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Extended metric validation of a
semi-physical Space Weather
Modeling Framework
conductance model on
field-aligned current estimations
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Sarah K. Vines2 and Robin J. Barnes2

1Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI,
United States, 2Johns Hopkins Applied Physics Laboratory, Laurel, MD, United States

In this study, a detailed metric survey on the “Galaxy 15” (April 2010)
space weather event is conducted to validate MAGNetosphere–Ionosphere–
Thermosphere (MAGNIT), a semi-physical auroral ionospheric conductance
model characterizing four precipitation sources, against AMPEREmeasurements
via field-aligned current (FAC) characteristics. As part of this study, the
comparative performance of three ionosphere electrodynamic specifications
involving auroral conductance models, MAGNIT, Ridley Legacy Model (RLM)
(empirical), and Conductance Model for Extreme Events (CMEE) (empirical),
within the Space Weather Modeling Framework (SWMF), is demonstrated.
Overall, MAGNIT exhibits marginally improved predictions; root mean square
error values in upward and downward FACs of MAGNIT predictions compared
to AMPERE data are smaller than those of CMEE and Ridley Ionosphere Model
(RIM) by ∼12.7% and ∼6.24% before the storm, ∼4.52% and ∼2.13% better during
the main phase, ∼1.98% and ∼1.27% worse during the second minimum, and
better by ∼1.84% and ∼1.49% by the beginning of the recovery, respectively.
In all three model configurations, the dusk and night magnetic local time
(MLT) sectors over-predict throughout the storm, while the day and dawn
MLT sectors under-predict in response to interplanetary magnetic field (IMF)
conditions. In addition to accuracy and bias, similar results and conclusions
are drawn from additional metrics, including in the categories of correlation,
precision, extremes, and skill, and recommendations are made for the best-
performing model configuration in each metric category. Visual data–model
comparisons conducted by studying the FAC location and latitude/MLT spread
throughout various phases of the storm suggest that the spatial extent of
the FACs is captured relatively well in the night-side auroral oval, unlike in
the day-side oval. The spread in latitude of the FACs matches that in the
previous literature on other model performances. This information on auroral
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precipitation sources and their weight on FACs, along with metrics from
model–data comparisons, can be used to modify MAGNIT settings to optimize
SWMF model performance.

KEYWORDS

model validation, Space Weather Modeling Framework, space weather, auroral
conductance, field-aligned currents, ionosphere electrodynamics, aurora, space
weather prediction

1 Introduction

Field-aligned currents (FACs) play a major role in
ionosphere–magnetosphere coupling as a significant process through
which energy andmomentumare exchangedbetween the two systems
(Kamide, 1982; Saflekos et al., 1982; Lysak, 1990). Today, the space
physics community’s understanding of FACs includes the mapping
extent and locations within the magnetosphere and ionosphere and
the energy content relationship from solar wind driving. Major
components of FACs are split into regions 0, 1, and 2 and related
to one another through the Hall and Pedersen currents (Iijima and
Potemra, 1976). Region 1 and 2 FACs tie the ionosphere with the
magnetopause or plasma sheet and partial ring current, respectively,
with the high-latitude region 1 FACs flowing inward on the dawn side
andoutwardonthedusksideandtheregion2FACshavinganopposite
flow pattern at slightly lower latitudes. In response to the imposed
electric fields in the ionosphere, the Hall and Pedersen currents are
generated (Le et al., 2010). With northward interplanetary magnetic
field (IMF) driving, region 0 or day-side cusp currents appear just
pole-ward of the region 1 FACs (Watanabe et al., 1998).

FACs are critical to understanding numerous applications,
including predictions of aurora generation (Knight, 1973) and
(geomagnetically induced) current intensities. Models are diverse,
some directly1 calculating FACs (for example, transient features
(Gombosi and Nagy, 1989), while others use satellite data
to recreate FACs (for example, Iridium [Anderson et al., 2000],
Dynamics Explorer 2 [Weimer, 2001], Swarm [Ritter et al., 2013], and
combinationsofvarious satellites and/orground-basedmeasurements
[He et al., 2012; Edwards et al., 2019]). In the general prediction of
space weather, FACs are calculated as the curl of the magnetic field
and serve as precursors to calculating other related quantities in
ionosphere–magnetosphere coupling, such as auroral precipitation
(examples of IM-coupled models: LFM [Zhang et al., 2000], Open
GGCM[Raeder et al.,2008],andSpaceWeatherModelingFramework
(SWMF) [Toth et al., 2005]). This makes FACs an extremely useful
quantity for validating the flexible performance of models and
modeling frameworks that, in practical applications, must predict
values different from their design purposes (Pulkkinen et al., 2013)2.

Space weather model validation efforts often focus on basic
statistical comparisons against in situ point observations. Many of

1 By directly, we mean that the quantity is a direct output not derived from

combinations of other direct outputs.

2 For example, the Michigan Geospace model was originally selected for

operational use based on dB/dt performance but is used in the present

day for dB/dt and Kp forecasts.

these studies constrain their model validation to the performance
of a limited metric, typically measuring its ability to replicate and
forecast. Some examples include the following:

• Glocer et al. (2016) used the Heidke Skill Score (HSS) and a
newly defined distribution metric to evaluate NOAA/Space
Weather PredictionCenter (SWPC)modeling of the auroral K-
index.

• Lane et al. (2014) used prediction efficiency (PE) to describe
the OVATION Prime model, the Hardy 1991 Kp-based model,
and a coupled SWMF ring-current model against the Defense
Meteorological Satellite Program (DMSP) energy flux.

• Mukhopadhyay et al. (2022b) used median absolute
percentage error (MAPE) and exclusion parameter (EP)
to validate the MAGNetosphere-Ionosphere-Thermosphere
(MAGNIT) model for the first time, against the SWMF-
Ridley Legacy model (RLM), SWMF-Conductance Model
for Extreme Events (CMEE), and DMSP.

This, however, does not fully reveal information that could lead
to improvements in model performance or understanding of the
underlying physics (Liemohn et al., 2021). For example, the reveal
of a bias helps provide context formodel usage—whether themodel is
over-predicting or under-predicting in various scenarios is useful for
theuser.Acombinationof studying standarddeviations tounderstand
thespreadofvaluesandextremesdescribestheentiretyofadistribution
and can be targeted when modeling extreme events and values.
Investigating model performance with various errors expands the
storyline to allow for a variety of use cases (Liemohn et al., 2021).

This work adds to the validation effort of the MAGNIT model
coupled within the SWMF, where MAGNIT is selected as the
conductance solver within the Ridley Ionosphere Model (RIM) to
constitute the ionosphere electrodynamics (IE) component. Unlike
previous empirical models of ionospheric conductance within RIM
based on ionosphere electrodynamic heatmaps, the new, semi-
physical model is capable of identifying and calculating four auroral
precipitation sources—electron and ion diffuse, monoenergetic,
and broadband. Additional details are given in the Methodology
section (Mukhopadhyay, 2021; Mukhopadhyay et al., 2022b). This
validation effort covered over 11 metrics among 5 categories3 to

3 This paper reviews seven metrics listed in Table 1 and does not

include four additional metrics completed in the validation effort: (in

accuracy) symmetric mean absolute percentage error and median

symmetric accuracy, (in bias) symmetric signed percentage bias, and

(in skill) prediction efficiency. Detailed reasoning is given in Section 2.3

“Statistical methods.”
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suggest a full understanding of how the model can predict FACs,
a quantity independent of model development.

2 Methodology

For the statistical comparison, the performance of three SWMF
model configurations with differing IE components over the 5–7
April 2010 “Galaxy 15” event was investigated against AMPERE
data. This section provides details on the event (Subsection 2.1),
models (Subsection 2.2), and statistical methods (Subsection 2.3).

2.1 Event Information

The Galaxy 15 storm characteristics are shown in Figure 1. The
CME-shock-driven space weather event is named after the satellite
it damaged and has been extensively studied for having an extreme
expansion phase and resulting dipolarization (Loto’aniu et al., 2015;
Nishimura et al., 2020; Sergeev et al., 2011). For the purposes of
this study, the event is split into four different epochs—“before
the storm” (Epoch 0: April 5, 00 UT–8:24 UT) prior to sudden
commencement, “during the main phase” (Epoch 1: 8:24–10:48
UT), “during the second minimum” (Epoch 2: 10:48–17:36 UT),
and “during recovery” (Epoch 3: April 5, 17:36 UT–April 6, 00:00
UT; this is not the full extent of the recovery period). Epoch
1 is characterized by negative IMF Bz and positive IMF By,
containing the first peak in activity. Epoch 2 is characterized by
positive IMF Bz and negative IMF By, corresponding to a second
peak in activity. The different epochs are labeled in Figure 1.
The epochs were chosen based on similarities in the Galaxy 15
storm characteristics (see Section 3, Results; Table 2). As a highly
active event, the Galaxy 15 storm given in Figure 1 illustrates the
progression of ionospheric conductance as the storm interacts with
the magnetosphere. At sudden commencement in Epoch 1, the day-
side magnetosphere experiences a strong compression evident with
the positive Sym-H. While conductance in the day-side ionosphere
typically arises from solar EUV flux, the strong compression
causes the Chapman–Ferraro current to come close to the planet,
temporarily increasing precipitation from the magnetosphere into
the cusp on the day-side. As the storm progresses, reconnection
and activity in the tail propagate planet-ward, leading to increased
auroral precipitation, conductance, and FAC activity on the night-
side.

The Galaxy 15 storm was recorded by a number of spacecraft
and ground observations, including data from the AMPERE dataset
collected from the Iridium satellite constellation4 (Waters et al.,
2001; Anderson et al., 2021; 2002; Waters et al., 2020). The 66 polar
inclination spacecraft spread along 6 evenly distributed meridian
circles across the globe gathered magnetic field perturbations over
24 h (April 5, 00:00 UT–April 6, 00:00 UT) in LEO, at an altitude of
∼780 km. In this study, the calculated radial current, also interpreted
as FAC, was used as the comparator—the quantity is significant in
research value and was not a quantity used to train any of the SWMF
model configurations. In AMPERE, up and down FACs are derived
by identifying and categorizing magnetic field variations measured
by the magnetometers of the Iridium satellites and are then used in
combination to recreate a map (Anderson et al., 2000; Waters et al.,

2001). In this analysis, observation–model data comparisons are
made only along the six orbit satellite tracks every 2 min to match
the temporal resolution of AMPERE values and decrease the sources
of uncertainty. As with any satellite measurement, instrument
and measurement resolution and uncertainties limit the capability
of the observation to be a perfect “ground truth.” Because the
“observation” radial current in AMPERE is a derived quantity from
measured electromagnetic parameters, in this paper, we refer to
them interchangeably as “observationally derived estimates.”

The FAC patterns are studied to probe questions about the
spatial performance of the various SWMF model configurations
within the auroral oval region. While the entire auroral oval is
viewed as a whole, data points were also categorized into four
spatial regions defined by 6-h increments as “dawn” (03–09 MLT),
“day” (09–15MLT), “dusk” (15–21MLT), and “night” (21–03MLT).
Investigating various SWMF configuration performances grouped
by time (storm progression) and space (magnetic local times)
provides the opportunity to understand the overall and localized
uncertainty features in FAC predictions.

2.2 Model configuration

The geospace version of the SWMF4 currently used at NOAA-
SWPC for real-time space weather prediction (Pulkkinen et al., 2021)
comprises amultitude of physics domains distributedusingnumerical
models (Tóth et al., 2012) that describe plasma interactions across
the global magnetosphere (GM), inner magnetosphere (IM), and
(IE) regions. An example of a publicly available configuration5

is the BATS-R-US global magneto-hydrodynamics (MHD) model
(Powell et al., 1999) (GM), the Rice Convection Model (RCM) ring
current (Toffoletto et al., 2003; Zeeuw et al., 2004) model (IM), and
the RIM Poisson solver (Ridley et al., 2004) (IE). This study uses
data originally produced by Mukhopadhyay et al. (2022b), which
include details on the limitations of different domains. The auroral
conductance specified by default in RIM is referred to in this paper as
the RLM (Ridley et al., 2004). The two other model configurations
switch auroral conductance estimations from RLM to CMEE and
MAGNIT, as detailed below. Figure 2 visualizes the relationship
between the modules of the SWMF, specifically GM (BATS-R-US),
IM (RCM), and IE (RIM with the RLM or CMEE or MAGNIT),
and how they are coupled to one another within the framework. The
connecting processes shown in Figure 2 are described in more detail
in the following paragraphs.

Both RLM and CMEE (Mukhopadhyay et al., 2020) are empirical
models based on data from assimilative mapping of ionospheric
electrodynamics (AMIE) (Kihn and Ridley, 2005); RLM is trained
on the relatively quiet month of January 1997, while CMEE is trained
on the entire highly active year of 2003 in an effort to include extreme
events. The conductance values are related to FACs via a weighted
inverse exponential relationship (see Mukhopadhyay et al., 2022b),
which are used in the IE model and, consequently, in the GMmodel’s
MHD quantities, feeding back as boundary conditions between the

4 https://clasp.engin.umich.edu/research/theory-computational-

methods/space-weather-modeling-framework/

5 https://github.com/MSTEM-QUDA/SWMF
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FIGURE 1
Galaxy 15 storm event characteristics are shown split into four different epochs, as explained in Section 2.1. The top subplot describes ACE spacecraft
magnetic field data of the storm, obtained from Anderson et al. (2017). The bottom three subplots show observed AMPERE data in black and output
predicted from SWMF model configurations described in Section 2.2 for the Sym-H index and integrated upward and downward field-aligned currents
(iFACs) (Mukhopadhyay et al., 2022b). Note that the three model configurations (MAGNIT, CMEE, and RLM) generate Sym-H and downward and
upward FACs in strong agreement with AMPERE. Figures have been obtained from Anderson et al. (2017) and Mukhopadhyay et al. (2022b) and
annotated by the authors.

domains. MAGNIT is a semi-physical model that calculates electron
and ion diffuse, monoenergetic, and broadband auroral precipitation
based on MHD quantities near the inner boundary. The auroral
precipitation sources are combined with a root-sum-square formula
and used to calculate conductance, which then feeds into the IE
and GM model MHD quantities. Thus, while SWMF-RLM and
SWMF-CMEEonlyuseMHD-producedFACcharacteristics, SWMF-
MAGNITusesMHDelectric andmagnetic field values, densities, and
pressures inaddition toFACs.Thisapplies toSWMF-MAGNITdiffuse
and broadband auroral precipitation, but for discrete monoenergetic

auroral precipitation, the Knight–Fridman–Lemaire relationship is
used to estimate values. The auroral precipitation and conductance
in the three different SWMFmodel configurations are supplemented
with EUV flux in the larger RIM.

The Galaxy 15 event was run with no preconditioning.
BATS-R-US was used as a semi-relativistic single-fluid MHD
solver (Boris, 1970) over the domain X +32RE to −224RE
and Y and Z −128RE to +128RE, with the Hi-SWPC grid
resolution (Haiducek et al., 2017; Mukhopadhyay et al., 2020).
Flux-tube volume information was passed to RCM, which solved
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TABLE 1 Summary of metric categories utilized in this study, inspired by recommendations made in Liemohn et al. (2021).

Metric type Equation Description

Accuracy Can the model exactly replicate the data?

RMSE √ 1
N−d
∑Ni=1(Mi −Oi)

2 The root mean square erroris the error between the model and observed data squared weighted by the number of data
points and degrees of freedom. With perfect replication, RMSE is 0.MSE, ormean square error, andMAE, ormean
absolute error, are similar.
RMSE—not normalized [units of current per area: μA/m2]

Association How well does the model follow the up/down motion of the observed data?

R R = ∑(Oi−O)(Mi−M)

√∑(Oi−O)
2(Mi−M)

2
The Pearson correlation coefficient Rdescribes the linear relationship between the observed and modeled data and is
calculated by a sum of differences between the mean and individual data points by its absolute version, normalized to
extend between −1 and 1.
R—normalized [unitless]

Bias Is the model systematically different from the observed data?

UMean X = 1
N
∑Ni=1xi

ME =M−O
Themean Uis the average of a set of data points. The mean of the observed and modeled data can be compared against
one another viamean error, which, when ideal, is 0.
Mean, ME—not normalized [units of current per area: μA/m2]

Extremes What is the relationship between the individual data points, mean, and spread of the model and observed data?

γSkew γ = ∑
N
i=1(xi−xi)

3

(N−d)σ3x
The skew γis the sum of differences between the mean and individual data points taken to the third power and weighted
by the number of data points, degrees of freedom, and σto the third power. The skew of the modeled and observed
datasets can be compared via a skew ratio, or skew difference, which, with perfect replication, is 1 or 0, respectively.
Skew, skew difference, and skew ratio—normalized [unitless]

κKurtosis κ = ∑
N
i=1(xi−xi)

4

(N−d)σ4x
The kurtosis κis the sum of differences between the mean and individual data points taken to the fourth power and
weighted by the number of data points, degrees of freedom, and σto the fourth power. For an ideal Gaussian
distribution, kurtosis is 3. The kurtosis of the modeled and observed datasets can be compared via a kurtosis ratio, or
kurtosis difference
Kurtosis, kurtosis difference, and kurtosis ratio—normalized [unitless]

Precision How similar are the data and model cluster after systematic differences are removed?

YI YI = max(M)−min(M)
max(O)−min(O)

Themodeling yield YIis the ratio between the difference between the maximum and minimum modeled and observed
data points. Perfect replication is 1.
YI—normalized [unitless]

σStandard deviation σ = √ ∑
N
i=1(xi−x)

2

N
The standard deviation σdescribes the spread of the data points.
The spread of the modeled and observed datasets can be compared via a σ ratioor σ difference
σ σdifference—not normalized [units of current per area: μA/m2]
σratio—normalized [unitless]

Skill Is the model able to predict variations in fluxes around the mean?

PE PE = 1− ∑
N
i=1(Mi−Oi)2

∑Ni=1(Oi−O)
The prediction efficiencydescribes the ability of a model to predict the variation in fluxes around the mean. It is one
minus the ratio between the model observed error and observed data point and observed mean difference. Perfect
prediction produces 1.
PE—normalized [unitless]

for bounce-average particle distributions and returned MHD
pressure and density values to BATS-R-US. Although RCM is
capable of passing particle energy information to IE models,
that option was not used (Mukhopadhyay et al., 2022a). In
addition to MHD pressure and density values, BATS-R-US also
mapped the FACs from 3.5RE, near its 2.5RE inner boundary
to the IE models at an ionospheric altitude of 110 km. The IE
with a grid resolution consisting of 91× 181 cells, with a 2°
cadence in both latitude and longitude, provided the ionospheric
potential to be used as inner-boundary conditions for BATS-R-
US and RCM. The various models were coupled to one another

at 5- or 10-s cadences, and FAC values were recorded at a
1-min temporal resolution.

2.3 Statistical methods

In addition to visual and numerical representations of FAC
patterns to describe the error of the three model configurations
in replicating AMPERE data, error characteristics were extended
to include several numerical metrics. In this study, metrics
describing accuracy, bias, precision, association, and extremes are
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TABLE 2 Peak maximum and minimummetric values for each epoch are recorded for RMSE, mean, and standard deviation metrics. Values have been
averaged over 10 min, and the time recorded is at the center. Note similarities in each epoch across different SWMF configurations and metrics,
suggesting that the limiting bounds of each epoch are acceptable. For RMSE, the best and worst scores within each epoch have been colored green and
red, respectively.

Epoch 0 Epoch 1 Epoch 2 Epoch 3

RMSE
(average maximum)

MAGNIT 0.339
2010-04-05 T 05:28:00

0.780
2010-04-05 T 09:04:00

0.805
2010-04-05 T 13:48:00

0.580
2010-04-05 T 17:38:00

CMEE 0.389
2010-04-05 T 05:38:00

0.817
2010-04-05 T 09:04:00

0.789
2010-04-05 T 13:24:00

0.591
2010-04-05 T 17:52:00

RLM 0.361
2010-04-05 T 05:32:00

0.797
2010-04-05 T 09:04:00

0.795
2010-04-05 T 14:00:00

0.588
2010-04-05 T 17:38:00

Mean
(average maximum)

MAGNIT 0.0132
2010-04-05 T 02:04:00

0.0361
2010-04-05 T 08:50:00

−0.0450
2010-04-05 T 12:40:00

0.0056
2010-04-05 T 22:36:00

CMEE 0.0128
2010-04-05 T 02:12:00

0.0474
2010-04-05 T 08:54:00

−0.0822
2010-04-05 T 12:40:00

0.0035
2010-04-05 T 22:46:00

RLM 0.0119
2010-04-05 T 05:12:00

0.0440
2010-04-05 T 08:52:00

−0.0569
2010-04-05 T 12:40:00

0.0068
2010-04-05 T 23:20:00

Standard deviation
(average maximum)

MAGNIT 0.262
2010-04-05 T 05:28:00

0.689
2010-04-05 T 09:18:00

0.633
2010-04-05 T 13:40:00

0.460
2010-04-05 T 17:38:00

CMEE 0.348
2010-04-05 T 05:38:00

0.652
2010-04-05 T 09:02:00

0.593
2010-04-05 T 13:22:00

0.449
2010-04-05 T 17:58:00

RLM 0.297
2010-04-05 T 05:32:00

0.642
2010-04-05 T 09:20:00

0.611
2010-04-05 T 14:24:00

0.483
2010-04-05 T 17:38:00

RMSE
(average minimum)

MAGNIT 0.135
2010-04-05 T 03:52:00

0.160
2010-04-05 T 07:38:00

0.467
2010-04-05 T 12:38:00

0.378
2010-04-05 T 23:44:00

CMEE 0.149
2010-04-05 T 03:52:00

0.163
2010-04-05 T 07:44:00

0.504
2010-04-05 T 12:38:00

0.374
2010-04-05 T 22:14:00

RLM 0.144
2010-04-05 T 03:50:00

0.163
2010-04-05 T 07:38:00

0.478
2010-04-05 T 12:38:00

0.371
2010-04-05 T 20:00:00

Mean
(average minimum)

MAGNIT −0.0153
2010-04-05 T 03:26:00

−0.0527
2010-04-05 T 10:32:00

−0.0981
2010-04-05 T 12:30:00

−0.0943
2010-04-05 T 17:38:00

CMEE −0.0200
2010-04-05 T 03:36:00

−0.0729
2010-04-05 T 10:34:00

−0.1352
2010-04-05 T 12:30:00

−0.1039
2010-04-05 T 18:46:00

RLM −0.0199
2010-04-05 T 03:34:00

−0.0810
2010-04-05 T 10:48:00

−0.1062
2010-04-05 T 12:30:00

−0.0738
2010-04-05 T 18:44:00

Standard deviation
(average minimum)

MAGNIT 0.092
2010-04-05 T 03:52:00

0.110
2010-04-05 T 07:36:00

0.368
2010-04-05 T 12:36:00

0.281
2010-04-05 T 21:36:00

CMEE 0.114
2010-04-05 T 03:52:00

0.120
2010-04-05 T 07:34:00

0.390
2010-04-05 T 12:40:00

0.280
2010-04-05 T 23:02:00

RLM 0.108
2010-04-05 T 03:46:00

0.110
2010-04-05 T 07:32:00

0.349
2010-04-05 T 12:42:00

0.271
2010-04-05 T 21:12:00

explored (Liemohn et al., 2021). Descriptions and examples of
metrics categories addressed in this analysis are outlined in Table 1,
including their units or lack thereof. To consolidate findings,
some metrics are excluded due to their similarities to already
discussed quantities (for example, root mean square error [RMSE]
in lieu of the mean square error and mean absolute error), while

others are excluded due to their tendency to approach infinity
and therefore are not useful (for example, symmetric signed
percentage bias [SSPB] includes weighting by observed data points;
in the AMPERE data, near-0 FAC values are included that cause
some SSPB points with low measured FACs to have excessively
large values).
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FIGURE 2
The coupling relationship between various geospace regimes (GM, IM, and IE) in the SWMF is shown. Each regime provides boundary conditions for
the others. For ionospheric conductance specified by empirical models SWMF-CMEE and SWMF-RLM, auroral precipitation sources are grouped as a
singular quantity, distinguished individually only in the semi-physical model SWMF-MAGNIT.

The traditional standard error on the conductance and radial
current representing FACs produced by the model and reported
in AMPERE is an unanswered task across the field and remains
unsolved here. Similar to other in situ and remote observations,
the standard radial current data available for the AMPERE
repository6 do not provide uncertainties in measurement positions
or calculated data products. As data increasingly become open
source, uncertainties related to measurement positions relative
to various coordinate systems, instrument uncertainties, and the
effects of interpolations and noise filtering should be propagated
to establish a central error margin. Like other dynamic space
environment models, predicting conductance and FACs in the
models available in the SWMF is a complex, multi-step process
with uncertainties at each stage. For MAGNIT, the first step
involves deriving estimated energy flux and average energies
from MHD quantities. Although this is a challenge due to the
assumption of a highly kinetic process within a hydrodynamic
model that lacks particle representation, it is well-documented
by Mukhopadhyay et al. (2022b) with comparisons to other
models. For RLM and CMEE, the initial error originates from
AMIE’s use of ground-based magnetometer data and empirical
relations to derive conductance and FACs; the uncertainties
associated with conductance in these models, compared to
AMIE, are detailed by Mukhopadhyay et al. (2020) for specific
locations, although a global-scale analysis remains unaddressed.
The second layer of uncertainty arises in MAGNIT, CMEE,
and RLM from computing conductance by fluxes or vice versa.

6 https://ampere.jhuapl.edu

The uncertainties related to the Robinson relationship are well
known, and despite its issues, is used widely (Liemohn, 2020).
The third and most critical level of uncertainty is in computing
ionospheric electrodynamics from conductance values, which is
documented in part in numerous studies (Liemohn et al., 2006;
Pulkkinen et al., 2013; Mukhopadhyay, 2021). This paper further
explores metrics related to these ionospheric electrodynamic
parameters.

Because metrics are designed to test a specific characteristic,
their relative “goodness” varies. To account for uncertainty
on top of each error metric, a bootstrap test was conducted
using 10,000 re-samplings with replacements until the
distribution of uncertainty appeared visually Gaussian. The
standard error on each error metric was found based on the
spread of the metric values from these 10,000 bootstrap re-
samplings. These bootstrap standard errors are given in Table 3.
Despite its name, it is the standard deviation of the
bootstrap distribution and, thus, the standard error on each
metric. For most metrics, the proximity of the value to
a central desired quantity (for example, difference ratios)
shows the preferential suitability of that value as “good.”
Some metrics like RMSE are always positive, whereas other
metrics like correlation coefficient (R) contain desirable
characteristics when positive and undesirable characteristics when
negative.

As described in Event Information (Subsection 2.1) and Model
Configuration (Subsection 2.2), data were grouped by epoch, model,
and magnetic local time. The “best” and “worst” values for
each metric category and a list of standard errors are given
in Tables 2, 3.
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TABLE 3 The uncertainty of each metric calculated via a bootstrap test, as explained in Section 2.3, is shown here, truncated after four places. The
uncertainties of each metric are, for the most part, much smaller than the metric values given in Figures 4, 6.

Accuracy Association Bias Extremes Precision Skill

RMSE R Mean ME Skew Kurtosis YI Sigma PE

AMPERE – – 0.0002 – 0.0199 0.1003 – 0.0027 –

MAGNIT 0.0034 0.002 0.0009 0.001 0.012 0.0315 0.005 0.0031 0.0233

Dawn 0.005 0.0028 0.0021 0.002 0.0133 0.0278 0.0074 0.0045 0.051

Day 0.0047 0.0031 0.0014 0.0018 0.0137 0.0285 0.0085 0.0029 0.0357

Dusk 0.0071 0.0032 0.0037 0.0029 0.0182 0.0207 0.0103 0.0054 0.0695

Night 0.0039 0.0034 0.0021 0.0014 0.0169 0.0307 0.0166 0.0029 0.0678

CMEE 0.0033 0.0021 0.0009 0.001 0.0136 0.0211 0.006 0.0027 0.0313

Dawn 0.0048 0.003 0.0023 0.0021 0.0107 0.0204 0.0105 0.0039 0.0818

Day 0.0046 0.0031 0.002 0.0021 0.0138 0.0292 0.0068 0.0029 0.0341

Dusk 0.0091 0.0036 0.0049 0.0044 0.018 0.024 0.0093 0.0053 0.0705

Night 0.0028 0.0031 0.0029 0.002 0.0176 0.0544 0.0124 0.0026 0.0786

RLM 0.0033 0.002 0.0008 0.0009 0.0126 0.0312 0.0069 0.0028 0.0251

Dawn 0.0047 0.0032 0.0023 0.0022 0.0117 0.025 0.0089 0.0043 0.0576

Day 0.0045 0.003 0.0017 0.002 0.0133 0.0264 0.0071 0.0027 0.0326

Dusk 0.0082 0.0031 0.004 0.0035 0.0219 0.0212 0.0102 0.0057 0.0682

Night 0.0037 0.003 0.0018 0.0015 0.0167 0.0464 0.0124 0.0032 0.1017

3 Results

In this section, we characterize the performance of the
modeled results against measurements from the AMPERE dataset,
highlighting selectmetrics in each category to derive information on
model performance byMLT sector over time. Examples of the field-
aligned currents constructed by the various model configurations
are shown in Figure 3, along with AMPERE FACs at three event
times. Table 2 provides a description of these event times that
separate four epochs based on similar storm progression and model
performance. The three time stamps selected are 1) before the
sudden commencement of the storm, 2) during the main pulse,
and 3) in the recovery phase of the storm. In Figure 3, both the
upward and downward FACs are plotted in the Northern polar
region, showing the North Pole at the origin and extending to
latitude 60° at the outer edge; MLT noon toward the top of the
page; and midnight toward the bottom of the page. The models
resemble one another with similar FAC patterns, and the magnitude
of upward and downward FACs is representative of magnitudes
observed in AMPERE (Figure 1). The modeled FACs appear wider
in latitude than the observed currents and are not identical in
MLT. Upward and downward FAC structures in AMPERE are
consistent with themodels but have notably different fine structures.

We note that the higher-order harmonics observed by AMPERE
in the mid and high latitudes can be smoothed out with a low-
pass filter, while lower-latitude fine structures may be a product of
spacecraft instrument noise. Before major storm activity, models
have little difference compared to AMPERE’s observationally
derived estimates, and as the activity progresses, the models tend
to over-predict downward FAC values in the day/dawn sector. The
models are similar to observed data in the dusk/night sector. This
evolution is discussed in more detail in subsequent sections. It is
important to fully understand various model performances over
time and at various MLTs to drive future model improvement
and the best practices for model validation. Supporting products
include graphical investigations (Figures 4, 6), numerical analysis
(Tables 1–3), and numerical comparisons (Figures 5, 7, 8). The
following subsections are organized by metric category and further
explain trends and characteristics observed in the figures outlined.

3.1 Accuracy: RMSE

Accuracy is the most recognizable term when designing a
model to replicate exact observations. The RMSE is a common
metric of accuracy, and in this study, it measures the pure
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FIGURE 3
FAC patterns as measured by AMPERE and predicted by the SWMF-MAGNIT/CMEE/RLM in the Northern Hemisphere are shown for select times of the
Galaxy 15 storm. The large circular plots show upward (red) and downward (blue) FACs. The smaller circular plots show direct differences between the
modeled and AMPERE data across Iridium satellite tracks; red positive values can be interpreted as an over-prediction of upward FAC values or an
under-prediction of downward FAC values, while blue negative values are an under-prediction of upward FAC values or an over-prediction of
downward FAC values.

difference in FAC values between model and observed data
points. Figure 4 shows a summary of four statistics comparing
AMPERE data to the output of each conductance model over
the course of the full geomagnetic storm. Each subplot is further
divided into a top panel with a black background, showing
results grouped by MLT sector, and a bottom panel with a light
gray background showing global results. The accuracy metric
RMSE is plotted in Figure 4B. The overall performance of the
three model configurations is comparable to one another, and
errors increase in response to IMF fluctuations, peaking at ∼9
UT and ∼10 UT, following the sudden increase/decrease in IMF
By and decrease/increase in IMF Bz, respectively. The RMSE is
larger than 1 only briefly at the beginning of storm activity;

for the rest of the storm, the errors in FACs are less than the
FAC magnitudes.

MAGNIT has the lowest RMSE value throughout the storm
and, thus, slightly better accuracy. The average and the best
values of RMSE by epoch are listed in Table 2. RMSE values of
MAGNIT are initially smaller than those for CMEE and RLM
by ∼12.7% and ∼6.24% before the storm, decrease to differences
of ∼4.52% and ∼2.13% during the main phase, become worse by
∼1.98% and ∼1.27% during the second minimum, and become
better again by ∼1.84% and ∼1.49% by the beginning of the
recovery phase. Data comparison in various MLT sectors also
follows the same pattern, with the least error contributed by
the night sector in all three model configurations. Prior to the
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FIGURE 4
The performance of various model configurations grouped by MLTs across the storm is shown for (A) the association metric R (correlation coefficient;
Section 3.2), (B) the accuracy metric RMSE (root mean square error; Section 3.1), (C) the general quantity Mean, and (D) the bias metric Mean Error
(C,D) (Section 3.3 (Section 3.3.1, Section 3.3.2)). Deviation from nominal metric behavior is consistent across (B–D) at the same time following the
beginning of the storm. Note that for the mean error, upward and downward FACs add a layer of complexity, while for the correlation coefficient and
root mean square error, only magnitudes of the FACs are utilized. The standard error on each metric is given in Table 3 and is not plotted on their
respective graphs because of its small size, which was not clearly visible.

sudden commencement in Epoch 1, errors were slightly larger
in the dawn and dusk sectors. With the sudden and extreme
increases in RMSE after sudden commencement and again after

the main pulse, the largest contributors become day and dawn.
A clear return to pre-storm values of the RMSE is observed
during recovery.
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The RMSE and accuracy do not describe how or why the
model data deviate from observed values. Thus, how the models
are biased and how the data distribution is shaped must also be
investigated.

3.2 Association: correlation coefficient

Thecorrelation coefficient, R, is often used as the singularmetric
to describe performance and is a proxy for the linear relationship
between the model and observed data. In essence, it describes
the ability of the model to replicate the motions of the measured
data. Figure 4A shows the correlation coefficient over the course
of the storm. As shown in Figure 4A and supported by statistics
on the metric data (average and best values are listed in Table 2),
the association performance of the three model configurations
is mostly indistinguishable from one another. The values are far
from the ideal model–data comparison, and the association has a
slightly downward trend as the storm progresses. Despite this, the
standard error associated with R is less than 5% of the R-value;
however, in 7 of the 60 model/MLT sector and overall auroral
oval/epoch combinations, the standard error on R increases to
more than 10%. The most severe uncertainties are common during
Epoch 2 and in the night sectors. FAC data in the dawn sector
have a better association than other MLT sectors and consistently
remain positive, while the dusk sector has a negative correlation
during the secondminimum (Epoch 2) and continues into recovery.
In Epoch 3, this negative correlation is less severe in MAGNIT
than in RLM or CMEE. Throughout the storm, the association
of all MLT sectors and the globally averaged FACs in the auroral
oval oscillates at approximately 0 μA/m2, having neither a strong
positive nor negative correlation. Because of the massive amount
of data points and the low FAC values across a wide map, this
is expected.

The t-test is a statistical test that reveals whether a difference
in scores of two datasets, in this case, the R-value, is due to
random chance. The null hypothesis of the test is that the score
of the two datasets has the same mean, and α (significance level)
is the probability of rejecting the null hypothesis when it is true.
The p-value measures the statistical significance of the result, and
for a given confidence threshold, it accepts the null hypothesis if
pcalculated > pα and rejects it if pcalculated < pα. For a 95% confidence
level, the critical p-value (pα) is 0.05, which is the maximum
requirement for the score to be statistically significant such that
the R-value did not arise from chance. The p-values of the various
configurations suggest that R is only comparablewithAMPEREFAC
data occasionally; model and MLT sectors comparable in R with
observations are listed below, supported by the calculated p-values
documented in parenthesis:

• MAGNIT and RLMDay (DayM/C/R: 0.167⋅10−2/0.504/0.013);
• MAGNIT and RLM Dawn (Dawn M/C/R: 0.111⋅10−2/0.711/
0.441⋅10−2);

• MAGNIT and CMEE Dusk (Dusk M/C/R: 0.102⋅10−5/0.653
⋅10−4/0.418);

• None of MAGNIT/CMEE/RIM Night had an acceptable p-
value (Night M/C/R: 0.102/0.289/0.547).

Although MAGNIT R-values reject the null hypothesis in the t-test,
while CMEE and RLM are less likely to do so, this provides little
suggestion of a trend in association.

3.3 Bias: mean and mean error

Bias describes systemic differences in the data–model
comparisons. In the overall performance of the models, the three
configurations tend to slightly under-predict during the activity
of the storm. When examining the mean error, CMEE provides
the best performance in terms of the globally averaged modeled
and observed FACs. However, MAGNIT shows strong potential in
explaining underlying physics as it has the best performance when
comparing the modeled MLT sectors with the observed average of
the auroral region.The bias is not consistent as the storm progresses
through different epochs, and varying under-prediction and over-
prediction patterns are observed in some of the MLT groupings
across the models.

3.3.1 Mean
Figure 4C shows the spatial mean of current density over the

entire high-latitude region (above 50°) at each time stamp. The
average spatial mean of the AMPERE data throughout the storm
is near 0 μA/m2, including both upward and downward FACs. In
Epoch 0 pre-storm, AMPERE, CMEE, RLM, and MAGNIT values
are similarly near 0 but deviate in Epoch 1.Themodels sharply over-
predict at ∼9 UT, following a sudden increase in By and decrease
in Bz. They then begin to show a more consistent under-prediction
around 10UT,whereBy decreases to negative values andBz increases
to positive values.This under-prediction continues into Epoch 2, and
in general, observed data are most closely replicated by MAGNIT
and then by RLM andCMEE, respectively.There are two exceptions:
near ∼12:30 UT, corresponding to the sudden decrease in Bz back
to 0, where the mean of observed AMPERE data is briefly negative,
and thus, the low mean values of the three model configurations are
insignificant at that time.The other exception is the temporary peak
under-prediction byMAGNIT at the border between epochs 2 and 3.
As the environment begins to recover in Epoch 3, the models return
to an average mean of 0, similar to AMPERE data.

The typical mean values of the MLT sectors for the three models
are similar to those of the overall auroral oval but with magnitudes
cut in half. Dusk and night sectors tend to over-predict, while day
and dawn sectors under-predict. An exception occurs at ∼12 UT,
while Bz reaches its maximum positive values. The over-prediction
of FACs in the dusk sector is mirrored by an under-prediction in
dawn during Epoch 1, day in Epoch 2, and dawn again during
Epoch 3. Although all model/MLT sector combinations return to
nominal performance during the storm recovery phase, MAGNIT
dusk andCMEEdawn are themost gradual, transitioning fromover-
predicting/under-predicting, respectively. Throughout the storm,
the night sectors across all three models have the least bias against
the AMPERE data.

3.3.2 Mean error
Figure 4D shows the mean error (ME) over the course of

the whole geomagnetic storm, both divided by MLT sector (top,
black background) and globally (bottom, gray background). The
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FIGURE 5
(A) Mean error (ME) values throughout the storm. Positive/negative ME values arise from an over/underestimation of upward FACs or an
under/overestimation of downward FAC values. (B) Percentage of ideal points for each model configuration, MLT grouping, and epoch. (C) Relative
number of ideal points for each MLT grouping and epoch combination to compare the performance of various model configurations. For example, in
Epoch 1 dawn (C), the best performer in the overall polar region is colored green (RLM by one data point), while the medium performer is colored
yellow (MAGNIT), and the worst performer is colored red (CMEE by six points). Ideal points are defined to be within ±10StandardErrors (SE) of the ideal
value of 0 bias and are, therefore, data points with very little over- or underestimation. Additional explanation is provided in Section 3.3.

ME follows a similar trend to the other metrics, with maximum
error near the time of sudden commencement. Figure 5 provides
additional insight into the biases of various model/MLT sector
combinations by comparing the mean error of the various models.
Numbers characterizing bias performance for each model/MLT
sector combination are shown for the four epochs by defining
an “ideal point” envelope centered around 0 bias with a width
of 10 standard errors of bias (not to be confused with the
standard errors of the modeled and observed FACs). Positive
mean error values can be interpreted as both an overestimation
of upward FACs and an underestimation of downward FACs.
Similarly, negative mean error values can be interpreted as an
underestimation of upward FACs or an overestimation of downward
FACs. Figure 5B shows the percentage of ideal points within
each epoch. Figure 5C shows the relative number of ideal points in
the same MLT sector and time, such that there is a top-performing,

standard, and lowest-performing conductance model shown in
green, yellow, and red for each spatial and temporal combination,
respectively.

The bias in MAGNIT, CMEE, and RLM increases throughout
the storm; hence, the percent of ideal points is generally the largest
during Epoch 0. A minimum percent of ideal points is recorded
during the storm’s sudden commencement in Epoch 2, after which
in Epoch 3 an improvement to levels of approximately half of
Epoch 1 is made. Analysis of the overall polar region shows that
CMEE begins with more than half (59%) of points considered ideal,
followed by MAGNIT at nearly half (49%) of points and RLM at
34%. The trend continues through Epoch 1 (CMEE 35%, MAGNIT
25%, and RLM 20 %) and Epoch 2 (CMEE 1% and MAGNIT
and RLM 0%); however, during Epoch 3, CMEE and RLM do
not recover as quickly in regaining ideal points (14% and 13%,
respectively) as MAGNIT (18%).
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When investigating MLT sector performance, CMEE is no
longer the highest-performing conductance model as it was
globally. MAGNIT has significantly more ideal points before
the storm in Epoch 0, followed by RLM (average difference of
7.75% versus MAGNIT) and CMEE (21.75% difference versus
MAGNIT). As the storm continues, the three models become
comparable to one another as the difference in the number
of ideal points decreases. The night sector consistently has
more ideal points than any other sectors in all three model
configurations, and while the night and dawn sector recovers
significantly during the storm recovery phase, dusk does not
recover at all.

3.4 Precision: modeling yield and standard
deviation ratio and difference

Precision explores the characteristic shape of the data
population. Similar to the bias metric, the performance of the
overall northern hemisphere is slightly higher in CMEE run than
that in the RLM and MAGNIT runs but overtaken by MAGNIT
when investigating MLT sectors. The models have spreads and
population curves similar to observed AMPERE data throughout
the storm, with individual trends by models and MLT sectors
detailed below. Figure 6 is styled similarly to Figure 4 but shows
the modeling yield (YI), standard deviation, skew, and kurtosis.
The results are again analyzed globally (gray) and by MLT sector
(black). Figure 7 is formatted similarly to Figure 5 but shows
the precision metrics, including modeling yield and standard
deviation, instead.

3.4.1 Modeling yield
As Figure 6A and Figure 7A show, throughout the storm, all

three models and their MLT groupings have generally good
modeling yields. The modeling yield is calculated using just four
numbers, the maximum and minimum of both the model and
observed data, and thus suggests that the models can replicate
the extent of the spread of the observed data. The modeling yield
oscillates around 1, the ideal value, but a slightly denser population
of YI points is less than the ideal value and has a smaller spread
than AMPERE data. However, when models have a larger spread
than the AMPERE data, the magnitude of the ratio between the
model and observed spreads is larger. The three models have a
larger spread in values during the storm activity, driven by a similar
pattern observed in the dawn and dusk MLT sectors. Unlike dawn
and dusk, the night and day sectors have a smaller spread than
observed AMPERE data during the stormmain phase. In this study,
the data population distributions were calculated by grouping MLT
sectors but could also be divided by latitudinal ranges. Although
we focus on the global and holistic appraisal of conductance
models in this paper, we expect improvement in YI values if
future studies limit the latitudes to regions of consistent current
structures.

Figures 7C, D provide numerical information on the
precision performance for each model/MLT sector combination
against AMPERE and against one another. The percent of
ideal points in each epoch varies for model configuration
throughout the storm. Overall, CMEE and RIM have an

average of 17.75% and MAGNIT has an average of 13.5%
of ideal points throughout the storm, as opposed to MLT
sector investigations, where the three models are ranked in
order by MAGNIT, RLM, and CMEE (MAGNIT/CMEE/RLM
dawn: 17.75/20.5/21%, dusk: 26.75/19.25/25.25%, and night:
30/15.5/20.5%). The precision in the day sector is the worst
across all three models during the main and recovery
phases of the storm, averaging less than 8.5%. The number
of ideal points improves during recovery to levels greater
than those observed before the storm, especially in the
dawn sector. Compared to the overall polar region precision
performance, the MLT sector-by-sector has a larger divergence
between the models.

3.4.2 Standard deviation
The standard deviation is frequently used inmodel performance

assessment, and we use it here as well. Figure 6B and Figure 7B
show the standard deviation of the various datasets. The spread
in all values (including observed AMPERE data) increases
significantly following extreme changes in Bz and By (∼10:30
and ∼12:30 UT; Figure 1). The results observed in the modeling
yield are confirmed in the standard deviation, which not only
describes the extent of the distribution but also the shape. The
standard deviations of the three models in the overall polar region
are smaller than those in AMPERE pre-storm and larger than
those in AMPERE during this active storm interval. Compared
to the overall AMPERE dataset, the standard deviations of the
night sector for all three models are small. In Epoch 2, dawn and
dusk sectors have comparable FAC value distributions. Following
the sudden IMF change at ∼10:30 UT, where all models and
AMPERE have small spreads describing well-predicted peaks in
FAC values, the day sector of the model best follows the standard
deviation of AMPERE. In Epoch 3, the dawn sector data points
have a larger spread in values, while the dusk and night sectors
have a smaller distribution than those in AMPERE. As the storm
activity decreases and the environment recovers, the spread in
FAC values converges between the models and AMPERE. Within
each MLT sector, the three models intertwine in performance
over the storm.

3.5 Extremes: kurtosis, skew, and
model-observed differences

In the subsection above, we provided information on model
performance in replicating the mean of the observed data,
and now offer understanding of the population away from the
mean. Kurtosis describes the tailedness of the data distribution
(how much of a tail exists in the data distribution), while
skew characterizes the shift in the data distribution toward
the tails. A normal distribution has a kurtosis value of 3
and a skew value of 0. Larger kurtosis values indicate that
the population is leptokurtic and has a sharper peak, while
smaller kurtosis values are for platykurtic populations with a
broader sloped peak. In a positive skew, the population is shifted
toward the left, and the mean is larger than the median and
mode of the dataset. On the other hand, in a negative skew,
the population is shifted rightward, and the most commonly
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FIGURE 6
The performance of various model configurations grouped by MLTs across the storm are shown for (A) the precision metric YI (modeling yield), (B) the
general quantity σ (standard deviation), (C) the extreme metric κ (kurtosis), and (D) the extremes metric γ difference (skew difference). Precision metrics
(A,B) are discussed in Sections 3.4.1, 3.4.2, and extremes metrics (C,D) are discussed in Sections 3.5.1, 3.5.2. The standard error on each metric
is given in Table 3 and is not plotted on their respective graphs because of its small size, which was not clearly visible.

occurring data point is larger than the median and mean.
Similar to other metric categories, the performance of all three
model configurations is comparable to observed AMPERE data.

MAGNIT most closely resembles AMPERE in skew, while there
is no clear lead in the performance of kurtosis. Across the
various models and AMPERE FAC data, the night sector has a
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FIGURE 7
(A,B) describe the modeling yield (YI) and standard deviation (σ) throughout the storm. Explanations of (C) and (D) type tables are covered in
Sections 3.3. Additional interpretation of precision is provided in Sections 3.4.

kurtosis value of ∼4, suggesting a potential future investigation
into alternatives over the use of a normalized distribution for
auroral precipitation.

3.5.1 Kurtosis
Figure 8 follows the same structure as Figure 5A and Figure 7

and describes the performance of the three model configurations
in terms of skew and kurtosis. Figure 6C, Figure 8B, and Table 2
show that the kurtosis values for MAGNIT, CMEE, and RLM
have an average baseline of ∼4.8, similar to AMPERE. In each
MLT grouping, the models have lower average kurtosis values than
over the entire auroral region: in order of MAGNIT, CMEE, and
RLM—dawn 3.2/2.9/3.1, day 3.7/3.6/3.7, dusk 2.8/2.6/2.7, and night
4.2/3.7/4.3. The day and night MLT sectors have higher kurtosis
values than dawn and dusk, more closely matching overall polar
region values and following the shape of kurtosis increases and
decreases in AMPERE better. However, the kurtosis values of the
models in the night sector frequently jump suddenly to extremely
large values ∼8, largely independent of noticeable features in the
AMPERE data and storm. Because kurtosis takes the difference
between themodel and observed values to the fourth power, outliers

become susceptible to extreme values. Overall, however, the kurtosis
differences are not extreme and are between 0 and −2, with the
exceptions described above.

3.5.2 Skew differences
The skew in AMPERE varies throughout the storm, as shown in

Figure 6D and Figure 8A. Before the storm, the dataset tends to skew
negatively so that themode ismore often larger than themedian and
mean. During the storm activity, the opposite is true, from the first
major change in Bz in Epoch 1. Once recovery begins (∼12:30 UT),
the skews of the models remain nearly constant until the beginning
of Epoch 3, where MAGNIT returns to a pre-storm positive skew,
RLM has little to no skew, and CMEE continues to exhibit a negative
skew.The skew observed in MAGNITmost closely follows the skew
pattern ofAMPERE.Thebehavior of theMLT sector is diverse: while
the dusk and night sectors skew positively throughout the storm,
dawn skews negatively, and day skews negatively starting in Epoch 1.
An exception occurs at∼12:30UT,whereBz changes significantly for
the second time, and MLT sectors suddenly skew negatively. In any
case, positive and negative skewness have similar magnitudes, with
the maximum and minimum differences ranging between −2 and 2.
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FIGURE 8
(A,B) Skew difference (γdiff) and kurtosis (κ) throughout the storm. Explanations of (C) and (D) type tables are covered in Section 3.3. Additional
interpretation of extremes is provided in Sections 3.5.

In general, compared to the modeling yield in precision and the
mean bias error, the three models have more ideal points in skew
difference during and after storm activity, as shown in Figures 8C, D.
The three model overall configurations during epochs 0 and 1 have
comparable performance, with ∼ 22% of points meeting the ideal
point requirement, and differences are within 5% of one another.
During epochs 2 and 3, the number of ideal points in MAGNIT
increases while decreasing to less than half of pre-storm values for
RLM and CMEE. This change is not reflected as significantly in the
day, dusk, and night sectors of the threemodel configurations, where
the performance in all threemodels is comparable to each other.The
dawn sector (particularly in RLM) best reflects the skew observed in
AMPERE, with 30%–40% ideal points.

4 Discussion

Generally, the performance of MAGNIT exceeds that of RLM
and CMEE, but there are intricacies in model performance grouped
by MLT sectors and through storm phases. In some metrics, CMEE

shows better performance metrics on the global scale, but this
pattern is not reflected in MLT divisions. Instead, MAGNIT’s
performance surpasses that of CMEE and RLM in the MLT sectors.
This result is summarized in the conclusion. There are several
surprising outcomes from the metric analysis. In particular, they
include the following points:

1. The performance of RLM and MAGNIT is more similar than
that of the RLM and CMEE.

2. The night MLT sector consistently exhibits the best
performance across all storm phases, conductance
specifications, and most metrics.

In many of the metrics, the performance of MAGNIT and RLM
was more similar than that of MAGNIT and CMEE or RLM and
CMEE. This is particularly interesting since the RLM and CMEE
are designed from similar empirical formats, albeit trained with
different datasets. This trend may be a result of several factors.
For example, the difference in events used to train RLM and
CMEE implies that CMEE is a more statistical model because
it is trained on more data and will adopt the characteristics of
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sparse extreme events. This analysis was conducted on a singular
storm event, and model performances over other types of geospace
conditions are unexplored. The Galaxy 15 event, a highly active
event producing high levels of precipitation, has implications on
day–night conductance that are unique in this validation study. As
with any validation effort, more and different types of events help
clarify use cases. BecauseMAGNIT can be runwith different auroral
precipitation sources, specific characteristics of MLT sectors can
be associated with various auroral precipitation sources, helping
us understand the similarities and differences between the three
models. Unlike CMEE and RLM, MAGNIT can be improved by
adding or modifying the physics in the code. This emphasizes
the benefit of semi-physical over empirical models in modeling
frameworks that need to accommodate a variety of use cases and
quantities.

A common theme across many metric categories was the
“better” performance of the night sector when data was investigated
at different magnetic local time groupings. This theme can be
explained in part by recognizing that spatial and temporal regions
of high-magnitude conductance appear to exhibit lower errors
throughout the study. The Galaxy 15 storm occurring near the
equinox was a highly active event, initially producing a strong day-
side compression and generating high activity on the night-side
as the storm progressed. During sudden commencement, when
day-side conductance is high, the error in the day-side by the
models is small (Figures 4B, 5). This pattern is better represented
on the night-side, where conductance remains high throughout
storm activity because of elevated particle precipitation levels.
This can be observed in the respective errors in the models,
including in metrics on accuracy (Section 3.1), bias (Sections 3.3,
3.3.2), and precision (Section 3.4.2). The better performance of
the night sector is somewhat expected—Mukhopadhyay et al.
(2022b) andMukhopadhyay (2021) usedMAGNIT to study auroral
precipitation contributions to the Galaxy 15 event and found that
the largest contributor was the diffuse electron and ion precipitation
sources, which favorably map toward the night-side. The electron
and ion diffuse sources are dependent on MHD pressure, which
peaks at night and slightly at dawn and dusk.

Another hypothesis on the comparably superior performance
of the night sector is the inherent crescent shape of the FAC
patterns, which is thinner in latitude spread at the edge MLT
values. The bulk of FACs flows up and down into the ionosphere
at dawn and dusk; hence, the night and day sectors contain some
of these edge MLT values. In the night sector, the models can
accurately replicate FACs at the latitude and longitude locations.
Dawn and dusk FAC values were more likely to miss the measured
value because the FACs produced by the models were wider in
latitude. Wider FAC coverage allows for more space where small-
scale features are shifted and reflect poorly on a one-to-one spatial
comparison, leading to the “worst” performance across metrics and
during storm activity. The day sector also lacks in performance
compared to the night sector, contrary to what would be expected
from the edge-thinning FAC region hypothesis. All three models
use AMIE (RLM and CMEE utilize AMIE as a primary derivative,
while MAGNIT uses its results as a supplement), which has been
shown to underestimate electron flux and has a more accurate
prediction in the 18:00–03:00 MLT partial dusk and full night-
side sectors, where solar conductance is not as significant (Kihn and

Ridley, 2005). Although the day sector generally underestimates the
FAC magnitude, the modeling yield suggests that the maximum
and minimum FACs are captured reasonably accurately by
the models.

The metrics in this study agree well with previous efforts,
including those obtained by Mukhopadhyay et al. (2022b) and
Anderson et al. (2017). In extending the SWPC Geospace
Environment Modeling (GEM) challenge to access the relative
performance of predicting FACs, Anderson et al. (2017) compared
the radial current of AMPERE and several models, including the
SWMF (with RLM), quantifying the correlation coefficient. The
SWMF R-values obtained by Anderson et al. (2017) are larger than
those calculated in this study, possibly because of the comparison
method. While this validation study uses a direct location and
exact time comparison, Anderson et al. (2017) smoothed FAC
values, meaning that our metrics could likely be improved by
increasing the grid resolution of the model runs. An important
limitation to note in validation studies, including this study, is the
use of observations as a “ground truth.” The differences in spatial
and temporal resolution between observations and models can
introduce significant noise that can potentially mean that in some
instances, modeling results can be better than observations and
their derived estimates. The small standard deviation of the models
pre-storm and during the night sectors (Section 3.4.2) of the storm
provides such illustrations. On the night-side, in particular, the low
R-value can also be attributed, for example, to a combination of low
(near-0) FAC values and a small spread (lowYI). Studying the effects
of models and observation resolution is key to validating any model
performance in the future. Despite the interesting performance
of the three models in replicating the small-scale features of the
FACs, the three SWMF IE configurations align well with large-
scale features (for example, integrated FACs [Mukhopadhyay et al.,
2022b]). They clearly and appropriately respond to storm-
driving conditions. The most desirable SWMF IE configuration
to run for different use cases is summarized in the
conclusion.

In addition to comparing against AMPERE by latitudes, adding
transitional MLT sectors (i.e., a dawn–day blend in between dawn
and day) may help highlight MLT-specific characteristics. It may
also provide insight into the mirroring effect found between the
overestimation and underestimation of dusk and dawn or day.
Since we demonstrated the advantages of investigating the data
distribution in more detail in this study, we recommend that
future model validation and verification efforts take advantage of
diversifying statistics to help explain and investigate performance.

5 Conclusion

This study explored the performance of SWMF-RLM, SWMF-
CMEE, and SWMF-MAGNIT in predicting FACs for the Galaxy 15
storm event (5 April 2010, 00:00–6 April, 00:00). The comparison
base-lined model performance with AMPERE observationally
derived values in a validation effort and was conducted by
investigating a variety of statistical metrics including accuracy, bias,
precision, association, and extremes.

FACs were not used as a comparator to train the model
configurations. Although the integrated FACs in the ionosphere
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are demonstrated to be in good agreement with data obtained
by the models (Mukhopadhyay et al., 2022b), the FAC pattern
is not a direct replication of AMPERE data. As expected,
model performance decreases during the storm main phase and
returns to near pre-storm performance during event recovery.
Sudden increases in error are attributed to violent activity in the
storm and are reflected across metrics of different categories.
While examining the correlation provided little insight into
model performance, exploring bias, precision, and extreme
characteristics of the model replications suggested paths for the
investigation and development of future model improvements and
inquiries.

In general, MAGNIT can be considered to have marginally
better performance thanCMEE andRLM. SWMF-MAGNIThas the
lowest RMSE, is the least underestimating, and has both modeling
yield and skew closest to the observed data. In the global polar
region, however, CMEE has comparable or better performance: it
has more ideal points in bias (ME) and precision. When breaking
down bias and precision data by MLT sector, MAGNIT ranks better
than CMEE. The advantage of MAGNIT is clearer in sector-by-
sector investigations as MAGNIT MLT sectors have the smallest
error compared to CMEE and RLM MLT sectors. The night sector
has the lowest pure FAC value error throughout the storm, the
least bias, and the most similar spread (to AMPERE), albeit a poor
correlation. For the most part, this matches well with the pattern
for a highly active storm, where areas with higher conductance
correspond to smaller respective errors and the night sector,
particularly in MAGNIT, with improved precipitation calculations
exhibiting better performance. Day and dawn sectors are often the
least reliable, and dawn and dusk performance varies the most. For
example, dawn and dusk begin as the biggest contributors to the
lack of accuracy, but as the storm continues, they shift to dawn and
day. The differing performance in the various MLT sectors can be
attributed to a variety of reasons, including the shape andmapping of
the FACs, the involvement of various auroral precipitation sources,
and the inclusion of auroral conductance from AMIE; furthermore,
it suggests that additional physics in each MLT sector should
be investigated and added to provide a thorough representation
of the system. The poor performance of the non-night sectors,
particularly in the spatial and temporal regions of low conductance,
highlights the importance of the well-known complication in the
coupling of the ionosphere and other regions. The metrics of
all three model configurations are in agreement with previous
validation work.

While additional analysis on different events can provide
more fidelity to model validation and verification, this paper has
demonstrated that exploring a number of performance metrics
from different categories provides richer insights into space
weather modeling.
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