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The Scalar Field Dark Matter model has been known in various ways throughout
its history; Fuzzy, BEC, Wave, Ultralight, Axion-like Dark Matter, etc. All of
them consist in proposing that dark matter of the universe is a spinless field
Φ that follows the Klein-Gordon (KG) equation of motion □Φ−dV/dΦ = 0, for
a given scalar field potential V. The difference between different models is
sometimes the choice of the scalar field potential V. In the literature we find
that people usually work in the non-relativistic, weak-field limit of the Klein-
Gordon equation, where it transforms into the Schrödinger equation and the
Einstein equations into the Poisson equation, reducing the KG-Einstein system,
to the Schrödinger-Poisson system. In this paper, we review some of the most
interesting achievements of this model from the historical point of view and its
comparison with observations, showing that this model could be the last answer
to the question about the nature of dark matter in the universe.
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1 Introduction

The Scalar Field Dark Matter (SFDM) model proposes that the dark matter of the
universe is a spinless particle Φ fulfilling the Klein-Gordon equation

□Φ− dV
dΦ
= 0 (1)

where□ is the D’Alambertian operator in a curved spacetime, whose source of Einstein’s
equations is the Scalar Field (SF), where the SF can be neutral (real) or charged (complex).
Therefore, strictly speaking, we have to solve the Einstein-KG system. However, in galaxies
and in general in the universe, systems are non-relativistic, and gravitation is weak enough
so that the Einstein-KG system can be reduced to the Schrödinger-Poisson system, which
in general is much easier to solve.

The origin of SF is unknown since we do not have a definitive unifying theory of all
interactions. The easiest way to understand its origin is to add an SF term to the Standard
Model (SM) of particles as we do with the rest of the terms of this model. There are other
proposals, such as that the SF comes from superstring theory or that it has a QCD-type
origin but with ultralight mass, etc. We will treat it here in a generic way, and we will focus
only on the results as a dark matter candidate, leaving its origin for future work.
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Dark matter behaves in a way similar to dust, as in the case of
Cold Dark Matter (CDM), and SF mimics dust when it oscillates
at the minimum of a potential (Turner, 1983). Therefore, the most
popular SF potentials are those in which the SF potential V has a
minimum. It is convenient to expand the SF potential into an even
series of Φ as

V = V0 +
1
2
m2Φ2 + λ

4
Φ4 +⋯ (2)

where we can interpret V0 as the expectation value of the SF
vacuum, m is the mass and λ the self-interaction parameter, where
for complex SF the Φ2 changes by |Φ|2. This expansion is generic
as long as we do not know the correct form of V. However, there
are some proposals for V coming from some theories, such as QCD
axions, with the SF potential V = f sin(bΦ) or V = A(cosh(bΦ) − 1)
(Sahni and Wang, 2000; Matos and Urena-Lopez, 2001), derived
from superstring theory.

To the best of our knowledge, the idea that an SF could
be dark matter of the universe began in 1983 by Baldeschi et al.
(1983), where they fit the rotation curves of galaxies using boson
and fermion particles. In 1990 the authors in (Press et al., 1990)
presented a model in which a quartic potential V = V0(1− λ|Φ|2)

2

can explain the large-scale structure of the universe; this SF covers
the missing mass of the universe. The first comparison of the model
with real galaxies was made in 1992 (Sin, 1994; Ji and Sin, 1994),
where the authors proposed a Bose gas to fit the rotation curves of
galaxies, with a mass of the SFDM of the order of 10−23eV. The first
numerical simulations with SF to form galaxies were presented in
1993 in (Widrow and Kaiser, 1993), where they obtained the shape
of a galaxy using the Schödiger-Poisson system.

In 1995 (Lee et al., 1996) suggested that repulsive quartic self-
interaction increases the length scale toO(√λmP/m

2) even for a tiny
λ, wheremP is the Planckmass. An approximate analytic solution for
the ground state was obtained for the Thomas–Fermi limit. Based
on the theory of boson stars, the maximum stable central density
and the maximum halo mass for the λ = 0 case yielded a bound of
10–28 ≤m ≤ 10−22eV.

Independently, in 1998, it was proposed in (Matos and Guzman,
2000) that SF can solve the problem of dark matter and that this
field can explain the rotation curves of galaxies, initiating the first
systematic study of this paradigm. Subsequently, the idea of SFDM
has been rediscovered many times, such as Fuzzy DM (Hu et al.,
2000), Quintessential DM (Arb et al., 2001; Arbey et al., 2002);
Ultralight DM (Amendola and Barbieri, 2006; Lundgren et al.,
2010); Bose-Einstein condensate DM (Boehmer and Harko, 2007;
Rindler-Daller and Shapiro, 2010; Chavanis, 2011); Wave DM
((Bray, 2010; Schive et al., 2014)); Super Fluid DM (Berezhiani et al.,
2023a), etc. In 2017 this idea became fashionable and one of the
favorite candidates to explain DM after the publication of the article
(Hui et al., 2017).

The SFDM model has two parameters, the mass m = m̂c/ℏ,
where m̂ is the mass in grams, and the self-interaction parameter
λ. With these two parameters, it is possible to fit a large number of
DM observations into the universe. The objective of this work is to
historically list some of itsmost important achievements, andwewill
focus on the following.

• Good agreement of the rotation curves of stars and dust
around galaxies.

• Good agreement with cosmological constrains and Big Bang
Nucleosynthesis
• An alternative solution to the cusp-core problem.
• An alternative solution to the problem of satellites.
• The central black holes in galaxies.
• This is in excellent agreement with the CMB and MPS

cosmological observations.
• The agreement with the cosmological numerical simulation.
• A natural explanation of the anomalous trajectories of satellites

around galaxies.

Some predictions.

• The existence of a soliton at the center of galaxies.
• The structure formation of galaxies according to cosmological

numerical simulations
• An alternative explanation to the Fermi Bubbles

In what follows, we want to touch on each of these issues by
giving a historical development of the paradigm showing how the
SFDM model solves or reduces the problem in each of these issues.

2 Rotation curves

Completely independently, in 1998 it was proposed by Tonatiuh
Matos and Francisco S. Guzmán the idea that dark matter (DM)
could be a scalar field as a doctoral topic. In this work (Scalar
fields as dark matter in spiral galaxies, Matos and Guzman, arXiv:gr-
qc/9810028 (Matos and Guzman, 2000)), was shown that this
hypothesis could explain the observed rotation curves of stars and
gas around galaxies. As in (Sin, 1994), the authors can fit well the
rotation curves of specific galaxies. The fit of the rotation curves has
been carried out through approximate solutions of the Schrödinger-
Poisson system or through numerical simulations. For example, if
the SF is real, in (Lee et al., 1996) and (Harko, 2011a) the authors
used aThomas–Fermi approximation to fit the rotation curves.They
found that the density profile ρ of the SFDM is

ρ = ρ0
sin (x)

x
(3)

where ρ0 is a constant and x is a unitless distance parameter. In
(Robles and Matos, 2013a) the authors find that if the SF is complex,
using some approximations, they find

ρ = ρ0
sin2 (x)

x2 (4)

Or, using numerical simulations, in (Schive et al., 2014) they find
that the density profile is

ρ =
ρ0

(1+ x2)8
(5)

in the core of the galaxy, but the NFW profile ρ = ρ0
x(1+x2)

for x is
larger than this core. All of these profiles fit well the rotation curves
of galaxies.

However, in 2002 it was noted that there were two problemswith
the model that had to be dealt with. The first is that galaxies were
found to be unstable according to this model. The second is that
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supermassive black holes in galaxies could swallow the SFDM halo.
The second problemwill be described in Section 6.Next, we describe
the first problem.

In (Guzman andUrena-Lopez, 2003;Guzman andUrena-Lopez,
2004; Guzman and Urena-Lopez, 2006) the authors found that the
numerical simulations of the collapse of the SFDM do not stabilize,
and the collapse continues until it forms a too compact object; the
authors call it gravitational cooling. This collapse depends on the
mass of the object; for large objects, this gravitational cooling is long
enough to explain the existence of galaxy clusters, but for smaller
masses it is too short to explain the shape of galaxies. There are at
least twoways out of this problem.Thefirst is to take into account the
rotation of the SFDM. If the SFDM has a spin, the spin prevents the
galaxy from collapsing. The second way out is to take into account
the quantum character of the SFDM and invoke the excited states of
the system.

It is possible to derive a Tully-Fisher relation from SFDM as in
MOND (Bray and Goetz, 2014; Lee et al., 2019).

Another line of research is that when the SFDM is in a thermal
bath and its finite temperature is taken into account, the Schrödinger
equation predicts that the SF can have fundamental and excited
states. The first attempts at this line of research are (Matos and
Suarez, 2011), using a one-loop SF potential,

V = −m2
ΦΦΦ⋆ + λ

2
(ΦΦ⋆)2 + λ

4
ΦΦ⋆T2 + π2

90
T4 (6)

and (Harko and Madarassy, 2012) using the SF expansion. More
approaches to this are given in (Robles andMatos, 2013a; Matos and
Suárez, 2014), where the rotation curves are fitted using the ground
and excited states of the SFDM. But the most interesting success of
this line of research is the fact that the excited states are figure 8-
shaped and are capable of explaining the Vast Polar Orbits (VPO),
which we will see in a later section.

3 The cosmological constraints

Since the model fits the rotation curves of galaxies well, it must
also be checked whether this model complies with cosmological
observations, for example, Big Bang Nucleosynthesis (BBN), Mass
and Power Spectrum (MPS), Cosmic Microwave Background
(CMB), etc. This was done for the first time in (Matos and Urena-
Lopez, 2001), where the authors used a modified code CMBFAST
to obtain the MPS and CMB of the model, and they found more
or less agreement with the data found up to this point. At that
time, the data were not that good, but it was enough to say that
the agreement between the data and the model is good enough for
the model to be viable. This analysis was then performed several
times as the data were improved, showing that the model agrees
excellently with the cosmological data; see, for example, (Harko,
2011b; Hlozek et al., 2015; Ureña López and Gonzalez-Morales,
2016; Cedeño et al., 2017).

It is usual to separate the background part from a perturbed
fluctuation, Φ =Φ0 + δΦ, then the fluctuation δΦ fulfills the
following equations:

∇2 δΦ− ̈δΦ− 2H ̇δΦ+V,Φ0Φ⋆0
a2δΦ+V,Φ⋆0Φ⋆0a

2δΦ⋆ − 2V,

Φ⋆0a
2ϕ+ 4ϕ̇Φ̇0 = 0, (7)

2∇2ϕ− 6H(ϕ̇+Hϕ) = κ2 [(Φ̇0
̇δΦ⋆ + Φ̇⋆0 ̇δΦ) − 2ϕΦ̇0Φ̇

⋆
0

+ a2δV] , (8)

where ϕ is the Newtonian potential, and δV is defined as

δV≔ V,Φ0
δΦ+V,Φ⋆0δΦ

⋆. (9)

(7) is the KG equation for the perturbation δΦ, and (8) is the Poisson
equation. These two are part of the fluctuation equations used to
study perturbations in an SFDM system. The rest of the equations
are the same as in the ΛCDM model.

The next observation to be taken into account is the BBN. In
(Li et al., 2014) it has been shown that to comply with the BBN
constraint, it is necessary for the SF to have a self-interaction λΦ4,
with λ ∼ 10–90 ultra small but not zero. This result is very important
because it implies that the SF must have a small self-interaction to
satisfy all cosmological constraints, although this very small self-
interaction seems to have no observational repercussions at the
galactic level.

Furthermore, gravitational waves (GW) impose some
restrictions on the SFDM model. In (Li et al., 2017) it is shown
that the GWs produced during inflation can interact with the
SFDM and produce a signal detectable by LIGO/Virgo and
LISA. This possible interaction imposes some limitations on
the reheating temperature of the universe, excluding a range of
reheating-temperature parameters for a certain range of mass and
self-interaction parameters.

4 The cusp-core problem

This problem has been observed since the 1990s, when
people realize that CDM numerical simulations predict a huge
concentration of DM at the center of galaxies and observations
in dwarf galaxies seem to indicate that there is not as much
concentration there, that is, the density profile of the DM in the
center appears to be constant. There is a lot of discussion on this
topic, but observations at the center of galaxies are not compatible
with CDM predictions. To solve this problem, CDM needs more
physical assumptions to flatten the density profile. There is a great
deal of literature on this. Furthermore, in the satellite galaxies of our
neighborhood, the center of these galaxies shows that they all have
the samemass of 107M⊙ within the first 300 pc, for at least six orders
of magnitude in luminosity of the satellite galaxies (Strigari et al.,
2008). Although it has been confronted with LCDM, its solution is
not satisfactory.

The first paper proposing that SFDM could provide a natural
solution to this problem was in (Hu et al., 2000), where the authors
solve the SFDM equations

i(∂t +
3
2
̇a

a
)ψ = (− 1

2m
∇2 +mϕ)ψ (10)

where Φ = ψeimt +ψ⋆e−imt, in one dimension to show that SFDM
does not have such concentrations. The idea they put forward is
that the SFDM model, which they called Fuzzy Dark Matter, has a
quantum character and it is the uncertainty principle that prevents
the DM from concentrating on a point, because in that case we are
able to locate it. Due to the uncertainty principle, the location of the
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DM causes the angular momentum to grow, and this prevents the
concentration of matter in the center. The first analytical result on
this topic was published in (Bernal et al., 2008), where the authors
use approximations to find the density profile of dwarf galaxies and
find a fit between observations of real dwarf galaxies and the central
density profile predicted by SFDM, showing that this problem is
solved naturally for the SFDM model without further assumptions.
See also (Harko, 2011a; Su and Chen, 2011) for an alternative
approach. This result was corroborated in (Schive et al., 2014) using
3D numerical simulations, and the authors show that SFDM does
indeed have a core density profile as previously predicted by
(Hu et al., 2000) and (Bernal et al., 2008) and opened an important
line of research for 3D numerical simulations followed by (Du et al.,
2017), (Mocz, 2019), among others. Numerical simulations of SFDM
today have the same level of accuracy as CDM, which shows that
SFDM is a viable model for the DM of the universe.

The observation that all satellite galaxies have the same amount
of DM inside of the first 300 pc has also been faced using SFDM in
(Lee and Lim, 2010) using numerical simulations, here the authors
find that the visible matter density of a dwarf galaxy has a universal
core size rc = 4,000, corresponding to the physical size rc ∼ 300pc
and the total mass within this size Mtot ∼ 0.00019, corresponding
to 4.75× 107M⊙. However, the SFDM is a field and satisfies the
Schrödinger-Poisson field equations that contain scale invariance.
In (Ureña López et al., 2017) using analytical methods, it was shown
that this scale invariance implies that all galaxies must have the same
mass within ∼350 pc, giving a completely natural explanation to the
observations of (Strigari et al., 2008).

5 The satellites problem

In the year 2000, Tonatiuh Matos and Luis A. Ureña-López,
studied for the first time the SFDM hypothesis from a cosmological
point of view. In (Matos and Urena-Lopez, 2001) the results
were spectacular, finding for the first time that all cosmological
observations up to that time were explained within the error bars by
SFDM.They showed that the CMB andMPSwere in agreement with
those observed at the time and began the systematic cosmological
study of this paradigm. The main result in (Matos and Urena-Lopez,
2001) was that, using the mass of the scalar field as a free parameter,
it was shown that the SF has a natural cutoff of the mass power
spectrum, which implies that the theoretical number of satellite
galaxies is of the order ofmagnitude of those observed, provided that
the mass of the SF is 10−22eV, coinciding with the mass necessary to
explain the rotation curves of galaxies. This result was corroborated
many years later by numerical simulations (Schive et al., 2014) and
semi-analytical analysis (Bozek et al., 2015).

Simply, the main idea was that perturbations of the scalar field
δΦ from the decomposition Φ =Φ0 + δΦ form the large-scale fabric
of space-time. Here Φ0 is the SF for the background and depends
only on t. The point is that this perturbation δΦ follows a damped
harmonic Equation (7) with the potential V =m2Φ2.

̈δΦk + 2H ̇δΦk − (k2 +m2a2)δΦk = −2m2Φ0a
2ϕ− 4ϕ̇Φ̇0, (11)

where Φk is the Fourier transform of Φ and k is its corresponding
wave number, driven by a force −2m2Φ0a

2ϕ− 4ϕ̇Φ̇0 that oscillates

with a frequency very similar to the mass of the SF. The damped
term essentially depends on themass of the SF, the scale factor a that
determines the redshift of the perturbation, and the wave number
k of the Fourier transform of the perturbation, that is, the size of
the perturbation. When the damping term is in resonance with the
oscillating force term, we will have an increasing perturbation. But
when they are not in resonance, the damping term will cause the
perturbation to decrease and disappear.With this, a relationship was
found between the size and redshift of the perturbation and themass
of the SF versus the frequency of the driving force.The free parameter
m was set using the hitherto known number of galaxies in our
neighborhood given the magic number of m ∼ 10−22eV, according
to the same mass value found to fit rotation curves in galaxies. In
fact, the disturbance equation was solved with numerical methods,
giving a relationship between all the quantities involved.

The first work that proved that this result is right was in
(Guzman and Urena-Lopez, 2004), where the author found that
the gravitational collapse of a SF contains, in fact, this cutoff point
of the mass power spectrum. Further in (Schive et al., 2014), using
numerical 3D simulations, the author finally showed that indeed the
number of satellite galaxies was on the order of the observed one in
our galaxy. See also (Du et al., 2017; Mocz, 2019).

It is also suggested that the SFDMmodel exhibits a characteristic
size and mass scale consistent with dwarf galaxies and can account
for the observed size evolution of very massive compact galaxies in
the early universe (Le and e, 2009; Lee, 2016).

6 The central black holes

Galaxies contain a Supermassive Black Hole (SMBH) at their
center. However, it is difficult to understand how some SMBHs
formed, especially those at high redshifts. If the growth of these
SMBH were by accretion, we have to explain how this accretion
of matter grows the SMBH from 102M⊙ to, say, 109M⊙ with an
accretion of one M⊙ per year, at high redshifts. There are a few
proposals for this, ranging from galaxy collisions to primordial
formation of SMBH during the Big Bang. All of them contain pros
and cons, and the SFDM offers an alternative explanation of this
problem that seems very natural but so far incomplete. The proposal
is based on numerical simulations carried out in (Seidel and Suen,
1991), where the authors found that the critical mass of collapse of a
real scalar field isMcrit = 0.6m

2
pl/m, wherempl is the Planckmass and

m is the SFDM mass. If we plug m ∼ 10−22eV into this formula, we
find Mcrit ∼ 1013M⊙, which is very large. For a complex scalar field,
the result is similar (Balakrishna et al., 1998), the authors find that
the critical mass of collapse for a complex SF is Mcrit = 0.1m2

pl/m.
This gives two results; the first is that SFDMgalaxy halos have a given
natural mass limit, so that beyond this critical mass the SF collapses
to form BH. However, at the same time, this large collapsing mass
could explain the formation of SMBH at the center of galaxies,
provided that amechanism can be provided to reduce thismass.This
hypothesis was proposed in (Torres et al., 2000; Urena-Lopez and
Liddle, 2002) and further discussed in (Avilez et al., 2018; Lee et al.,
2020; Padilla et al., 2021), giving some optimistic results.

However, there is an interesting problem that we must face.
Supermassive black holes at the center of galaxies could swallow all
the SF.This problemwas addressed in (Cruz-Osorio et al., 2011) and
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FIGURE 1
A simulation snapshot of a rotating black hole binary in a SFDM halo
with a mass of 1010M⊙ (Koo et al., 2023). Each black hole (star) has a
mass of 107M⊙ and the initial separation is 0.9 pc. The SFDM particle
mass m = 10−21eV, and each axis has a size of 24 pc and a resolution of
300.

years later in (Hui et al., 2019; Kiczek andRogatko, 2020).The results
show that the SF can be accreted by the central SMBH, but at a very
small rate, so that the SF can coexist with the SMBH for longer than
the lifetime of the universe.

In 2023 (Koo et al., 2023) it was proposed that halos surrounding
rotating SMBH binaries with SFDM spikes (Shen et al., 2023) can
emit dark matter waves (Bromley et al., 2023). These waves could
carry away orbital energy from the black holes, causing them to
merge rapidly and potentially providing a solution to the final parsec
problem (See Figure 1).

7 Cosmological numerical simulations

The first simulations of SFDM were using the Schrödinger-
Poisson system approximation

∂tψ = (−
1

2m
∇2 +mϕ)ψ

∇2ϕ = 4πGδρ,
(12)

were δρ = m2

2
δψ, were performed at (Alcubierre et al., 2002a;

Alcubierre et al., 2002b; Alcubierre et al., 2003), where it was shown
that SF collapse forms stable objects and can be compared to the
halo of a galaxy, generating a central nucleus and with a natural
cut in the mass power spectrum. However, the first 3D numerical
simulations were performed at (Schive et al., 2014), where previous
results, such as the central nucleus in the center of the galaxy and the
cutoff in the mass spectrum, were corroborated beyond doubt. This
article started a series of works on 3D numerical simulations that
were very successful; see, for example, (Du et al., 2017; Mocz et al.,
2017; Du et al., 2018; Church et al., 2019; Mocz, 2019; Davies and
Mocz, 2020;Mocz et al., 2020; Veltmaat et al., 2020), by reproducing
the shape of the universe, we observewith fewer satellite galaxies and

a central nucleus in galaxies without additional physics. Today, these
numerical simulations can be compared with the same ones made
with ΛCDM, showing only some essential differences. The most
important thing is that, while ΛCDM predicts a central cusp density
profile, SFDM predicts a galactic center, with a flat region called the
soliton, discovered in 3D simulations in (Schive et al., 2014). This
feature can make the difference between these two models (Dave
and Goswami, 2023a). The other is the number of satellite galaxies
around their hosts. While ΛCDM predicts thousands of satellite
dark halos that need to be detected somehow, SFDM predicts a
moderate number of them, which agree well with what is observed.
Another feature that should be the difference is that the SFDM
predicts that this soliton at the center of galaxies moves with time
(Chowdhury et al., 2021), this feature is a footprint to be observed
in galaxies if the SFDM is the DM in the universe.

The first numerical simulations with spherical symmetry also
showed another problem; after the formation of the SFDM the object
continues to collapse forming an object too dense to simulate a
galaxy halo. This collapse is scale dependent; for large objects, such
as galaxy clusters, this collapse takes so long that the formation of
galaxy clusters can be explained very well with this model, but the
formation of galaxies and dwarf galaxies collapse too soon (Guzman
and Urena-Lopez, 2003; Guzman and Urena-Lopez, 2004; Guzman
and Urena-Lopez, 2006). This problem was addressed for the first
time in the literature considering the quantum characteristics of the
scalar field using the excited states of the system in (Urena-Lopez
and Bernal, 2010; Matos and Suárez, 2014). The idea is that since the
SFDM is a quantum-mechanical system, it should contain excited
states that could give the system some additional stability. The main
result here is that galaxy halos, even for small galaxies such as LSB or
drwaf, remain stable (Urena-Lopez and Bernal, 2010; Guzmán and
Ureña López, 2020).Therefore, it is necessary for the halo of galaxies
to have at least two cohabiting states to adapt to the rotation curves of
the galaxies. With this in mind, in (Robles and Matos, 2013a) some
galaxy rotation curves were fitted using excited states of the SFDM,
giving a good result.More recently, this idea has been used to explain
other phenomena such as VPOs and Fermi bubbles, which we will
discuss in the following. This idea started a new paradigm in the
literature called ℓ-boson stars (Alcubierre et al., 2018).

8 The vast polar orbits (VPO) problem

For some time, astronomers have observed that the satellite
galaxies of the Milky Way are not distributed homogeneously but
that there are anomalous trajectories of the satellites of this galaxy,
called VPO (Pawlowski et al., 2013; Pawlowski and Kroupa, 2020),
establishing that among the 50 satellites in the Local Group, 43
are contained in four different planes, but this is inconsistent
with simulations based on CDM because it predicts that this
distribution must be isotropic. Furthermore, this alignment has
also been observed in M31 (Conn et al., 2013; Ibata et al., 2013).
Numerical CDM simulations predict that satellite galaxies around
their host should be homogeneously distributed (Shaya and Tully,
2013; Pawlowski, 2018). More recently, this same alignment of
the paths of satellite galaxies has been observed in Centaurus,
where 31 satellite galaxies in the constellation of Centaurus interact
gravitationally with the elliptical galaxy Centaurus A and display a
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similar anisotropic alignment (Müller et al., 2018). In a recent work
(Solís-López et al., 2021), the authors took into account these excited
states of the galaxy’s halo, treating the galaxy’s halo as an atom

Φ = R (r)Ym
l (φ,θ)T (t) (13)

where Ym
l are the spherical harmonics functions, to explain these

observations and show that this behavior of the satellites is very
natural in SFDM. This is so because the quantum character of the
SFDM (Matos, 2022) allows us to put the states of the SF as in
an atom. The ground state is spherically symmetric, but the first
excited state has a figure-8 shape, aligning surrounding objects with
the figure-8 shape. This is an important feature of the SFDM, the
probability of finding this alignment is too low to be able to be
explained as a simple chance, but if the SFDM is the real nature
of the DM, we must find this alignment in more galaxies. These
observations may be made in the near future. In (Park et al., 2022)
another mechanism for the formation of the satellite plane based on
the gravitational cooling of the SFDM was proposed.

9 Detection

It is actually very difficult to detect or design an experiment to
detect a spinless particle with an ultralight mass. There are several
hypotheses and proposals that attempt to do that, but so far these
attempts have had limited results. We want to mention only some of
them here.

In (Bozek et al., 2015) the authors use the MPS cutoff for the
SFDM to construct a UV luminosity function and compare it to the
Hubble ultra-deep field UV luminosity function, giving a constraint
on the SFDM mass m ≥ 10−22eV. Observables of 21 cm and
fluctuations in CMB are proposed in (Kadota et al., 2014), including
measurements of the CMB lens that can provide information on the
existence of SFDM for different masses m < 10−26eV.

Other possible ways to detect SFDM are using atomic
methods such as hyperfine frequencies (Hees et al., 2016),
or atomic clocks (Kouvaris et al., 2020; Filzinger et al., 2023),
interferometers (Aiello et al., 2022; Zhao et al., 2022; Kim, 2023),
atom multigradiometry (Badurina et al., 2023Badurina et al., 2023),
or neutrino interactions (Cordero et al., 2023).

Gravitational waves produced by Black Hole (BH) mergers
are one of the most anticipated ways to detect any sign of
the existence of SFDM, e.g., gravitational waves emitted by BH
(DAntonio, 2018; Isi et al., 2019; Morisaki and Suyama, 2019;
Palomba et al., 2019; Sun et al., 2020;Ng et al., 2020;Ng et al., 2021a;
Banerjee et al., 2023; Liu et al., 2021; Manita et al., 2023; Yu et al.,
2023; Miller and Mendes, 2023; Tsutsui and Nishizawa, 2023),
or gravitational wave resonance (Speeney et al., 2022; Delgado,
2023), using superradiance from BH (Hannuksela et al., 2019), BH
mergers (Ng et al., 2021b; Chung et al., 2021; Chan andHannuksela,
2022), or the deflection angle of black holes (Pantig and Övgün,
2022). Another possible way to detect SFDM is observations in
galaxies and their surroundings, e.g., with short-range gravity
experiments (Qin et al., 2022), gravitational lensing (Powell et al.,
2022; Cabrera-Rosas and Matos, 2023) or dynamical friction
(Traykova et al., 2021; Boudon et al., 2022; Vicente and Cardoso,
2022; Wang and Easther, 2022; Berezhiani et al., 2023b), binary

pulsars (Blas et al., 2020) compact eccentric binaries (Su et al.,
2021), extreme mass-ratio inspirals (Barsanti et al., 2023), direct BH
observations using the Event Horizon Telescope (Davoudiasl and
Denton, 2019; Saha et al., 2022; De Luca and Khoury, 2023), or by
asteroid date (Chakrabarti et al., 2022; Tsai et al., 2023a; Tsai et al.,
2023b), quadruply-imaged quasars (Laroche et al., 2022) frame
draggin effect (Poddar, 2022), kinetic Sunyaev-Zel’dovich effect
(Farren et al., 2022), Shapiro delay (Poddar, 2021), or in the center of
our galaxy by motion of the S2 star around Sgr A (Yuan et al., 2022;
Della Monica and de Martino, 2023).

An alternative is to use the Pulsar Timing Array (PTA)
to detect SFDM particles (Porayko et al., 2018; Afzal et al., 2023;
Antoniadis et al., 2023; Hwang et al., 2023; Smarra et al., 2023;
Xia et al., 2023).

The existence of a central soliton is another distinguishing
feature of SFDM (De Martino et al., 2020). Another interesting
method is by tidal effects and tunneling out of satellite galaxies (Dave
and Goswami, 2023b). The number of proposals is huge, there are
many possible ways to find a signal of the existence of SFDM (for
a recent one see (Kousha et al., 2023)), and it is possible that the
detection of this type of DM is close.

10 Conclusions and challenges

The SFDM model has proven to be a paradigm that is very
capable of explaining DM in the universe. This model has surpassed
25 years of most new observations of the universe and every
time the observations go further with better resolution, the model
fits the observations with better clarity, especially cosmological
observations which are now very high resolution. This model is
today a true competitor to the cold dark matter model, as it offers
alternative explanations for the phenomena we see in the universe,
with fewer hypotheses and less additional physics.

We believe that there are at least two observations that other
DM models cannot explain, the first is that all satellite galaxies in
our neighborhood contain the same amount of matter within the
first 300pc. As we saw, the SFDM model is capable of explaining
this fact in a very natural way. The other observation that can be
explained using the SFDM in a very natural way is the VPOs. One
of the main characteristics of the SFDM is its quantum character
(Matos, 2022), even though the SF is considered classical in this
model, the SF complies with the Schrödinger equation that contains
excited states.This is a characteristic unique to thismodel, therefore,
if we see more galaxies with VPO or with Femi bubbles, this will be
a strong corroboration that SFDM or some very similar candidate is
the final answer for the DM nature in the universe. We do not know
of any other model that can explain these observations in a way as
natural as the SFDM model does.

Nevertheless, the model still faces some challenges, some of
which we list here. Perhaps one of the strongest constraints placed
on the SFDM is that of the Lyman-α forest observations. In
(Armengaud et al., 2017; Iršič et al., 2017; Nori et al., 2019) it was
found that the SFDM masses m < 2.3× 10−21eV are discarded. Of
course, there is a possibility that the observations of the Lyman-α
forest are not so fine that we cannot say with enough certainty
that the model is incorrect; we have to expect new observations of
this in the near future, e.g., DESI observations, which will come
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to light shortly. On the other hand, there are ways to solve this
problem; one is provided in (Schive and Chiueh, 2018) with an
extension to the SFDM model or it has been argued in (Robles
and Matos, 2013b) that the SFDM mass that we read in galaxies
is the effective mass with the finite-temperature contribution, but
the SFDM mass could be mΦ ∼ 10−21eV, and each galaxy could
show an apparently different mass because we read the effective
mass due to the finite temperature of the SFDM in each galaxy. The
temperature of the SFDMalters the scale l for each galaxy as l2 = ω2 −
λ
2
(T2

c −T2)a2l2 = ω2 −m2a2, explaining why we see that the mass of
the SFDM at cosmological scales is mΦ ∼ 10

–21 eV and in galaxies
could be m ∼ 10–22 − 10−24eV. Incorporating the self-interaction of
SFDM could be another potential solution to this problem.

The SFDM is today one of the most studied DM models in the
community and it is not far from this model proving to be the last
answer to the DM problem in the universe.
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