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Given the current enthusiasm for lunar exploration, the 2:1 resonant distant
retrograde orbit (DRO) in Earth-Moon space is of interest. To gain an in-depth
understanding of the complex dynamic environment in cislunar space and
provide more options for parking orbits, this paper investigates the existence
of quasi-periodic orbits near the 2:1 resonant DRO in the circular restricted
three-body problem (CR3BP). Firstly, the numerical computation approach,
continuation strategy, and stability analysis method of quasi-periodic orbits
are introduced. Then, addressing the primary challenges in the continuation
progress, we have developed an adaptive continuation algorithmwith automatic
adjustment of the step size and the number of discrete points that characterize
the invariant torus. Finally, two types of 2D quasi-DROs and their linear stability
properties are explored. Using Poincaré sections, we investigated the boundaries
of the maximum extent attainable by both 2D quasi-DRO families in the CR3BP
at a specific Jacobi energy, confirming that both types of quasi-periodic families
have reached their respective boundaries. The algorithm described in this paper
is beneficial for facilitating the computation of quasi-periodic families and aids
in discovering additional potential dynamical structures.

KEYWORDS

distant retrograde orbits, quasi-periodic orbits, cislunar space, continuation method,
Poincaré section, orbit boundary

1 Introduction

In recent years, there has been a resurgence of enthusiasm for lunar exploration, making
cislunar space a focal point for human exploration and research. Several space missions,
some successfully launched in the past years, and others scheduled for the near future,
have been proposed for verification, scientific exploration, or space observation purposes.
Notable missions include CAPSTONE (Gardner et al., 2023), KPLO (Song et al., 2021),
ARTEMIS 1 (Williams et al., 2023), and VIPER (Colaprete et al., 2019). The exploration of
cislunar space presents a prosperous prospect. As a stable orbit family suitable for long-term
parking in cislunar space (Bezrouk and Parker, 2014), distant retrograde orbits (DROs) have
garnered particular attention from institutions all over the world.The stability and strategic
significance of DROs make them a compelling choice. According to existing literature,
DROs have four primary applications: serving as a space harbor for scientific exploration,
a candidate orbit for space domain awareness, a transit station for deep space exploration,
and a relay orbit for inter-satellite links (Smitherman and Griffin, 2014; Stramacchia et al.,
2016; Conte et al., 2018; Wang et al., 2019).

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2024.1352489
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2024.1352489&domain=pdf&date_stamp=2024-08-28
mailto:hao.zhang.zhr@gmail.com
mailto:hao.zhang.zhr@gmail.com
https://doi.org/10.3389/fspas.2024.1352489
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2024.1352489/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1352489/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1352489/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Wang et al. 10.3389/fspas.2024.1352489

While scholars have extensively studied the dynamics and
structural characteristics of DROs in the CR3BP, this knowledge
falls short for practical engineering applications. For instance, the
eclipse situation on DROs is suboptimal since DROs are nearly
located on the Earth-Moon plane even when transitioned to
the ephemeris model. This directly impacts the on-orbit stability
of spacecraft. McCarthy B. P. and Howell (2021) have explored
the potential for eclipse avoidance in quasi-DROs with z-axis
components. Moreover, considering that DROs are quasi-periodic
in the ephemeris model, incorporating quasi-DROs into the
preliminary orbit design process for subsequent missions would
be highly advantageous. This approach provides a more accurate
initial guess, as demonstrated in McCarthy and Howell (2019).
Additionally, from a dynamic perspective, the study of quasi-
periodic motion near DROs contributes to a deeper understanding
of the dynamical behaviors in cislunar space. This has sparked our
interest in investigating the dynamical structures of quasi-periodic
orbits. With numerous missions currently targeting the 2:1 distant
retrograde orbit (2:1 DRO), this study primarily focuses on the
analysis of quasi-periodic motion in the vicinity of the 2:1 DRO.
The prevalence of quasi-periodic orbits and their distinct advantages
over periodic orbits contribute to a broader range of orbit options,
thereby expanding the design space (Olikara and Scheeres, 2012).

The CR3BP stands out as the simplest dynamic model for
studying quasi-periodic motion in a multi-body system. In this
model, the solution space is composed of four types of behaviors:
equilibrium points, periodic orbits, quasi-periodic orbits, and
chaotic motion (Folta et al., 2016). Olikara and Howell (2010)
computed the family of Earth-Moon L1 Lissajous tori, while
Jorba et al. (2020) explored quasi-periodic motion in the vicinity
of L1. For quasi-periodic motion near L2, one can refer to works
in McCarthy B. and Howell (2021); Rosales et al. (2021); Lujan and
Scheeres (2022). Furthermore, Jorba and Nicolás (2020) provide
insights into dynamics around L3. Quasi-periodic motion near
equilibrium points has been well studied, as evidenced by the works
of Hou and Liu (2010); Hou and Liu (2011). However, to the best of
our knowledge, quasi-periodic structures near resonant DROs have
not been thoroughly investigated.

The computation method of quasi-periodic orbits has
undergone a transition from analytical or semi-analytical methods
to full numerical methods, as discussed in Farquhar and Kamel
(1973), Gómez et al. (1998), Jorba and Masdemont (1999),
Hou et al. (2015). Analytical or semi-analytical methods like the
Poincare-Lindstedt method and center manifold reduction often
face challenges with small convergence regions. Therefore, we
prefer the numerical method in this manuscript, specifically the
GMOS (Gomez-Mondelo-Olikara-Scheeres) algorithm (Olikara
and Scheeres, 2012), which iteratively computes the invariant curves
represented by Fourier series on a stroboscopic map using Newton’s
method. For additional details on other numerical methods, one can
refer to Baresi et al. (2018) and the references therein. Numerous
works in the literature have been dedicated to the calculation of
quasi-periodic orbits or quasi-periodic families. Some focus on
calculation skills, while others address computational efficiency
(Schilder et al., 2005; Sánchez and Net, 2013; Olikara, 2016). Few
studies address whether the continuation reaches the boundary,
which demarcate the regions of bounded motion and chaos. As
they do not clarify whether the failure of continuation is due to

encountering resonance or reaching the continuation boundary,
there is a high probability that the quasi-periodic families are
incomplete. Nevertheless, it is crucial to recognize the boundaries
of chaos and order.

Motivated by the above analyses, this paper delves into the
quasi-periodic motion and its stability properties near the 2:1
resonant DRO in the CR3BP. However, The continuation process
is not without challenges. Specifically, the quasi-periodic families
encounter a series of resonant regions during the continuation
process, requiring an increased number of sampling nodes to
achieve a specified accuracy, as reported in Jorba and Olmedo
(2009). If the step size is inappropriate, it can easily lead to
singularities, resulting in program failure. Furthermore, the shape
and size of the torus are factors determining the number of Fourier
nodes, as discussed in Rosales et al. (2021). Considering these
factors, we have developed an adaptive continuation framework
that adjusts the continuation step size and the number of nodes to
save computational time and enhance robustness. Pseudo-arclength
continuation and natural parameter continuation schemes are
employed for cross-verification. Additionally, with the aid of the
Poincaré map and bifurcation theory, we have confirmed that the
quasi-DRO families have reached their continuation boundaries.

The remaining structure of this paper is outlined as follows.
Section 2 introduces the circular restricted three-body problem
and presents a visual representation of the 2:1 resonant Distant
Retrograde Orbit. Section 3 provides a detailed overview of the
computational framework, discussing the challenges encountered
in our calculations and introducing an adaptive algorithm. In
Section 4, two types of 2D quasi-periodic orbit families are
presented, and the boundaries of the orbit families are also verified.
Stability analysis is conducted in Section 5. Lastly, conclusions
are drawn in Section 6.

2 Preliminaries

2.1 Circular restricted three-body model

The circular restricted three-body problem (CR3BP) is a widely
used model for studying spacecraft motion in multi-body systems.
It describes the motion of an infinitesimal mass influenced by two
massive bodies, such as the Earth and the Moon in cislunar space,
within a rotating coordinate system centered at the Earth-Moon
barycenter. The x-axis is aligned from Earth to the Moon, the z-
axis is defined to coincide with the direction of the system’s angular
momentum, and the y-axis is determined by the right-hand rule, as
shown in Figure 1. The distance, mass, and time in the dynamical
system are normalized such that

{{{{
{{{{
{

[M] =m1 +m2

[L] = a12

[T] = √a312/G (m1 +m2)

(1)

In Equation 1, m1 and m2 are, respectively, the mass of the Earth
and the Moon. a12 represents the Earth-Moon distance. Define
μ = m2

m1+m2
as the mass ratio of the Earth-Moon system, then the

Earth and the Moon are located at (−μ,0,0) and (1− μ,0,0) in the
synodic frame, respectively. The dynamical equations that depict
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FIGURE 1
Diagram of the circular restricted three-body problem. The red curve
represents the 2:1 DRO.

the motion of spacecraft in the Earth-Moon rotating frame are
described as (Topputo, 2013).

̈x− 2ẏ =
∂Ω3

∂x

̈y+ 2ẋ =
∂Ω3

∂y

̈z =
∂Ω3

∂z

(2)

In Equation 2, the effective potential Ω3 is defined as

Ω3 (x,y,z) =
1
2
(x2 + y2) +

1− μ
rES
+

μ
rMS
+ 1
2
μ(1− μ) (3)

In Equation 3, rES rMS respectively represent the distances from
the spacecraft to the Earth and the Moon. Table 1 shows the relative
value of physical constants in the Earth-Moon systems as well as
their associated units and physical meanings.

The CR3BP is an autonomous system with a unique energy
integral, i.e., the Jacobi constant as displayed in Equation 4,

C = −(ẋ2 + ẏ2 + ̇z2) + 2Ω3 (x,y,z) (4)

2.2 2:1 DRO in the CR3BP

The DROs are a special family of periodic orbits in the CR3BP,
which moves clockwise (retrograde) around the Moon in cislunar
space. Due to the symmetry of the DRO family about the xz plane
in the Earth-Moon rotating frame, the two intersections of one
particularDRO satisfy the vertically crossing condition. By choosing
the plane Σ:y = 0 as the Poincaré map, the particular DRO can be
represented by a two-dimensional state, denoted as (x0, ẏ0). Figure 2
shows the DRO family in the Earth-Moon system, obtained through
differential correction and numerical continuation.The 2:1 resonant
DRO is highlighted in orange, with an approximate period of 13.65
days. The differential correction equation can be formulated as

[

[

δyt
δẋt
]

]
= [

[

Φ2,1 Φ2,5 ẏt
Φ2,4 Φ2,5 ̈xt

]

]

[[[[

[

δx0
δẏ0
δt

]]]]

]

(5)

where Φ represents the 6 × 6 state transition matrix. The
subscripts in Equation 5 specify the particular row and column
elements of Φ respectively.

In general, the resonant ratio p:q means that the spacecraft
has made p revolutions along the orbit in a total q synodic
periods, where the synodic period is about 27.3 days
in the CR3BP.

3 Computation method of
quasi-periodic orbits

A typical approach to exploring the phase space of a
dynamical system involves the investigation of its invariant
sets. The term “invariant sets” encompasses equilibrium points,
periodic orbits, and invariant tori within the system (Rosales et al.,
2021). These invariant sets, along with their associated invariant
manifolds, provide valuable insights into the evolution of
dynamical systems within phase space. Generally, quasi-
periodic motion occurs on two- or higher-dimensional invariant
torus surfaces. Equilibrium points and periodic orbits can be
considered as special instances of invariant tori—specifically,
zero- and one-dimensional invariant tori within phase space
(Olikara and Scheeres, 2012).

3.1 Initial guess of invariant tori

For Hamiltonian systems, the linear approximation of the
quasi-periodic invariant torus is often related to the center
manifolds of the periodic orbits (Lujan and Scheeres, 2022).
Considering periodic orbits as one-dimensional invariant tori, there

exists a differential isomorphic mapping ̄u (θ1) = [

[

r (θ1)

v (θ1)
]

]
:𝕋1→

ℝn allowing the periodic orbits to be mapped from the state
space with six degrees of freedom into a single-parameter phase
angle space. In a Hamiltonian system, the monodromy matrix
is symplectic, and its associated eigenvalues appear as reciprocal
pairs. The eigenvalues of the monodromy matrix provide insights
into the manifold structure near the periodic orbit. A conjugate
complex eigenvalue pair with a modulus of 1 corresponds to the
center manifold of the periodic orbit. Let ΦT ( ̄u (θ1)) denote the
state transition matrix of a periodic orbit integrated from initial
point ̄u (θ1). Representing the complex eigenvalue as λj+1 = e

iαj+1

and the associated complex eigenvector as y(αj+1), the initial guess
of the invariant torus can be expressed as (McCarthy B. P. and
Howell, 2021):

u(θ1,θ2,…,θm+1) = ū (θ1) + κRe[
m

∑
j=1

eiθj+1y(αj+1)] (6)

In Equation 6, κ is a small quantity. The initial guess of
rotation angle and frequency associated with each dimension
in the phase space can be given as
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TABLE 1 Relevant physical constants in the Earth-Moon system.

Symbol Value Units Meaning

μ 0.01215058560962404 — Earth-Moon mass ratio

LU 384, 405 km Normalization length (Earth-Moon distance)

TU 375, 197.5832256324 s Normalization time

VU 1.024540181456421 km/s Normalization velocity

FIGURE 2
DRO family in the Earth-Moon system. The orange curve is the 2:1
resonant DRO.

FIGURE 3
The relationship between the phase angles of center manifolds and
the Jacobi energy of the entire DRO family.

ρ = [2π,α2,…,αm+1]

ω = [2π
T
,
α2
T
,…,

αm+1
T
]

(7)

It should be noted that all frequencies are nonresonant in
Equation 7, i.e., for any k ∈ ℤn\{0}, k ⋅ω ≠ 0. Thus, the family of
quasi-periodic orbits is Cantorian. A quasi-periodic orbit densely
covers the surface of the torus within a long evolution time.
If resonance occurs between those frequencies, the torus will
degenerate into periodic orbits or lower-dimensional tori. If the
computation continues, the torus typically deviates from the original
orbit family and becomes distorted.

3.2 Invariant constriant

Quasi-periodic motion occurs on an invariant torus in a specific
manner. As mentioned earlier, for any point initially located on the
surface of the torus, when it is integrated for a certain time, the final
state is still on the torus but rotated by a fixed phase compared to the
initial state. This property forms the basis for calculating invariant
tori or quasi-periodic orbits. Since all phase components do not
resonate with each other, the quasi-periodic orbit gradually fills the
entire invariant torus as time evolves.Therefore, computing a quasi-
periodic orbit is equivalent to computing an invariant torus. The
computation algorithm used in this paper is based on the GMOS
algorithmproposed byOlikara and Scheeres, as described inOlikara
and Scheeres (2012). Pseudo-arclength continuation and
natural parameter continuation are both explored for
verification purposes.

For the dynamical systemof interest, it can typically be expressed
as an ordinary differential equation in state space form, as follows
(Jorba and Olmedo, 2009):

ẋ = f (t,x,λ) (8)

where x ∈ ℝn, and λ ∈ ℝq is the external disturbance parameter.
For the CR3BP, the system dynamics is time independent, and
the external disturbance parameter λ is 0. Now, the paradigm of
computing invariant torus can be described as follows. Suppose
that the invariant torus is characterized by m+ 1 non-resonant
periodic components, where the first periodic component is
typically fixed to 0 so as to reduce the dimension of the
invariant torus. There exists a map P:𝕋m+1→ℝ6 such that
for any point on the torus, u(θ1,θ2,…,θm+1) is a differential
isomorphic of the quasi-periodic motion. Suppose that ϕT (x0) is
the flow function generated by Equation 8, then if the initial state
u(θ1,θ2,…,θm+1) is propagated for a stroboscopic mapping time
T = 2π

ω1
, it gives
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TABLE 2 The center manifolds associated with the 2:1DRO in Earth-Moon system.

Orbit type Eigenvalues of monodromy matrix Phase angles Directions of the center manifolds

2:1DRO λ1,2 = − 0.70854± 0.70567i 2.35822 horizontal

λ3,4 = − 0.10068± 0.99492i 1.46995 normal

λ5,6 = 1 — —

FIGURE 4
The relationship between the stroboscopic mapping period and the
rotation angle ρin-plane of the plane 2D quasi-DRO family.

ϕT (u(θ1,θ2,…,θm+1)) = u(u(θ1 + 2π,θ2 +ω2T,…,θm+1 +ωm+1T))

= u(θ1, θ̂
T + ρ̂T)

(9)

where θ̂ = [θ2,θ3,…,θm+1]
T, and ρ̂ = 2π

ω1
[ω2,ω3,…,ωm+1]

T is the
rotation vector. One can conclude from Equation 9 that there
is an invariant map with respect to the rotation vector ρ. As
such, if a rotation operator R−ρ is defined to eliminate the
rotation along the directions of ρ, the invariant constraint can be
formulated as

R−ρ [ϕT(u([⋅, θ̂
T]

T
))]− u([⋅, θ̂T]

T
) = 0 (10)

therefore, from a numerical point of view, computation of quasi-
periodic torus is equivalent to seeking the solution of Equation 10.
A practical numerical method is to represent the high-dimensional
reduced torus on the stroboscopic map in the form of (truncated)
Fourier series,

u (θ) =
N1−1

∑
k1=0
⋯

Nm−1

∑
km=0

Ck⃗e
i(k1θ2+k2θ3+⋯kmθm+1) (11)

where Ck⃗ ∈ ℂ
6 is the Fourier coefficient. k⃗ = [k1,k2,…,km]

T is
the harmonic set of the high-dimensional Fourier series. Nj is
the number of discrete nodes for each phase component θj+1,
(j = 1,2,…,m). To this end, θj+1 is uniformly discretized into
elements in the set shown as follows:

θj+1 ∈ [0 2π
Nj
⋯

2π(Nj − 1)
Nj
] (12)

The first phase angle component is typically fixed (usually set to
0), then for a (m+1)-dimensional invariant torus, it is parameterized
into∏m

j=1Nj nodes. The Fourier coefficient Ck⃗ ∈ ℂ
6 can be obtained

by the Fourier transform of all the discrete nodes, namely:

Ck⃗ (k⃗) =
N1−1

∑
n1=0
⋯

Nm−1

∑
nm=0

u(0,θ2,n1 ,…,θm+1,nm)e
−i(k1θ2,n1+k2θ3,n2+⋯kmθm+1,nm)

(13)

In Equation 13, for each phase angle element θj+1,nl , (l ≤m),
the second subscript nl represents its index in the discrete set
in Equation 12. Let [D] and [D]−1 be, respectively, the Fourier
transform and the inverse Fourier transform operators in matrix
form. According to the rotation characteristics of the Fourier
transform, we have (McCarthy B. P. and Howell, 2021):

[R−ρ] = [D−1][Q−ρ][D] (14)

In Equation 14, [Q−ρ] is a diagonal matrix that rotates the Fourier
coefficients Ck⃗ ∈ ℂ

6 in the frequency domain by a fixed angle, i.e.,
C′
k⃗
= Ck⃗e

i⟨k,−ρ⟩.

3.3 Continuation of invariant tori

The continuation process begins with the calculation of the first
invariant torus. As is discussed at the beginning of this section,
the initial guess is provided by linearizing the center manifold of
the periodic orbit. Let U0 be the column vector composed of all
discrete states on the high-dimensional invariant torus in a certain
order, and U1 be the column vector composed of all the end
states integrated from U0 with a stroboscopic mapping time T. We
then can incorporate the computation of quasi-periodic orbits into
the standard predict-correction framework that can be solved by
Newton’s method. Now, the free variable can be written as

X = [U0;T;ρ] (15)

and the invariant constraint can be given as

FTori = [D]−1 [Q−ρ][D]U1 −U0 (16)

It should be noted that the dimension of free variable X in Equation
15 is m+ 1+∏m

j=1Nj, while the dimension of invariant constraint
in Equation 16 is ∏m

j=1Nj. Thus, additional m constraints Fextra
are required to ensure convergence of the first invariant torus
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FIGURE 5
Four members of the in-plane 2D quasi-DROs family. (A) T = 3.14426, ρplane = 2.34052. (B) T = 3.14547, ρplane = 2.33223. (C) T = 3.15360, ρplane =
2.26970. (D) T = 3.14426, ρplane = 2.34052.

to a member of the unique quasi-orbit family. These additional
constraints Fextra can be incorporated by referring to Lujan and
Scheeres (2022).

Before proceeding the continuation process, some additional
phase angle constraints should also be added to ensure the desired
direction of continuation.This is because for an invariant torus, any
point on the torus satisfies the above constraint equations, namely,
Ftori and Fextra . Therefore, if the phase angle of the invariant torus
is not constrained, the new quasi-periodic solution may still lie on
the same invariant torus, which is obviously trivial. Assuming that
û is the previously converged invariant torus, and u is the current
torus to be computed, then the (m+ 1)-dimensional phase angle
constraints can be expressed as:

Fphase = [⟨u,
∂û
∂θ1
⟩,⟨u, ∂û

∂θ2
⟩,…,⟨u, ∂û

∂θm+1
⟩]

T
(17)

In Equation 17, the partial derivatives ∂û
∂θi
, (i = 2,3,…,m+ 1) can be

directly obtained from the Fourier representation in Equation 11,
while the partial derivative ∂û

∂θ1
is given as (Baresi et al., 2018).

∂û
∂θ1
= 1
ω0
( f (t,x,λ) −

m+1

∑
i=2

ωi
∂û
∂θi
) (18)

Equation 18 is derived through the total differential equation.
By now, the augmented constraint matrix can be obtained as F =
[FTtori ,F

T
extra ,F

T
phase]

T
, and the Jacobi matrix is written as DF = ∂F

∂X
.

Since the phase angle constraint Fphase only specifies the direction
of continuation, the null space of the Jacobi matrix is still one-
dimensional. A pseudo-arclength continuation or natural parameter
continuation scheme can be applied to obtain a unique quasi-
periodic orbit family. In the process of calculating the DFmatrix, the
FFT function ofMatlabⓇ is used to speed up the calculation, and the
related calculation of FFT and its derivation can be found in Johnson
(2011). Also, unfolding parameters are leveraged to square the Jacobi
matrix, which greatly improve the speed of matrix inversion, for
more details, see Olikara (2016).

Two major challenges during the computation process are the
determination of sampling nodes and overcoming the resonant
singularity. As mentioned in Rosales et al. (2021), the convergence
of Newton’s method does not necessarily imply that the solution
accurately represents the torus.Assumeu(θ1,θ2,…,θm+1) represents
the exact invariant torus, which can be represented by a high-
dimensional truncated Fourier series, denoted as û(θ1,θ2,…,θm+1).
Thus, the convergence of the Newton’s method only imply that the
function û(θ1,θ2,…,θm+1) satisfies the invariant constraints at the
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FIGURE 6
(A) The projection of the in-plane 2D quasi-DROs family on the Poincaré section, and the red pentagram represents the P3DROs. (B) the P3DROs with
equal Jacobi energy as 2:1 DROs. (C) The twisted torus between the in-plane 2D quasi-DROs family and the P3DROs.

FIGURE 7
The relationship between the stroboscopic mapping period and the
rotation angle ρvertical of the vertical 2D quasi-DROs family.

sampling points. It is essential to verify whether the accuracy of the
Fourier approximation is maintained beyond the sampling points.
Typically, the accuracy of the invariant torus constraints is tested at
denser random sampling points, specifically:

max
û
‖[D−1][Q−ρ][D]ϕT (û) − û‖ < tol2 (19)

In this manuscript, tol2 is referred to as the torus verification
accuracy, while the convergence accuracy for Newton’s method is
denoted as tol1. If Equation 19 is not satisfied, a higher-order Fourier
series is added (with more samples accordingly), and then the
differential correction is repeated.The number of sampling points is
not fixed throughout the continuation process. Generally, the more
complex, distorted, and larger the invariant torus, themore sampling
points are required.

Since the quasi-periodic torus forms a Cantor set in the phase
angle space, another challenge when resonance occurs is the
singularity phenomenon as the continuation progresses. During
singularity, the invariant torus becomes highly distorted, and
nonlinearity sharply increases. A viable strategy is to dynamically
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FIGURE 8
Four members of the vertical 2D quasi-DROs family. (A) T = 3.13703, ρvertical = 1.48652. (B) T = 3.13549, ρvertical = 1.49223. (C) T = 3.12613, ρvertical =
1.53127. (D) T = 3.12049, ρvertical = 1.56322.

adjust the step size within a specified range when singularity
occurs until it crosses the resonant regions. Additionally, a
hybrid pseudo-arclength continuation and natural parameter
continuation are employed with various initial step sizes to
enhance the reliability of results. The above analysis is summarized
in Algorithm 1.

It should be noted that we introduce rl as an indicator
to distinguish whether to add nodes or adjust the step size.
Specifically, rl measures the rate of change of the torus verification
accuracy tol2. In general, a larger invariant torus requires more
sampling nodes for an accurate characterization. Therefore, under
the condition that the number of discrete nodes remains constant,
the accuracy of the invariant torus will gradually decrease until a
critical scale is reached. At this point, tol2 is no longer satisfied
indicating the need for additional nodes. Moreover, if there is
a sudden decrease in the accuracy of the torus, it is likely due
to an increase in the nonlinearity of the torus caused by its
proximity to the resonance region. In such cases, a larger step
size is necessary.

3.4 Linear stability of invariant tori

The stability analysis of an invariant set can provide
insight into the evolution of the manifold structure in
phase space. The methods we adopt here are based

on those described in Jorba, 2001. The first term of
invariant constraint in Equation 10 has the differential
form as follows:

A([⋅, θ̂T]
T
) = R−ρ
[[

[

∂ϕT(u([⋅, θ̂
T]

T
))

∂u
]]

]

(20)

Jorba shows that, in reducible case, the eigenstructure of matrix
A([⋅, θ̂T]

T
) in Equation 20 is equivalent to the eigenstructure of the

Floquent matrix. Jorba also indicates that if there exist n unrelated
eigenvalues such that B = diag(λ1,…,λn), then for each eigenvalue
λi, λie

⟨k,ρ⟩ are also eigenvalues of matrix B, leading to the full
eigenstructure forming circles in the complex plane. It should be
noted that if the stroboscopicmap is autonomous, then 1 is always an
eigenvalue, which corresponds to the tangent direction of the torus.

The magnitude of the eigenvalues reflects the stability
information. A convenient metric to measure the stability of
invariant objects is the stability exponent, which is defined as:

vi =
1
2
(‖λi‖ + ‖

1
λi
‖) (21)

If all the stability exponents vi in Equation 21 are equal to 1,
the quasi-periodic orbit is stable, otherwise, the orbit is unstable and
there are hyperbolic invariant manifolds.
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FIGURE 9
(A) The projection of the vertical 2D quasi-DROs family on the Poincaré section, and the red pentagram represents the P4DROs. (B) the P4DROs with
equal Jacobi energy as 2:1 DROs.

4 Quasi-periodic orbits in the CR3BP

4.1 The center manifolds of 2:1 DRO and
resonance ratios near their phase angles

During the continuation process of quasi-periodic orbits,
encountering resonance among the phase angles characterizing the
torus is inevitable. Resonance phenomena often signify the presence
of other periodic orbits in phase space. If resonance regions are not
stepped over during the continuation process, quasi-periodic orbits
will deviate from their initial continuation direction. Consequently,
the torus will undergo distortion as the continuation progresses,
leading to a significant increase in nonlinearity. In previous
literatures, while resonance phenomena were acknowledged during
the computation of quasi-periodic orbits, it failed to elucidate
whether the failure in orbit continuation resulted from encountering
strong resonance or if the orbit family reached the boundaries of
continuation. Consequently, the computed orbit families in these
studies are essentially incomplete. Considering these factors, in this
section, we initially elaborate on the resonance ratios that quasi-
periodic motion near the 2:1 DRO might encounter.

Figure 3 depicts the relationship between the phase angles of
center manifolds and the Jacobi energy of the entire DRO family,

where the phase angles of the center manifolds align with the
phase angles of the eigenvalues αj of the monodromy matrix,
providing initial values for the continuation of quasi-periodic orbits.
The blue and red curves in Figure 3 represent the in-plane and
vertical center manifolds, which, upon continuation, give rise to
the in-plane quasi-periodic DROs and vertical quasi-periodic DROs
(collectively referred to as the 2D quasi-DROs family). With the
increase in Jacobi energy, the phase angles of the center manifolds
both exhibit a pattern of initial increase followed by a decrease.
It is noteworthy that when the Jacobi energy of the DROs reach
2.36766 (corresponding to a period of 6.24192), the phase angle of
the normal center manifold becomes 0. This indicates a transition
to a pair of hyperbolic invariant manifolds, signifying the instability
of the DRO family. The yellow dashed line in the figure represents
the Jacobi energy of the 2:1 DRO, which is 2.93052. At this
energy level, the phase angles of the in-plane and normal center
manifolds of the 2:1 DRO are 2.35822 and 1.46995, respectively, as
indicated in Table 2.

Douskos et al. (2007) investigated the impact of resonances
on the in-plane stability region in the vinctiny of DROs. Their
findings revealed that, with the exception of the period-tripling
DRO (P3DRO), all resonant orbits bifurcating from the DROs
are situated within the stable region and gradually approach the
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FIGURE 10
Characteristic parameter space of quasi-DROs at a Jacobi constant of
2.93052. Magenta and yellow scatters represent 2D vertical and
in-plane quasi-periodic families, respectively. Red and green
pentagram represent the P3DRO and P4DRO, respectively.

boundary of the stable region, namely, P3DRO. Hence, for the
in-plane 2D quasi-DROs family around the 2:1 DRO, as the
continuation progresses, the quasi-periodic family will be impeded
by the resonance ratio 1/3, and the phase angle gradually decreases
and eventually approaches 2π/3.This assertion will be substantiated
in subsequent discussions. As for the normal 2D quasi-DROs
family, resonances near the initial phase angles include 1/4, 1/5,
and 1/6, among others. Therefore, the final resonance ratio that
impedes this family depends on the variation in phase angle of the
normal center manifold.

4.2 In-plane 2D quasi-DROs family

2D quasi-periodic orbits can be characterized by two phase
angles. The first phase θ1 represents the phase of the periodic orbit,
while the second phase, denoted as θ2, indicates the torus on the
stroboscopic mapping map. Starting from any point on the torus,
the final state will remain on the same torus after a stroboscopic
mapping time T. This property holds for torus on the stroboscopic
mapping map with different θ1 and serves as the foundation for
computing quasi-periodic orbits. As outlined in Section 3, to obtain
a family of 2D quasi-periodic orbits, an additional constraint
is required. Given that verifying whether an orbit reaches the
boundary often requires analysis using the Poincaré section, and
the scattered points on the Poincaré section typically represent
projections of trajectory flows at specific Jacobi energy levels in the
CR3BP, we choose the Jacobi energy as the additional constraint in
this paper.

Figure 4 depicts the relationship between the stroboscopic
mapping period and the rotation angle ρplane of the in-plane 2D
quasi-DROs family with fixed Jacobi energy. As the continuation
progresses, the stroboscopic mapping time T of the 2D quasi-
DRO orbit family gradually increases, ranging from π to 3.15904.
Simultaneously, the rotation phase angle ρplane gradually decreases,
reducing from 2.35822 to 2.21959. During the continuation process,

the in-plane 2D quasi-DRO family encounters various resonance
regions, as indicated by the red dashed lines in Figure 4. At these
points, ρplane resonates with 2π (the first phase angle of the 2D
quasi-periodic orbit). As the quasi-DROs family approaches the
continuation boundary, the density of resonance regions increases.
This phenomenon may be related to resonant orbits bifurcating
from the DROs. When encountering resonance regions like 7/19,
13/36, and 9/25, the continuation algorithm proposed in this paper
easily navigates through these regions by dynamically adjusting
the step size. These resonance regions have narrow “gaps” in the
orbit family. Therefore, they are referred to as weak resonance
regions. On the other hand, encountering resonance regions like
4/11, 5/14, and 4/17 is relatively more challenging. It requires
more frequent dynamic adjustments, and these three resonance
regions have wider “gaps” in the orbit family. Consequently, they
are referred to as strong resonance regions. In this study, the in-
plane 2D quasi-DROs family is eventually blocked by the resonance
region of 6/17.

Figure 5 shows four in-plane 2D quasi-DROs with different
rotation angles, where the red curves represent the invariant torus on
the stroboscopic mapping defined at two vertically crossing points
of 2:1 DRO, the yellow curve corresponds to the DRO orbit, and the
blue region represents the densely covered area of the quasi-periodic
orbits. It can be observed that the size of the invariant torus increases
as the rotation angle ρplane gradually decreases. The coverage
of the in-plane quasi-periodic orbits in the xy-plane expands
progressively, forming a “ring-shaped” region, and the invariant
torus is tangentially aligned with the inner and outer boundaries
of this “ring-shaped” region. When the size of the invariant torus
is small, it appears nearly elliptical. As the torus size increases, the
outer side of the invariant torus starts to flatten, gradually assuming
a more elongated shape. Subsequently, the growth of the torus in the
x-direction gradually slows down, but it continues to expand in the
y-direction. The continuation of the torus comes to an end when
encountering the resonance ratio 6/17. In this study, the number
of sample points required to character the invariant torus increases
from 11 to 251.

Record the intersections between the in-plane 2D quasi-DROs
and the Poincaré section Σ:y = 0, and project the state variables
(x, ẋ) onto the two-dimensional Poincaré section, as shown in
Figure 6A, where the red pentagram in Figure 6B represents
the P3DRO, and its trajectory is plotted in Figure 6C. It can be
observed that the entire quasi-periodic orbits forms a “shell-
like” family of curves on the Poincaré section. Some curves
exhibit significant gaps between them, indicating their proximity
to resonance regions. Additionally, a small gap exists between
the in-plane 2D quasi-periodic family and the P3DRO. Further
investigation reveals that within this gap, The quasi-periodic orbits
are densely distributed along P3DRO, whereas the distribution
is sparse in regions far from P3DRO. And the invariant torus
becomes highly nonlinear and distorted, as depicted in Figure 6C,
deviating from the original direction of the quasi-periodic
orbit family. Due to its proximity to the 1/3 resonance, the
continuation algorithm easily encounters singularities, leading
to program failure. Therefore, in a loose sense, the planar 2D
quasi-periodic orbit family does reach its maximum boundary,
namely, P3DRO.
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FIGURE 11
(A) Variation of the phase angles of the center manifolds for the in-plane 2D quasi-DROs with respect to ρplane. (B) Variation of the phase angles of the
center manifolds for the vertical 2D quasi-DROs with respect to ρvertical.

4.3 Vertical 2D quasi-DROs family

Figure 7 illustrates the relationship between the stroboscopic
mapping time T and the rotation angle ρvertical of the vertical
2D quasi-DROs family when the Jacobi energy is 2.93052.
As the continuation progresses, the stroboscopic mapping time
gradually decreases, while the phase angle gradually increases. More
specifically, the former decreases from π to 3.12049, and the latter
increases from1.46995 to 1.56322.Thephase space of the vertical 2D
quasi-DROs orbit family also exhibits a series of resonance regions.
It is important to note that although some resonance regions may
appear closely spaced in the phase space, this does not necessarily
imply a small variation in the size of the quasi-DROs before and after
the resonance regions. In this case, the quasi-periodic orbits near
the resonance orbits occupy the resonance region, hindering the
continuation of the quasi-DROs and requiring dynamic adjustments
in step size to overcome the resonance regions. As the continuation
progresses, the resonance regions become more densely packed,
and higher frequencies are encountered, which may be related to
the resonant orbits bifurcated from the DROs. Additionally, based
on simulation results, when ρvertical < 1.51, the z-axis size of the
vertical 2D quasi-DROs family increases rapidly, ranging from 0
to approximately 0.05. However, for ρvertical > 1.51, the growth in
the z-axis size of the quasi-DROs family becomes sluggish, only
progressing from 0.05 to around 0.06. When the height of the quasi-
DROs approaches 0.06, even though ρvertical continues to rise, it
nearly stagnates. The vertical 2D quasi-DROs is ultimately impeded
by the resonance region 1/4, agreeing with Figure 3.

Figure 8 shows four quasi-periodic orbits at different rotation
angles. As the continuation progresses, the size of the vertical quasi-
periodic orbits in the z-direction gradually increases, forming a
“striped” region. And the invariant torus is tangent to the upper
and lower boundaries of the “striped” region. At the far earth
side of the vertically crossing point of the 2:1 DRO, the invariant
torus is figure-eight-shaped. With the increase in torus size, the
upper and lower edges of the torus start to straighten, indicating

a slowdown in the growth of the orbit family in the z-direction.
Subsequently, as the continuation proceeds, the z-size remains
relatively constant, but the torus becomes more nonlinear, resulting
in a more twisted and complex three-dimensional spatial structure
of the “striped” region. It is important to note that, with the increase
in torus size and distortion, more sampling points are needed for
accurate representation. In this study, the number of sampling points
required for the red invariant torus in Figure 8 increases from 11
to 791. It can be noted that as the torus approaches resonance 1/4,
the quasi-periodic orbits will no longer be uniformly distributed
throughout the entire bounded region. Instead, they primarily
concentrate around a four-loop periodic orbit, referred to as P4DRO
in this paper.

The analysis process, utilizing the Poincaré section technique,
for the vertical 2D quasi-DROs is the same as that for the in-plane
2D quasi-DROs. The difference lies in projecting the state variables
(x, ̇z,z) onto the three-dimensional Poincaré section, as shown
in Figure 9B, where the red pentagram in Figure 9B represents
the P4DRO, and its trajectory is shown in Figure 9A. The same
phenomenon, such as significant gaps between family members,
has occurred. Additionally, we have observed that certain curves
are discontinuous, suggesting the existence of other resonant DRO
orbits. From Figure 9B, it can be seen that P4DRO is indeed the
boundary of the 2D vertical quasi-DROs family, which demonstrates
the effectiveness of our algorithm.

Note that when the projections of the vertical 2D quasi-DROs
and the P4DRO on the Poincaré section are positioned to the left
of the Moon, ẋ and ̇z are zero when z takes the maximum value.
Therefore, the vertical 2D quasi-periodic orbit can be characterized
by three characteristic parameters, zmax and its corresponding x and
ẏ, labeled as X = [zmax,x, ẏ]. By the way, since zmax = 0 for the 2D
in-plane quasi-DROs, then X = [xmax, ẏ] according to Figure 6A.
To confirm that chaos emerges beyond P4DRO when the Jacobi
energy is 2.93052, the Poincaré section technology is utilized again.
We firstly discretize the parametersc (x,z) directly, and ẏ can be
determined through the Jacobi energy defined in Equation 4. Then,
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Require: The first converged invariant torus X0 =

[U0;T;ρ]

Ensure: A definite quasi-periodic family

1:  Let tol1 and tol2 be the convergence and

accuracy tolerance of torus.

2:  Let rl,max be the maximum allowable ratio of the

current torus accuracy to the average accuracy of

the previous l torus.

3:  k⇐ 1; k1⇐ 0; k2⇐ 0; r⇐ [].

4:  Obtain the initial quasi-periodic orbit, and

check its accuracy r0, if r0 ≤ tol2 is satisfied,

then r⇐ [r;r0].

5:  while k ≤ N do

6:   Update the initial guess of kth torus by

moving a step size ds, and compute the new torus

7:  if tol1 is not satisfied then

8:   scale ds within a given range, k1⇐ k1 +1

9:   if k1 ≥ k1,max then

10:    stop

11:   end if

12:   continue

13:  else

14:   k1⇐ 0

15:  end if

16:  if tol2 is not satisfied then

17:   rl⇐
r(end )

mean(r(end−l+1:end ))

18:   if rl ≥ rl,max then

19:    turn to line 8

20:   else

21:    add m sampling nodes for the current torus,

k2⇐ k2 +m

22:    if k2 ≥ k2,max then

23:     stop

24:    end if

25:    continue

26:   end if

27:   continue

28:  else

29:   k2⇐ 0

30:  end if

31:  save kth torus, k⇐ k+1, r⇐ [r;rl]

32:  end while

Algorithm 1. Adaptive continuation framework.

for each initial state characterized by the aforementioned three
variables, integrate it for 2,000 revolutions. If the orbit remains
bounded or does not collide with celestial bodies, it is considered
a quasi-periodic orbit.

Figure 10 validates our previous conclusion that, when the
Jacobi energy is 2.93052, P3DRO and P4DRO are the boundaries
of the in-plane 2D quasi-DROs and vertical 2D quasi-DROs,
respectively. It should be noted that P4DRO only serves as the
boundary of the vertical 2D quasi-DROs when the Jacobi energy is

colse to 2.93052. The phase angle of the vertical center manifold of
DROs undergoes significant changeswhen the Jacobi energy is in the
range of 2.8–3.2. Therefore, if the phase angle of the vertical center
manifold of DRO approaches 1/5 or 1/6, the boundary of vertical 2D
quasi-periodic orbitsmight be associatedwith other resonantDROs.
However, this aspect is beyond the scope of this study.

5 Stability analysis

The stability analysis of these two families is conducted in this
section. For Hamiltonian systems with six-dimensional state space,
the Floquent matrix of invariant objects is symplectic, leading to
all eigenvalues appearing in the form of three recipocal pairs. Since
the stroboscopic is autonomous in the CR3BP, all torus has a pair
of eigenvalues equal to 1, and futher, equal to e⟨k,ρ⟩. Therefore, our
focus will be on the types of the remaining two pairs of eigenvalues.
Eigenvalues with modulo 1 represent either the torus itself or
the direction of other center manifolds, while eigenvalues whose
modulus is not 1 indicate the direction of hyperbolic manifolds.
As stated in Olikara and Scheeres (2012), the maximum dimension
of the torus in n-dimensional autonomous system is up to n/2,
then we can induce that all the eigenvalues of the 3D torus (if
exists) in the CR3BP are equal to 1. Therefore, there are always
two pairs of eigenvalues equal to 1 for 2D torus in the CR3BP, and
the remaining pair of eigenvalues, after our numerical computation,
are conjugate complex whose modulus is 1. And the phase angles
of the center manifolds of these two types of 2D quasi-DROs are
displayed in Figure 11.

Therefore, both types of quasi-periodic orbits are long-term
stable, offering more orbit choices for mission design.

6 Conclusion

In this paper, we have explored the dynamical structure near
2:1 resonant distant retrograde orbit in the circular restricted
three-body problem. An adaptive continuation framework with
adjustable step size and sampling nodes is proposed to solve the
challenges encountered in the calculation of quasi-periodic families.
The 2D plane and vertical quasi-periodic families are computed,
respectively. Since the family of quasi-periodic orbits is Cantorian,
a series of resonant regions will be encountered as the family
evolves, leading to some “gaps” in the continuation process and the
phenomenon of singularity of the invariant torus. In addition, we
have observed that denser regions will occur in the coverage of
quasi-periodic orbits when the rotation angle is close to resonance.

As a preliminary attempt, the geometric boundary that can be
reached by the 2D quasi-periodic families in the CR3BP has been
analyzed using the Poincaré map method. It has been verified by
numerical simulation that the P3DRO and P4DRO are geometric
boundaries of the 2D in-plane and vertical quasi-DROs. These
dynamical structures greatly enrich the knowledge of the phase
space near 2:1 resonant DRO, which is a major destination for
cislunar space exploration.

As the CR3BP represents the most simplified model of multi-
body dynamics, it disregards the eccentricity of theMoon’s orbit and
the perturbative effects of the Sun. Future research will extend to

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2024.1352489
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Wang et al. 10.3389/fspas.2024.1352489

examine the existence of quasi-periodic orbit families when
these factors are incorporated. Additionally, future work will
focus on applying these dynamical structures to space missions,
including formation flying, transfer trajectories, and eclipse
mitigation.
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