a stalling in the spin-down of K dwarfs (Curtis et al.,
2019), which fits the core-envelope coupling hypothesis. The
stalling can be seen through the overlap between the rotational
sequences of Praesepe (670 Myr; Douglas et al., 2019) and NGC
6811 in the regime of K-dwarfs (Figure 8; see also Curtis et al., 2019;
Bouma et al., 2023), which would not be expected according to
the Skumanich spin-down law. The theoretical models by Spada
and Lanzafame (2020), which account for a mass-dependent core-
envelope coupling timescale, are able to reproduce the observations.

In particular, the models match the stalling of the spin-down
for K dwarfs around 1 Gyr, consistent with the observations of
NGC 6811. The mass-dependent coupling leads to a kink in the
rotation sequences at older ages, i.e., the rotation-period sequence
is no longer monotonic at these ages. As the coupling timescale
increases with decreasing mass (Spada and Lanzafame, 2020),
this kink moves towards lower masses with age. This feature
is seen in the observational data of older clusters (Figure 8;
Meibom et al., 2015; Barnes et al., 2016; Dungee et al., 2022;
Bouma et al., 2023).
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FIGURE 7
Same as in Figure 2, but for the Gaia DR3 rotation sample. The Gaia sample is shown by the density map, where dark colors correspond to high-density
regions. AGaia is the amplitude of the rotation signal in the Gaia photometric data. For the Kepler sample, only the limiting lines and contours are shown.

FIGURE 8
Same as the left panel of Figure 2, but for Praesepe, NGC 6811, NGC
6819, Ruprecht 147, M67, and the Sun. The y-axis scale is slightly
different from the other plots. The age references are (Bahcall et al.,
1995; Jeffries et al., 2013; Barnes et al., 2016; Torres et al., 2020). The
one-sided arrows indicate the approximate location of the first
deviation to the monotonic behavior in the old clusters’ rotation
sequence. The double-sided arrow represents the observed increase
of Prot with Teff, where data is lacking for M67.

Figure 8 compares the rotational sequences of stellar clusters
of different ages with the Kepler sample. The rotation period and
effective temperature for the clusters’ members are gathered from
different studies (Meibom et al., 2015; Barnes et al., 2016; Godoy-
Rivera et al., 2021a; Dungee et al., 2022). Praesepe members are
plotted for reference. Most of Praesepe stars with Teff ≳ 3500 K
have already converged to the rotation sequence, while cooler stars
have not. The rotation sequence of Praesepe and younger clusters
(Figure 4) shows a general monotonic behavior, with Prot decreasing
with Teff. The remainder of the clusters show evidence of a stalling
in the spin-down associated with the intermediate-Prot gap, as
discussed above: NGC 6811 partially overlaps with Praesepe; and
the older clusters show a kink in the rotation sequence at relatively
low temperatures. For the 2.7 Gyr Ruprecht 147, Prot increases with
Teff between ∼4000 and ∼4800 K, while elsewhere it decreases with
Teff. For the 4 Gyr M67, the rotation sequence starts by decreasing
with Teff until ∼3900 K, where the behavior inverts. The Prot values
at ∼3900 K are shorter than those at ∼4600 K, suggesting that Prot
increases within this interval, despite the lack of data.

Finally, we remind that the imprint of the transition associated
with the intermediate-Prot gap can be seen in the relation between
X-ray emission and rotation period (Figures 2, 3). Similarly, it can
also be identified in the relation between chromospheric emission
and rotation (Figure 9, discussed below).

5 Vaughan-Preston gap: discontinuity
in the magnetic activity

Focusing on stars with longer periods than the intermediate-Prot
gap, another gap has been observed, possibly related to a transition
at later stages of stellar evolution. Contrary to the other sections,
this transition is not seen in the rotation period. Instead, this
transition is seen in the chromospheric activity, where there is a
scarceness of stars with intermediary Ca II H & K emission (e.g.,
Vaughan, 1980; Vaughan and Preston, 1980; Henry et al., 1996;
Gomes da Silva et al., 2021). This is known as the Vaughan-Preston
(VP) gap. The origin of the VP gap has been contested since its
finding: is it of astrophysical origin or an observational bias? Indeed,
when investigating larger stellar samples, the gap is not observed
anymore (Boro Saikia et al., 2018; Brown et al., 2022). Nevertheless,
Brown et al. (2022) concluded that their results are consistent with
chromospheric-emission bimodality and associated transitions.

Figure 9 compares the Mount Wilson Observatory (MWO; e.g.,
Wilson, 1968; Wilson, 1978; Baliunas et al., 1995) sample with the
Kepler sample: Prot, RoE2017, log R′HK, and (B-V) were adopted from
Egeland (2017), see also Lehtinen et al. (2021). For theMWOsample
(monitored over two decades), we transform the color index (B-
V) into Teff, taking into account the metallicity when available.
We retrieve metallicity estimates from Valenti and Fischer (2005),
Egeland (2017), and APOGEE (Abdurro’ufAccetta et al., 2022) for
60 stars, with a mean value of −0.07 dex. For the remainder, we
opt to assume solar metallicity. For the (B-V)-Teff conversion, we
use the publicly available routine in PyAstronomy2 (Czesla et al.,

2 https://github.com/sczesla/PyAstronomy
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FIGURE 9
Same as Figure 6, but for the MWO stars. The dotted blue line marks the observed VP gap in the chromospheric emission, log R′HK. In the bottom right
panel, only the G and K Kepler dwarfs are shown in gray, with the respective contours. As in Figure 3, the white crosses denote F stars.

2019) based on Ramírez and Meléndez (2005)3. One of the targets
is ignored because it is outside of the valid parameter space (B-
V>1.51). The stars below and above the intermediate-Prot gap
(Section 4) are shown in orange and beige, respectively: the dash-
dotted line obtained for Kepler was used to split the stars. The VP
gap located at log R′HK = −4.75 is shown by the blue dotted line.
As shown by Santos et al. (2021), Santos et al. (2023), there is no
evidence of the VP gap in the Kepler data, which is several times
larger than the ground-based chromospheric emission samples. On
the one hand, this could mean that indeed there is an observational
bias in the ground-based surveys, and when increasing the sample
size, the gap is no longer found. On the other hand, although Kepler
observations are relatively long-term, their 4-year length is still
limiting especially when dealing with a variable property such as
magnetic activity. Taking solar data, Santos et al. (2023) showed how
the inferences from 4-year observations on magnetic activity and
its variation can change over time, depending on the phase of the
cycle.The Sph variation strongly depends on the average activity level
of the star and on its rotation rate. Consequently, the limiting 4-
year monitoring of stars can lead to a smearing of the data points,
potentially hiding the possible VP gap. In this case, the large sample
size can contribute to a greater concealment.

6 Midlife transition: weakening of the
magnetic braking

In recent years, evidence for a possible weakening of
the magnetic braking was found (e.g., Metcalfe et al., 2016;
van Saders et al., 2016; Hall et al., 2021; Masuda et al., 2022). The
surface rotation of the Kepler MS asteroseismic targets was found
to be too fast in comparison to what was expected given their
asteroseismic age (Angus et al., 2015; van Saders et al., 2016). To

3 https://pyastronomy.readthedocs.io/en/latest/pyaslDoc/aslDoc/aslExt_

1Doc/ramirez2005.html

explain the observations, van Saders et al. (2016) proposed that
the magnetic braking would become less efficient at a critical
Ro, the so-called weakening of the magnetic braking (WMB). In
this case, Prot evolves according to the Skumanich relation until
reaching the critical Ro where its evolution is no longer driven by
magnetic braking.

The origin of this transition is presently uncertain. One theory
suggests that stellar differential rotation weakens around the critical
Ro (Metcalfe et al., 2016), disrupting the stellar dynamo process
(see the review by Brun and Browning, 2017). In numerical
simulations, this can be associated with a shift from solar-like
differential rotation, which has a fast equator and slow poles, to
solid body or even anti-solar rotation (Brun et al., 2022; Noraz et al.,
2022). It has been suggested that this transition could result in a
change in magnetic topology from large-scale to small-scale fields
(Metcalfe and van Saders, 2017; Metcalfe et al., 2022). However, as
the large-scale magnetic field typically governs the efficiency of the
magnetic braking (Finley and Matt, 2018), and spectropolarimetric
observations have shown it does not abruptly disappear at the
critical Ro (See et al., 2019b), it appears more likely that the
overall stellar magnetic field strength weakens (Metcalfe et al.,
2023). This decrease may also reduce the stellar wind mass-loss
rate (Shoda et al., 2023), further weakening the wind braking. In
other theories, the evolution of the latitudinal differential rotation is
sufficient to stall the rotation-evolution of stars around the critical
Ro, due to the active latitudes that couple surface rotation to the
stellar wind (Finley and Brun, 2023; Tokuno et al., 2023).

The magnetic cycles of Sun-like stars are also observed to
become longer (Soon et al., 1993; Brandenburg et al., 1998; Böhm-
Vitense, 2007), with some appearing to lose all cyclic variability
akin to the Maunder minimum observed for the Sun (Baum et al.,
2022). Interestingly, the Sun is near this critical Ro, which raised the
question of whether the Sun could be in transition (Metcalfe et al.,
2016) and whether the Maunder Minimum could be a symptom of
this. Observations point towards the Sun’s magnetic braking being
two to three times smaller than required by the Skumanich relation
(Finley et al., 2018; Kasper et al., 2021). However, the magnetic
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FIGURE 10
Same as Figure 2, but for the Kepler asteroseismic sample and the Sun. Dark blue indicates the seismic periods Pseismic as determined by Hall et al.
(2021), while the light blue indicates the surface periods Prot, which were taken by cross-matching with Santos et al. (2019), Santos et al. (2021), from
where we also took Sph. The top right panel compares the surface (Prot) and seismic (Pseismic) periods for the stars with both estimates (56 stars). The
dashed and dotted lines mark the 1:1, 1:2, and 2:1 lines.

braking timescale for the Sun is around 10–100 Myrs, so this
disagreement could be explained by long-term variation in solar
activity that exceeds the available ∼10,000 years of cosmogenic
radionuclide records (Finley et al., 2019a).

David et al. (2022) and Metcalfe et al. (2023) identified an over-
density of stars close to the upper edge of theKepler Prot distribution.
This might support the WMB as old stars would remain with a
largely unchanged surface rotation, which in turn would result in a
pileup of stars with different activity levels near this edge.This upper
edge is also recovered in van Saders et al. (2019) who simulated the
Kepler field population using angular momentum evolution models
accounting for the WMB. However, we must note that the Kepler
surface rotation sample does not probe very well this region of
the parameter space as it coincides approximately with the current
detection limit, which depends on the magnitude (for reference, at
Kepler magnitude 14, it lies around 100 ppm;Mathur et al., 2023). In
both cases, if the stars follow the Skumanich spin-down law or if they
face aWMB, stars beyond this point in themain sequence areweakly
active and have small amplitude brightness variations due to active
regions. Thus, the Kepler Prot upper edge can be either the result of
one of these effects or the combination of both.

Asteroseismology could come to the rescue as it is easier to
detect acoustic oscillations in weakly active stars (e.g., Chaplin et al.,
2000; Jiménez et al., 2002; Santos et al., 2018; Mathur et al., 2019).
This is also illustrated in Figure 10, as the seismic sample tends
to be close to the upper edge of Prot distribution with small Sph
values. Sadly, the Kepler main-sequence asteroseismic sample with
a high enough signal-to-noise ratio to measure rotational splittings
is relatively small (94 stars of different mass and metallicity).
Nevertheless, Hall et al. (2021) was able to retrieve seismic rotation
periods, Pseismic, for this sample confirming that old stars are rotating
faster than expected. Therefore, this discrepancy cannot be solely
explained by an observational bias in the Prot sample.

Figure 10 compares the Kepler seismic-rotation and surface-
rotation samples. The 94 stars from Hall et al. (2021) are shown
in dark blue, where their rotation period corresponds to that

measured through asteroseismology. Cross-matching this sample
with Santos et al. (2019), Santos et al. (2021), we find 56 stars (light
blue), out of the 94, with measured surface rotation and Sph. In the
right, only the 56 stars are shown (twice, in light and dark blue),
as Sph is not available for the remainder. We opt to show both Prot
and Pseismic to demonstrate that both sets of measurements occupy
the same parameter space. However, we note that there are some
discrepancies between the seismic surface rotation periods (top
right panel of Figure 10; Hall et al., 2021, see also Benomar et al.,
2015; Breton et al., 2023). Some differences are expected, arising
from differential rotation, as the observed acoustic modes are
most sensitive to the subsurface layers (e.g., Basu et al., 2012;
Benomar et al., 2015) and might be sensitive to different latitudes
in comparison to the active-region latitudes. Additionally, there are
uncertainties inherent to both techniques. While seismic detections
are easier for weakly active stars, which tend to be slow rotators,
these are associated with small effects on the acoustic modes,
hampering the estimation of Pseismic. Furthermore, mode linewidths
increase with effective temperature (e.g., Appourchaux et al., 2012;
Appourchaux et al., 2014; Corsaro et al., 2012; Lund et al., 2017),
which poses a challenge because, depending on their values, they
can lead to an overlap between azimuthal components, preventing
constraints on Pseismic. There is also a correlation between rotational
splitting and inclination angle (e.g., Ballot et al., 2006). As our
sensitivity to the active latitudes depends on the inclination angle,
inclination has an impact on the amplitude of the light curve
modulation due to active regions. Nevertheless, the impact on
surface rotation estimate should not be significant. Surface rotation
measurements can also be biased toward the half of the trueProt (e.g.,
McQuillan et al., 2013; McQuillan et al., 2014), but this corresponds
to a small percentage of the targets and efforts were made to
avoid such misestimations (Santos et al., 2019; Santos et al., 2021;
Breton et al., 2021). Finally, photometric pollution by nearby stars
can also influence the Prot estimate.

While, as described above, there is evidence supporting the
WMB, we emphasize that this regime is at the Kepler detection
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limit of the surface rotation and that the seismic sample is relatively
small. Factors such as the spectral type (many are F stars, with
thin convective layers), differential rotation, active latitudes, and
chemical composition (see also Claytor et al., 2020) can impact
rotation and magnetic-activity evolution. Based on ground-based
spectroscopic data of solar twins, Lorenzo-Oliveira et al. (2019)
concluded that their results favor a gradual rotation evolution, rather
than a broken spin-down law. Future observations are needed to
shed light on the evolution of these properties beyond the middle
of the star’s lifetime.

7 Conclusions and perspectives

Undoubtedly pivotal for exoplanetary and stellar physics, with
the end of its second life–the K2 mission–, Kepler concluded its
operations in the fall of 2018. Despite this, to this day, Kepler data
continue to be the focal point of numerous studies, consistently
contributing to significant discoveries in the field. Considering
stellar rotation and magnetic activity, CoRoT (Baglin et al., 2006)
had already provided an important sneak-peak into the potential of
space-based photometry (e.g., García et al., 2010; Affer et al., 2012).
But Kepler allowed us to investigate for the first time the rotation
and magnetic activity of tens of thousands of solar-like stars. In
particular, despite its observational limitations, Kepler extended the
number of old weakly active stars, like the Sun, with measured
rotation and magnetic activity.

In this review, concerning Kepler, we focused mostly on
the information from the rotation modulation and briefly on
asteroseismic inferences. However, it is important to acknowledge
that flares can also provide information on the magnetic activity
of stars and the environment around them (e.g., Davenport, 2016;
Notsu et al., 2019; Yang and Liu, 2019). We place the Kepler sample
in the context of established or potential transitions in the evolution
of rotation and magnetic activity of MS solar-like stars. Kepler
revealed two unexpected transitions: the intermediate-Prot gap and
the WMB. The former is thought to be a transition in the stellar
evolution related to the core-envelope coupling, while the physical
mechanisms driving the latter are still under debate. One of themain
reasons for this debate arises fromobservational limitations, because
of the small number of stars in this regime with measured rotation
periods, as these stars are weakly active and below the photometric
threshold detection.

Stars are born with strong magnetic activity and rapid rotation
rates. As they spin down due to magnetized winds, they eventually
converge onto a narrow rotation sequence, transitioning from a
saturated regime to an unsaturated regime in magnetic activity.
Kepler however did not probe the saturated regime well, as most
of its stars are relatively old. The transition between saturated and
unsaturated regimes coincides roughly with the lower edge of the
Kepler Prot distribution (Prot ∼ 8 days at Teff = 5000 K).

The unsaturated regime itself splits into different regimes
separated by the intermediate-Prot gap (Prot ∼ 12 days at
Teff = 5000 K). Currently, the most plausible hypothesis for this
observed transition is the core-envelope coupling. This coupling
would momentarily stall the surface spin-down due to the angular
momentum transfer between the fast-rotating core and the slow-
rotating envelope. This transition can also be noticed in the

X-ray emission sample in Wright et al. (2011), which was not
established before.

In ground-based data, evidence of a possible gap or transition at
intermediate magnetic activity has also been found, corresponding
to the Vaughan-Preston (VP) gap (Prot ∼ 30 days at Teff = 5000 K).
Although there is no evidence of the VP gap in Kepler data, it
cannot be discarded. On one hand, Kepler could support the case for
observational bias and the nonexistence of such a gap. On the other
hand, the 4-year timespan ofKepler observationsmay be insufficient
to fully cover magnetic cycles, especially of solar analogs, leading to
a cumulative dispersion that may be enough to conceal the VP gap.
This shows the need for longer-term observations to reach a more
complete knowledge of the magnetic activity.

The Kepler rotation distribution is characterized by a well-
defined upper edge (Prot ∼ 40 days at Teff = 5000 K), with the Sun
lying near this edge. In recent years, signs of a change in stellar
evolution around this edge have been found in seismic observations
of solar-like stars, leading to the postulation of the weakening of
magnetic braking (WMB). However, the WMB is still under debate,
due to observational limitations arising from the hard-to-detect
small-amplitude signals. In addition, instrumental artifacts hamper
the recovery of rotation periods for slow rotators (e.g., Breton et al.,
2021; Santos et al., 2021). If these artifacts can be better mitigated, it
will be possible to extend the number of detections in this regime.

This review also shows that the observed behavior of the
different activity proxies is similar. In spite of being sensitive to
different layers of the stellar atmosphere and different magnetic
features, the activity proxies still relate to each other. As a
consequence, the well-established transitions in the stellar evolution
are found in all. This also reinforces the validity of photometry to
measure and investigate magnetic activity.

Gaia has prompted an extraordinary expansion of the number
of stars with known rotation and magnetic activity proxies, allowing
these properties to be measured for several hundreds of thousands
of stars. However, the parameter spaces of Kepler and Gaia samples
do not overlap significantly. Indeed they are complementary: with
Gaia it is possible to investigate young ultra-fast rotators, which
were mostly absent from Kepler data. Gaia rotation sample yielded
the discovery of ultra-fast rotators with unexpected weak magnetic
activity. Furthermore, as can be seen above, it is also possible that
some of the Gaia stars are crossing the intermediate-Prot gap. Thus,
in spite of the small sample size in this region of the parameter space,
Gaia might also provide insights into this transition.

Currently, NASA’s TESS (Transiting Exoplanet Survey Satellite;
Ricker et al., 2014) is mostly sensitive to the fast strongly active
rotators. Nevertheless, future TESS extended missions can expand
the reach of this mission, but the photometric precision still will not
allow the detection of small amplitude signals.

Future ESA’s PLATO (PLAnetary Transits and Oscillations of
stars; Rauer et al., 2014) mission, planned to be launched in 2026,
will observe stars with high precision and continuously for at least
2 years. PLATO is expected to greatly increase the number of MS
solar-like stars and subgiants with seismic detections. The relatively
long-term observations will also allow us to measure rotation and
magnetic activity both from rotational modulation due to active
regions and from asteroseismology. However, as discussed above,
one can argue that observations longer than 2 years are needed to
provide a better characterization of magnetic activity. Still, thanks
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to its high precision, PLATO will be crucial in expanding the
observational limit towards more weakly active slower rotators,
moving the upper edge of the observed Prot distribution towards
longer Prot, which is currently a major challenge in the field. This
will providemore information on the rotation andmagnetic-activity
evolution beyond the age of the Sun, particularly in the regime of
the proposed WMB. PLATO is also expected to increase the overlap
between seismic and surface rotation samples, both by increasing
seismic detections with high SNR and by pushing the detection
limit of surface rotation. This overlap will provide complementary
information about the stars, particularly accurate ages and different
measures of magnetic activity and rotation. This will greatly
improve our understanding of stellar evolution and also differential
rotation. Moreover, PLATO will observe bright stars, which is a
clear advantage in relation to Kepler, meaning that complementary
ground-based spectroscopic observations will also be possible.
This will allow having independent constraints on rotation
and magnetic activity, as well as better characterization of the
atmospheric parameters of the stars, namely, effective temperature
and metallicity. Particularly, better metallicity measurements
will help to improve our knowledge of the impact of chemical
composition on the magnetic-activity and rotation evolution.

Having observations in different wavelengths will also bring
complementary information on themagnetic activity in the different
layers of the stellar atmosphere. Furthermore, while dark spots
dominate in the passband of the photometric missions mentioned
above at the rotation timescale (Shapiro et al., 2016; Li and Basri,
2024), in other wavelengths the bright facula or plage become the
most prevalent. As these bright features live longer than spots, they
have the potential to producemore stable signals.Therefore, moving
away from the optical can increase the rotation yields for stars like
the Sun and older (Li andBasri, 2024). Again, thiswill be particularly
important to investigate the WMB and understand the evolution
beyond the solar age. Still, long-term observations are required to
properly characterize magnetic activity.

PLATO will also be important to investigate the existence of the
VP gap, however, the smearing effect described above can be worse
in the case of the 2-year observations (in comparison to theKepler 4-
year observations). PLATO will also provide more observations for
stars around the intermediate-Prot gap and perhaps provide better
age constraints for these thanwhat we had before.This can help us to
better depict and understand the transition associated with this gap.

One of the most relevant applications of rotation and magnetic
activity is age-dating stars. Asteroseismology provides the most
precise way to estimate stellar ages, but it is available for a
small number of stars. For example, magnetic activity is known
to suppress the already small amplitudes of acoustic modes,
making seismic detections not possible for relatively high activity
levels. In contrast, the detection and characterization of rotation
modulation thanks to active regions is easier for such active stars.
In principle, this would allow us to provide stellar ages for a
large number of stars through gyrochronology, magnetochronology,
and/or gyromagnetochronology. However, one needs to better
understand the evolution of rotation and magnetic activity.
Therefore, unless we understand (or at the very least calibrate)
all of these transitions discussed above, the power of age-dating
using rotation and magnetic-activity proxies is heavily endangered
(e.g., Silva-Beyer et al., 2023). Furthermore, a better understanding

of stellar magnetism is also important for exoplanetary physics.
Magnetic activity and rotation can disguise or evenmimic planetary
signals, hampering the detection and characterization of planets
(e.g., Queloz et al., 2001; Oshagh et al., 2013; Meunier et al., 2020).
Also, these stellar properties have a significant impact on the
habitability of the planets, leading for example, to the loss of
their atmospheres and shaping the orbital architecture of the
systems (e.g., Kaltenegger, 2017; Strugarek, 2018; Owen, 2019). This
also reinforces the need for reliable stellar ages, including those
determined from rotation and/ormagnetic activity, as they will shed
light on the evolution of the planetary systems and on the evolution
of exoplanet atmospheres.
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