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Bayesian inference: more than
Bayes’s theorem
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Bayesian inference gets its name from Bayes’s theorem, expressing posterior
probabilities for hypotheses about a data generating process as the (normalized)
product of prior probabilities and a likelihood function. But Bayesian inference
uses all of probability theory, not just Bayes’s theorem. Many hypotheses of
scientific interest are composite hypotheses, with the strength of evidence for
the hypothesis dependent on knowledge about auxiliary factors, such as the
values of nuisance parameters (e.g., uncertain background rates or calibration
factors). Many important capabilities of Bayesian methods arise from use of
the law of total probability, which instructs analysts to compute probabilities
for composite hypotheses by marginalization over auxiliary factors. This tutorial
targets relative newcomers to Bayesian inference, aiming to complement
tutorials that focus on Bayes’s theorem and how priors modulate likelihoods.
The emphasis here is on marginalization over parameter spaces—both how it is
the foundation for important capabilities, and how it maymotivate caution when
parameter spaces are large. Topics covered include the difference between
likelihood and probability, understanding the impact of priors beyond merely
shifting the maximum likelihood estimate, and the role of marginalization in
accounting for uncertainty in nuisance parameters, systematic error, and model
misspecification.

KEYWORDS

astrostatistics, bayesian methods, Poisson distribution, nuisanace parameters,
systematic error, maximum likelihood, marginalization

1 Introduction

The Bayesian approach to statistical inference and other data analysis tasks gets its
name from Bayes’s theorem (BT). BT specifies that a posterior probability for a hypothesis
concerning a data generating process may be computed by multiplying a prior probability
and a likelihood function (and normalizing):

posterior∝ prior× likelihood. (1)

Tutorials on Bayesian methods often focus on how BT adjusts the likelihood function to
account for base rates of hypotheses about members of a population, using simple examples
like binary classification (e.g., disease/no-disease; guilty/not-guilty; star/galaxy) based on
binary diagnostic data (e.g., a positive or negative test or evidentiary result). At the iid 2022:
Statistical Methods for Event Datameeting that is the topic of this special issue of Frontiers, a
charming and insightful tutorial along these lines was presented by Torsten Enßlin; see his
“Bayes Basics” presentation at the meeting’s website.

In this tutorial contribution to the issue we address readers familiar with (and perhaps
already using) Bayesian methods, to make the case that a focus on Bayes’s theorem risks
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overlooking a more fundamental and crucial aspect of Bayesian
inference. We consider a key distinguishing feature of Bayesian
inference to be is its use of the law of total probability (LTP),
directing one to compute probabilities for composite hypotheses by
marginalizing over the hypothesis or parameter space.

We do not consider this a new or controversial insight. The first
author came to appreciate it as a student of the work of Jeffreys
(1961), Jaynes (2003), Zellner (1971), and other mid-20th-century
pioneers of modern Bayesian inference, and through the work of
the second author and Jim Berger (Berger and Wolpert (1988),
especially §§ 3.5 and 5.3). We have highlighted this in the past (e.g.,
in Loredo (1992; 1999; 2013); Berger et al. (1999), and in lectures at
the Penn State Summer School in Statistics for Astronomers). But we
feel this aspect of Bayesian analysis is underappreciated, especially by
newcomers and non-experts. With the growing importance of high-
dimensional models in statistics and machine learning (ML) there
is new motivation for highlighting it. In particular, ML relies heavily
on optimization over large parameter spaces, where, from a Bayesian
perspective, marginalization may instead be the right operation.
Recent research demonstrates that the performance of some ML
models can be significantly enhanced by replacing optimization
with marginalization (even approximately), particularly in settings
were good uncertainty quantification is important. AndrewWilson’s
Bayesianmachine learning grouphas done particularly notablework
in this direction (Wilson, 2020;Wilson and Izmailov, 2020). It seems
to us the crucial importance of the LTP andmarginalization deserves
amplification, particularly for newcomers to Bayesian methods.

In this tutorial, we start by establishing notation and informally
reviewing BT, the LTP, and the Bayesian interpretation of probability.
Then we explore the role of marginalization in Bayesian inference in
the context of the following topics:

• Likelihood vs. probability: We review Fisher’s introduction of
likelihood as a complement to probability, and the use of BT to
“flip the conditional” and create a posterior distribution from
a likelihood function. Newcomers to Bayesian inference who
use the term “likelihood of the data” will find a corrective here.
• Priors are not (merely) penalties: A prior distribution does

more than just shift the peak of the likelihood function; it
converts the likelihood to a quantity that can be meaningfully
integrated. In evenmodest-dimension spaces, so-called “curses
of dimensionality” and related ideas imply that integrated
probability can pile up in unexpectedways, away from the peak
of the likelihood function.
• Marginalization vs. optimization over nuisance parameters:

Most data analysis problems in astronomy rely on models
that include both parameters of direct scientific interest,
and nuisance parameters—parameters (e.g., describing
backgrounds) that are necessary for linking the interesting
parameters to the data. Bayesian methods marginalize
(average) over nuisance parameters to account for their
uncertainty. We contrast marginalization with a popular
alternative approach relying on optimization instead. We also
discuss so-calledmeasurement error problems (a statistics term
of art), where the differences between marginalization and
optimization can be amplified.
• Marginalization and systematic error: We briefly describe

recent and ongoing work using marginalization to describe

and propagate systematic error in settings where standard
“propagation of error” (the statisticians’ “delta method”) fails
or is inapplicable. A Supplementary Appendix provides more
details on some of this work.

2 Notation and basic concepts

We adopt notation similar to that of Jeffreys, Cox, and Jaynes,
who view Bayesian inference as a generalized logic (Cox, 1946;
Jeffreys, 1961; Jaynes, 2003). Whereas deductive logic provides a
calculus for truth and falsity in settings where we can reason
with certainty (e.g., with truth and falsity represented by 1 and
0 in Boolean algebra), probability theory provides a calculus for
degrees of entailment, or argument strength, in settings where we
must quantify uncertainty (with probabilities taking values over
the real interval, [0,1]). We use P(A|B) to denote the probability
that the truth of statement A follows from taking statement B
to be true (whether B is known to be true or just assumed to
be true). We call this the conditional probability for A given B.
Interpreting probability as a measure of entailment or argument
strength means that all probabilities are necessarily conditional.
The argument of a probability symbol is the whole expression
inside the parentheses—A|B here—understood as the statement
that the truth of A follows from the truth B. In logic, such a
statement is called an argument, so we may say that the argument
of a (Bayesian) probability symbol is, well, an argument. The
conditioning statements comprise the premises for the argument
(the “givens”).

We will often be computing a collection of probabilities that
share common conditions that will not be questioned (i.e., they
never appear to the left of the conditioning bar), at least for
the duration of a specific calculation. We often denote such
conditioning information by C, the context for the calculation. Some
contextual information may represent secure knowledge (e.g., basic
physical principles that firmly justify some probability distributions
appearing in an analysis). Other contextual information may
represent less secure, provisional assumptions, adopted “for the sake
of the argument,” to enable us to compute probabilities required
in the course of an analysis; such assumptions ideally should be
reassessed in a later stage of analysis1.

Complex statements may be built by combining simpler
statements. For example, we use (A,B) to denote “A and B are both

1 John Tukey—best known for his work on the fast Fourier transform

and exploratory data analysis—observed: “No body of data tells us all

we need to know about its own analysis” (Tukey, 1977). Data do not

“speak for themselves” in scientific arguments; data analysis considers

the implications of data within some context. In this sense, data analysis

(Bayesian or frequentist) is necessarily subjective and provisional, and

a virtue of the Jeffreys/Cox/Jaynes notation is its recognition that all

probabilities are conditional, at least depending on the context, C (whose

components should be explicitly identified). For further discussion of

subjectivity in statistical data analysis we recommend perspective papers

by Berger and Berry (1988), Lindley (2000), andGelman andHennig (2017)

(the latter including wide-ranging remarks by many invited discussants).
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true,” and (A∨B) to denote “A is true, or B is true, or both.” Two
important basic rules of probability are the conjunction rule (the
“and” or “product” rule):

P (A,B|C) = P (A|C) P (B|A,C)
= P (B|C) P (A|B,C) , (2)

and the disjunction rule (the “or” or “sum” rule):

P (A∨B|C) = P (A|C) + P (B|C) − P (A,B|C) . (3)

We presume the reader is familiar with these basics; they are here to
establish notation and terminology.

We often compute probabilities for collections of statements
labeled by an integer or a real-valued parameter (or vector of
parameters). In such cases we use a lower-case p (or another letter)
to denote the appropriately labeled probabilities. For discrete cases,
the probabilities comprise a probability mass function (PMF), such
as pi = P(Ai|C) (for i an integer over some specified range). For
continuous cases, we instead use a probability density function
(PDF), defined so that for a parameter θ the probability assigned
to an interval of size dθ is p(θ) dθ = P(θ∗ ∈ [θ,θ+ dθ]|C), where θ∗
is the (uncertain) true value of the parameter. So the argument
of a probability symbol is an argument (comprised of statements
comprising premises and a conclusion), and the argument or index
of a PMF or PDF symbol is a number.

When conditioning information is common to all probability
symbols in a formula it can be distracting to display it explicitly.
We sometimes suppress symbols for common conditions for clarity,
when the conditions are clear from the context.When we do want to
display a common dependence, we adopt clever notation introduced
by John Skilling (the “Skilling conditional”), showing the shared
information with a double bar beside the equations, as here:

P (A,B) = P (A) P (B|A) ‖ C. (4)

In what follows we will focus on Bayesian inference—computing
probabilities for hypotheses of interest given data and other
information, including modeling assumptions. Bayesian inference
is the core of Bayesian data analysis (BDA), comprising the
use of Bayesian probability for a broader variety of tasks,
including making decisions (Bayesian decision theory), designing
experiments (Bayesian experimental design), and addressing tasks
where there is not enough structure for formal inference (e.g.,
Bayesian model checking and Bayesian exploratory data analysis).
Marginalization plays a key role in all of these data analytical
activities. The book Bayesian Data Analysis (Gelman et al., 2014a)
provides comprehensive coverage of many topics comprising BDA.
An emerging term of art, Bayesian workflow, refers to best practices
for integrating diverse Bayesian techniques (including methods
fusing Bayesian and frequentist considerations) into robust data
analysis pipelines that include model checking and refinement
steps. Gelman et al. (2020) provide a broad discussion of Bayesian
workflow; Tak et al. (2018) and Eadie et al. (2023) discuss key
components of sound Bayesian workflow in astrostatistics.

3 Bayes’s theorem and interpreting
probability

If we equate the two factorizations on the right hand side of
Equation 2 and solve for P(A|B,C), we get Bayes’s theorem,

P (A|B) =
P (A) P (B|A)

P (B)
‖ C, (5)

provided that P(B) ≠ 02. We can view BT as showing how adding
statements to the premises in an argument should change the degree
of entailment for the conclusion. Here the initial argument is that A
follows from C (the argument of the first factor in the numerator),
and the argument of the probability on the left hand side asserts that
A follows from the combined statement (B,C), i.e., B has been added
to the premises.

To get BT in a form useful for data analysis, let Hi denote
statements asserting rival hypotheses specifying a data generating
process (DGP), indexed by i; let Dobs denote a statement asserting
the values of observed data; and let C denote all other information
at hand, including a description of how the hypotheses and data are
connected. Rewrite BT, taking A =Hi and B = Dobs, giving

P(Hi|Dobs) =
P(Hi) P(Dobs|Hi)

P(Dobs)
‖ C. (6)

With these choices for the statements, the factors in this
equation have names:

• P(Hi|Dobs) is the posterior probability for hypothesis Hi (given
Dobs). Considered as a function of i it is a posterior PMF.
“Posterior” here refers to “after taking into account the
observed data.”
• P(Hi) is the prior probability for Hi, also a PMF when

considered as a function of i. “prior” here refers to “Prior to
accounting for the observed data.”
• P(Dobs|Hi) is the likelihood for hypothesisHi, or, considered as

a function of i, the likelihood function. The term “likelihood”
is meant to indicate it is not a probability for Hi, since Hi is on
the wrong side of the bar (in particular,∑iP(Dobs|Hi) need not
equal unity). We discuss the relationship between probability
and likelihood further in § 5.
• P(Dobs) is the prior predictive probability, the probability with

which one would predict the observed data without specifying
which of the Hi is true.

If we are considering a continuum of hypotheses labeled by a
continuous parameter θ, then one may derive an analogous result
involving PDFs:

2 In settings where the alternatives are labeled by a continuous parameter,

θ, Bwould represent a statement about the value of θ, i.e., that it is positive,

or lies in a specified interval. When the probability P(B) can be computed

using a continuous PDF, p(θ), the probability that θ takes a specified value

θ∗, P(B:θ = θ∗), formally vanishes (it is equal to p(θ)dθ in the limit as dθ→ 0).

In such settings, it can be possible to condition on θ = θ∗ even though

P(B) = 0, by considering a limit, or more generally, via measure-theoretic

arguments. See Marin and Robert (2010) for discussion of this and its

potential relevance for Bayesian model comparison.
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p(θ|Dobs) =
p (θ) p(Dobs|θ)

p(Dobs)
‖ C (7)

(where we have mildly overloaded our notation, using θ and Dobs
to denote variables for the scalar or vector parameter and data
quantities when to the left of the bar, and statements asserting values
for those quantities when to the right). The factors have analogous
names, e.g., p(θ|Dobs) is the posterior PDF for θ.

There is nothing controversial in BT as an uninterpreted
mathematical result. But a problem arises in its use for data analysis
if one insists on adopting a frequentist interpretation of probability.
Such interpretations assert that probabilities can be meaningfully
assigned and manipulated only for statements about quantities that
take on diverse values in some kind of replication setting; such
statements are called events3. In such settings, the probability for an
event is the fraction of the time the event happens (the statement
is true) among replications, as the number of replications tends
to infinity4. The frequentist view is significantly restrictive. It allows
us to say, “the probability for heads is 1/2,” interpreted as a property
of an ensemble of flips of a coin. But it does not allow us to say, “the
probability for heads on the next flip is 1/2,” if we are about to flip a
coin just once.

More importantly, the frequentist interpretation does not permit
assigning or computing probabilities for hypotheses about fixed but
uncertain properties of a physical system. For example, in the 1800s
Laplace famously used Bayesian probability (the historically original
notion of probability) to analyze detailed but noisy observations
of Saturn’s orbit to estimate the ratio of Saturn’s mass to the Sun’s
mass. He estimated the ratio to be within ±1% of 2.847× 10−4,
with a probability of 0.99991. (The modern convention would fix
the probability at some convenient target like 0.95 and find the
associated range; Laplace did the reverse. The current estimate is
2.858× 10−4, comfortably inside Laplace’s range.) Such a probability
makes no sense if one adopts a frequentist interpretation. The
true mass of Saturn either is or is not in that interval, and it
would be either in it or outside of it for every replication of the
observations. The frequentist probability for Saturn’s mass being
in that interval is either 0 or 1—but we have no way of knowing
which it is.

One sometimes hears a complaint from a scientist only
familiar with the frequentist interpretation that they can follow
the Bayesian math, but stumble at the idea that a parameter
value should be considered to be “random,” a random variable
taking on a distribution of values. This reflects an error in
interpretation. Figure 1 is our attempt at depicting the different
interpretations for a PDF for some real-valued quantity x (the
interpretations differ regardless of whether x refers the value of
a parameter or a datum). The left panel depicts the frequentist

3 A statement Dobs asserting values for observed data—e.g., “The number

of heads in 10 flips was 7”, or “The photon count in bin 1 is 11, the

photon count in bin 2 is 15 … ”—can typically be considered an event

in this sense, interpreting the sampling distribution as a distribution for

repeated sampling.

4 This idea is notoriously difficult to define rigorously; arguably there is not

yet a sound definition. For an exceptionally accessible overview of the

difficulties see Diaconis and Skyrms (2018).

interpretation of p(x); the PDF describes an infinite collection
of replications, across which x takes on many values, whose
limiting histogram is p(x). The right panel depicts the Bayesian
interpretation; the PDF describes uncertainty about the value of x
in a single case-at-hand by distributing probability over the values
x may take (depicted by the shading along the x axis). In the
frequentist interpretation, it is the x in p(x) that is distributed
(across replications). In the Bayesian interpretation, it is the p in
p(x) that is distributed (across possible values x may take in the
case at hand). A Bayesian PDF is analogous to a matter density,
ρ(x), in classical mechanics; it is the matter that is distributed, not
values of x.

4 The law of total probability and
marginalization

BT followed from the conjunction (“and”) rule. The LTP follows
from application of both the conjunction and disjunction (“or”)
rules to problems where a statement of interest may be true or
false depending on what is true about auxiliary details in the
problem. As simple example, consider rolling a die, and a hypothesis
about the outcome of a single roll, H = “The number of dots
on the top face is a prime.” Let the auxiliary detail be the actual
number that comes up, with Bi = “The side with i dots is up.”
Here H is true when any of B2, B3, or B5 is true, and false
otherwise. Note also that only one of the Bi statements may be
true. We say that H is a composite hypothesis: there are multiple
ways it may be true or false, given the nature of the problem
(the context). Here the Bi comprise an exclusive, exhaustive set
of statements—a collection of statements such that our contextual
information asserts one of themmust be true, but only one. Downey
(2021) dubs such a set a suite, terminology we like that is not yet
widely used.

In such settings, the joint probability (“and”) for H and one of
the Bi may be factored as P(H,Bi) = P(H) P(Bi|H). Now sum this
over i, noting that P(H) does not depend on i and so may be taken
out of the sum:

∑
i
P(H,Bi) = P (H)∑

i
P(Bi|H) = P (H) ‖ C, (8)

where for the final equation we used repeated application of the “or”
rule and the suite property to show that ∑iP(Bi|H,C) is unity. We
thus have the LTP:

P (H) = ∑
i
P(H,Bi)

=∑
i
P(Bi) P(H|Bi) ‖ C, (9)

where the last line uses the alternative factorization of P(H,Bi). The
summing over auxiliary details is called marginalization, after the
practice of collecting values of a joint probability in a table and
listing sums across rows and columns in the margins of the table.
The LTP is a kind of “decomposition/recomposition” result that is
used in two ways.

First, if we have a problem where bothH (or a set of alternatives,
Hj) and Bi are present from the start, so P(H,Bi) is available, the
top line of Equation 9 tells us how to compute the probability for
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FIGURE 1
Frequentist and Bayesian interpretations of a PDF (blue curve) for a real-valued quantity x. Left: Frequentist interpretation as a (limiting) histogram of
values x takes across replications; the values of x are distributed according to the PDF. Right: Bayesian interpretation as x taking a single fixed (but
uncertain) value in the case at hand (dot on the x axis), with probability distributed over the possible values (depicted via the shading along the x axis).

H if it alone is of interest: sum the joint over the ways H may
be true.

Second, if we have a problem where initially only H is
present but we do not immediately see how to compute or assign
P(H), the second line of Equation 9 suggests doing something
reminiscent of a basis expansion: identify some additional detail
that, if known, would let you compute the probability for H; that
is, find a suite, Bi, so that P(H|Bi) is known. Then sum over
the possible choices of auxiliary details, weighting the terms by
the probabilities for each choice. This has been called “extending
the conversation” (Lindley et al., 1978). Harvard statistician Joseph
Blitzstein offers a different term in one of his YouTube lectures (see
“Statistics 110, Lecture 6: Monty Hall, Simpson’s Paradox,” slightly
paraphrased here):

In most mathematical subjects, if you have a problem and
you’re stuck, saying “I wish I knew this or that” does not
help you. In probability theory, thinking “I wish I knew this”
gives you a hint at what you should condition on. Then you
condition on it, act as if you did know it, and then average
over those possibilities.

I did not name the lawof total probability, but if I had, I would
have just called it wishful thinking : what do I wish I knew?

In continuous-parameter settings where uncertainty may be
quantified by PDFs, the LTP instructs us to integrate over those
parameters specifying choices of auxiliary details.

In a typical Bayesian data analysis application, one will begin
by using BT to define a posterior distribution, but then use that
distribution by applying the LTP to address diverse tasks. Here are
several such tasks:

• Normalizing posterior PDFs: The posterior predictive
probability in the denominator of BT in Equation 7 appears to
play the role of a normalization constant, in that it does not
depend on θ. We can show this explicitly using the “wishful
thinking” version of the LTP:

p(Dobs) = ∫dθ p (θ) p(Dobs|θ) . (10)

Since the integrand is just the numerator of Equation 7, the
LTP has both verified that the prior predictive probability is a
normalization constant, and shown us how to compute it. It is
also the source of themore commonname for this quantity, the
marginal likelihood (for themodel as awhole), i.e., theweighted
integral of the likelihood function.

• Credible regions: Calculating the probability in a credible region,
R, for θ may be done similarly:

p(θ ∈ R|Dobs) = ∫
R
dθ p (θ ∈ R|θ) p(θ|Dobs) . (11)

Theremay bemany regions that have a desired target amount of
probability. The smallest such region is typically unique, with
density higher in R than outside it, and it is called a highest
posterior density (HPD) credible region.

• Marginalizing over nuisance parameters: Most real-life data
analysis problems in astronomy have nuisance parameters:
parameters required for modeling the data, but not directly
interesting. Perhaps the most common such parameters
are those describing backgrounds contaminating the
measurement of a signal. Let ψ denote the interesting (signal)
parameters, and η the nuisance (background) parameters. The
uncertainty in ψ (with the η uncertainty fully propagated) is
quantified by the marginal posterior PDF,

p(ψ|Dobs) = ∫dη p(ψ,η|Dobs) . (12)

If the posterior is explored via posterior sampling (say, via
MCMC), this integral may be approximated by simply making
a histogram of the ψ component of the posterior samples
of (ψ,η). A popular way to handle nuisance parameters in
astronomy and physics is via profile likelihood, which optimizes
rather than averages over the nuisance parameters. We discuss
the relationship between marginalization and optimization
(profiling) at some length in § 7.

• Propagation of uncertainty: Suppose we have computed a
posterior PDF for a model’s parameters, θ, but we are
interested, not directly in θ, but in a quantity f = F(θ) for
a known function F(θ). This is the setting for standard
“propagation of errors” techniques (known as the “delta
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method” in statistics), but these rely on approximations
that presume the posterior is Gaussian. We can propagate
uncertainty more thoroughly and accurately using the LTP to
compute a marginal posterior for f:

p ( f|D,M) = ∫dθ p( f,θ|Dobs,M) = ∫dθ p(θ|Dobs,M) p ( f|θ,M)

= ∫dθ p(θ|Dobs,M) δ [ f − F (θ)] . (13)

If the posterior is explored via posterior sampling, this integral
may be approximated by simply making a histogram of F(θ)
evaluated over the posterior samples of θ.

• Prediction: In the context of a model with parameters θ
for observed data Dobs, where we want to make predictions
about future data we may obtain (say, for experimental design
purposes), we can use the LTP to compute a posterior predictive
distribution. Denoting future data by D′, the posterior
predictive PDF is

p(D′|Dobs) = ∫dθ p(D′|θ) p(θ|Dobs) , (14)

with the integration accounting for parameter uncertainty
in the prediction, weighting possible choices of θ by the
posterior PDF.

• Model comparison: To compare rival parametric models
defined by contexts Mi (each with parameters θi), we compute
posterior odds or Bayes factors. These require computation of
each model’s marginal likelihood5

p(Dobs|Mi) = ∫dθi p(θi|Mi) p(Dobs|θi,Mi) ‖ M1 ∨M2…. (15)

5 Readers new to model comparison should note that in the astronomy

literature and some machine learning literature it is popular to use

the term evidence for the marginal likelihood. (Bayesian evidence also

appears, awkwardly implying there are Bayesian vs non-Bayesian forms of

evidence.) We eschew this terminology. The data (and possibly additional

contextual information) comprise the evidence, and in the Bayesian

philosophy of science literature it has long been common to use E and

“evidence”wherewe have usedDobs and “data.” Unsurprisingly, “evidence”

is used in the same way in the literature on statistics in jurisprudence.

Using “evidence” for marginal likelihood obscures that there are just

two types of hypothesis-dependent quantities in Bayesian inference, the

probability for a hypothesis (with the hypothesis to the left of the bar)

and the likelihood for a hypothesis (with the hypothesis to the right of the

bar). The marginal likelihood works just like the more familiar parameter

likelihood function; “marginal” merely specifies how it is computed. Jack

Good has noted that marginal likelihoods operate just like likelihood

functions, calling them Bayesian likelihoods. He used weight of evidence

for the logarithm of the ratio of marginal likelihoods for two hypotheses

(i.e., the logarithm of the Bayes factor), providing an additive (rather than

multiplicative) measure of how much the available evidence favors one

hypothesis over the other; the terminology originates with Alan Turing

(Good, 1950; 1985).

This is just the normalization constant for the posterior PDF for
a particular model’s parameters. This says that the likelihood
for a model (as a whole, i.e., accounting for uncertainty in its
parameters) is the average of the likelihood function for that
model’s parameters6.

• Model averaging : Consider again a settingwith rival parametric
models with contexts Mi, but where all models share some
interesting parameters, ϕ, but supplement them with different
sets of nuisance parameters, ηi. An example from cosmology is
estimating the curvature and size of the universe, accounting
for uncertainty in the choice of cosmological models (e.g.,
whether dark energy is due to a cosmological constant or is
instead evolving, thus possibly requiring additional parameters
for the dark energy equation of state; see Vardanyan et al.,
2011). In settings where no particular model is strongly
preferred over its rivals, we would like to account for model
uncertainty in estimation of ϕ. Let C here denote an overall
context, collecting all rival models. Model averaging uses
the LTP to propagate both model and nuisance parameter
uncertainty as follows:

p (ϕ|D,C) =∑
i
p(Mi|D,C) p(ϕ|D,Mi)

∝∑
i
p(Dobs|Mi)∫dηi p(ϕ,ηi|D,Mi) ,

(16)

where for the last line we presume the models are considered
equally probable a priori, so that the probability for eachmodel
is proportional to its marginal likelihood, p(Dobs|Mi).

This is not an exhaustive list, but surely is long enough to make
the case for the powerful role the LTP plays in Bayesian inference.

5 Likelihood vs probability

A parametric model for data specifies how one may predict or
simulate hypothetical data, D, as a function of a fixed-dimension
parameter vector, θ. That is, a parametric model is a collection of
sampling distributions, a bivariate function of hypothetical values of
the parameter, and hypothetical values of the data:

p (D|θ) = f (D;θ) . (17)

Each sampling distribution is a probability disribution for data.

6 The values of marginal likelihoods depend more sensitively on properties

of prior distributions than do posterior PDFs for parameters; in particular,

they are roughly inversely proportional to the prior ranges of parameters.

As a result, formal Bayesian model comparison and model averaging are

best reserved for problems where the analyst can strongly motivate priors

(especially prior ranges), or quantitatively study how results depend on

properties of priors. Good entry points to the literature on this (in both

astronomy and statistics) include: Volinsky et al. (1999); Clyde andGeorge

(2004); Clyde et al. (2007); Trotta (2012). For a Bayesian perspective

on model selection relying on measures of anticipated out-of-sample

predictive performance (vs a priori prediction of the observed sample, as

measured by marginal likelihood), see Gelman et al. (2014b).
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FIGURE 2
The relationship between the sampling distribution and likelihood functions for estimation of the success probability parameter, α, specifying a
binomial distribution for the number of successes, n, expected in N = 20 trials. The blue histogram shows the binomial PMF as a function of n for one
particular choice of θ (0.5). The black curves show potential likelihood functions corresponding to different numbers of successes, n. Once an
observed value, n = 13, is available, the actual likelihood is identified as the red curve.

The likelihood function fixes D = Dobs, yielding a function only
of θ:

L (θ) ≡ p(Dobs|θ) = f (Dobs;θ) . (18)

The likelihood function is not a probability distribution for θ (θ
is on the wrong side of the bar). Strictly speaking, any positive
multiple of p(Dobs|θ) may serve as the likelihood function. The
multiplier may be constant or a function of Dobs; such factors do
not change the dependence of L(θ) on θ, which is what governs
inference (Berger and Wolpert, 1988). Any such factor would
also appear in the prior predictive probability, p(Dobs), and thus
cancel in BT.

In Figure 2 we depict the relationship between the sampling
distribution and the likelihood function for estimation of the
probability of a binary outcome from data counting the number
of successes in a sequence of trials or tests—think of counting
the number of heads in flips of coins, or the number of stars in
a sequence of star/galaxy separation tests in image data. This is
a case where the sample space is discrete (and so the sampling
distribution is a PMF), and the parameter space is continuous (so
the likelihood function is continuous).Theblue histogram shows the
binomial distribution giving the probability for seeing n successes in
N total trials with a success probability specified by the real-valued
parameter θ,

p (n|θ,C) = N!
n! (N− n)!

θn(1− θ)N−n, (19)

where the context includes specification of the total number of
trials, N; the histogram is for θ = 0.5. The black curves show
potential likelihood functions corresponding to different numbers
of successes, n. Once n = 13 is observed, the particular curve

highlighted in red is identified as the likelihood function relevant
for inference.

Figure 3 shows a complementary case, where both the
sample space and the parameter space are continuous, and the
sample space is two-dimensional. It depicts the relationship
between the sampling distributions for a model with a parameter
μ determining predictions for 2-dimensional data (x1,x2).
Here μ is the common mean of two independent normal
distributions for (x1,x2) (with known standard deviation σ, specified
in C), so

p(x1,x2|μ,C) =
1

σ√2π
exp[−
(x1 − μ)

2

2σ2
]× 1

σ√2π
exp[−
(x2 − μ)

2

2σ2
]. (20)

For each choice of μ (vertical axis), the model specifies a 2-
dimensional normalized PDF for (x1,x2), depicted via sets of
contours in (x1,x2) space for each of five values of μ. Once data
are observed, we fix (x1,x2) to those observed values and evaluate
the sampling distribution as a function only of μ. This corresponds
to slicing through the sampling distributions along the vertical
black line. (See Box (1980) for a similar figure showing how
the posterior PDF relates to the joint distribution for data and
parameters.)

The likelihood function quantifies how well each of the
candidate sampling distributions—labeled by the parameter
μ in the last example—predicts the observed values of the
data, (x1,x2). Note that a statistical model specifies sampling
distributions for data, and a likelihood function for parameters.
“Likelihood for the data” is incorrect usage—it entirely
misses the point of introducing the likelihood terminology.
Sir Ronald Fisher introduced the term specifically to make
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FIGURE 3
The relationship between the collection of sampling distributions comprising a parametric model for 2-dimensional continuous data (left) and the
likelihood function (right).

a distinction between probability and this measure of
prediction quality:

If we need a word to characterise this relative property
of different values of p [a parameter], I suggest that
we may speak without confusion of the likelihood
of one value of p being thrice the likelihood of
another, bearing always in mind that likelihood is
not here used loosely as a synonym of probability,
but simply to express the relative frequencies with
which such values of the hypothetical quantity p
would in fact yield the observed sample (Fisher (1922),
emphasis added).

Alas, colloquially “probability” and “likelihood” are synonyms,
inviting misuse. The clash between the terminology and colloquial
use is unfortunate; “predictive” or “prognostic” might have been
better names for this function.

Fisher goes on:

Likelihood also differs from probability in that it is a
differential element, and is incapable of being integrated: it
is assigned to a particular point of the range of variation,
not to a particular element [interval] (Fisher (1922),
emphasis added).

He used stronger language earlier: “…the integration with
respect to m [a parameter] is illegitimate and has no definite
meaning … ” (Fisher (1912), a paper written when he was a third-
year undergraduate at Cambridge!).

The posterior PDF is closely related to the likelihood function,
obtained simply by multiplying by a prior PDF and normalizing:

p(θ|Dobs) ∝ p (θ) ×L (θ) . (21)

The posterior PDF is a probability distribution over θ, whose
integrals over θ are meaningful.

6 Priors are not (merely) penalties

The distinction between likelihood and probability points to
the dual role of prior probabilities in Bayesian inference. Bayesian
tutorials typically focus on priors as adjusters of the likelihood to
account for base rates, parameter constraints (such as positivity),
or results from prior experiments. This is indeed an important
capability. But more fundamentally, the role of the prior is to “flip
the conditional,” that is, to get us from likelihood to probability.
With a probability distribution in hand, we are then able to use
the LTP to address a myriad of questions involving consideration
of composite hypotheses. In this section we elaborate on the role of
priors in Bayesian inference, beyond the usually emphasized role of
“modulating” the likelihood to account for prior information.

6.1 Intensive vs extensive quantities in
inference

For an audience of physical scientists, a thermodynamic
analogy may be illuminating. In thermodynamics, temperature is
an intensive quantity. It is meaningful to talk about the temperature,
T(x), at a point in space, x, but not about the “total temperature” for a
volume of space; temperature does not add or integrate across space.
Heat, on the other hand, is an extensive quantity; in mathematical
parlance, it may be described by a measure (a cumulative mapping
from sets or regions, rather than points, to a real number). The two
quantities are related; the heat in a volume V is given by

Q = ∫
V
dx [ρ (x)c (x)] T (x) , (22)

where ρ(x) is the matter density and c(x) is the specific heat capacity.
The product ρc is extensive, and serves as a kind of conversion factor
between temperature and heat.

Priors play a similar role in Bayesian inference, not just
modulating the likelihood function, but, more fundamentally,
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converting intensive likelihood to extensive probability. In
thermodynamics, a region with a high temperature may have a
small amount of heat if its volume is small, or if, despite having
a large volume, ρc is small throughout. In Bayesian inference, a
region of parameter space with high likelihood may have a small
probability if its volume is small, or if the prior PDF assigns low
probability to the region. Approaches that rely exclusively on
likelihood focus on particular hypotheses that are “hot” (e.g., with
maximum likelihood), while Bayesian inference focuses on sets of
hypotheses with the most “heat” (i.e., with large probability).

6.2 Typical vs optimal parameter values

Frequentist statistics includes penalized maximum likelihood
methods thatmultiply the likelihood by a penalty function, r(θ) (e.g.,
a regularizer), and then locate the maximum of the product:

̃θ ≡ argmax
θ

r (θ) L (θ) . (23)

The penalty function shifts the location of the maximum. It looks
like a prior, in that it multiplies the likelihood function, but
because Bayesian calculations integrate rather than maximize over
parameter space, the prior can do much more than shift the location
of the mode (the location of the peak of the posterior) with respect
to the maximum likelihood location.

A number of concepts from different areas of mathematics
can help us understand the consequences of having a
(summable/integrable) measure and not just a preference ordering
over a parameter space:

• Curses of dimensionality observed in high-dimensional
geometry, perhaps best known for their impact on numerical
computation. An well-known example is the accumulation of
volume close to the edges of a hypercube as dimension grows.
• Concentration of measure in measure theory, showing that

volume in a high-dimensional space (with a kind of symmetry)
can concentrate in a surprising way in a small region
of the space.
• Typical sets in information theory, indicating that the mode

of a discrete PMF or a continuous PDF can be highly
unrepresentative of typical samples from the distribution
(Cover and Thomas, 2006; Betancourt, 2017).

Wewill give a sense of how these notions can help us understand
the impact of integrating vs optimizing with two simple examples.

Consider N = 1000 flips of a coin with α ≡ P(heads) = 0.8, with
the goal being to predict the number of heads. The sequence of
outcomes with the highest probability is the sequence with 1,000
heads. Despite that, students of probability theory (and probably
many less educated!) would predict ≈800± 28 heads. How can
we reconcile this discrepancy? The sequence with 1,000 heads is
( α

1−α
)200 ≈ 2× 10120 times more probable than any sequence with

800 heads; that is, it is hugely more probable. But there are many,
many sequences with ≈800 heads (∼10217 within one standard
deviation of 800 heads); the probability of that so-called typical set
is ∼1. A typical random sequence of flips does not at all resemble the
most probable sequence.

This phenomenon is not unique to discrete spaces. Consider
now curve fitting with N = 1000 (xi,yi) datapoints, modeled with

yi = f(xi) + ϵi, for some known parametric function f(x), and with
standard normal errors ϵi (denoted collectively as ⃗ϵ). The most
probable sample has ϵi = 0 for all 1000 samples. But those familiar
with weighted least squares (minimum χ2) fitting know that we
expect χ2, the sum of squared residuals, to be ≈N±√2N (i.e., χ2

should be nearly equal to the “degrees of freedom”). Note that χ2

is just the squared length of the (estimated) ⃗ϵ vector. The familiar
degrees of freedom result is telling us that a set of random ⃗ϵ
vectors will point to locations in a thin shell far from the origin
when N is large, even though the probability density for ⃗ϵ is much
higher near the origin than in that shell (one of the “curses of high
dimensionality”). This is true even though the PDF for the errors
has its peak at the origin. The density of points is maximized at the
origin, but volume grows so quickly with radius in high dimensions
that a typical random vector will point far from the origin.

The left panel of Figure 4 shows this quantitatively for N =
30. The orange curve shows the PDF of the absolute value of a
single ϵi coordinate, peaking at the origin. The green curve shows
how the surface area (hypervolume) of a 29-dimensional sphere
(and thus volume in a shell of constant thickness) grows with
distance from the origin, χ (the square root of χ2). The blue curve
shows the PDF for distance, proportional to the product of the
area curve and the 30 normal coordinate PDFs. The shaded region
shows the central 90% region of the χ PDF; the lengths of typical
⃗ϵ vectors will lie in this region. That is, typical points in the 30-
dimensional ϵi space lie in a shell about 5.4 standard deviations from
the origin.The right panel of Figure 4 highlights that such intuitively
appealing statements do not fully capture the truly non-intuitive
nature of distributions in high-dimensional spaces. We drew 105

samples from a 30-dimensional standard normal, computed the
lengths of those vectors, and formed a histogram estimate of the
lengths as the blue histogram. It empirically duplicates the χ PDF
from the left panel. The brown histogram shows the distribution
of the maximum absolute value of the coordinates in each vector.
It reveals that no single coordinate value in this large sample ever
gets a value near the typical values of χ; put differently, none of
the 105 30-dimensional vectors is close to a coordinate axis. In the
low-dimensional world where our intuition has been trained, these
distributions strongly overlap.

The lesson of these examples is that for high-dimensional spaces,
the mode of a distribution is likely to be very atypical, in the sense
that random draws from the distribution are unlikely to resemble
the mode (in terms of the values of the PMF or PDF for the
draws). These examples looked at properties of familiar sampling
distributions, but the math does not care if we call a variable “data”
or “parameter”—the notion of typical sets applies to distributions
over large parameter spaces as well as to distributions over large
sample spaces.

6.3 Example: histogram-based density
estimation

As an example of these ideas at work in a parameter estimation
setting, consider estimating a PDF for some continuous observable
quantity via histogram data—say, galaxy fluxes grouped into a few
dozen flux bins (a “number-counts” or “log N – log S” number-
size distribution). We may model the histogram counts with a
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FIGURE 4
Elucidation of the nature of the typical set for a 30-dimensional standard normal distribution with coordinates ϵi and coordinate vector distance χ = | ⃗ϵ|
(the square root of χ2). Left: Orange curve (against first right ordinate) shows the PDF for a single coordinate value, with highest density at the origin.
Green curve (against the second right ordinate) shows the area of a 29-dimensional hyperspherical surface as a function of χ. Blue curve (against the
left ordinate) shows the PDF for χ, proportional to the product of area curve and the 30 normal coordinate PDFs. There is 90% probability for χ lying in
the shaded region; i.e., typical ⃗ϵ draws from a 30-dimensional standard normal will lie in a shell ≈5.4 standard deviations from the origin. Right: PDFs for
χ (blue) and max |ϵi| (brown), the maximum size of one of the coordinates, estimated with histograms of 105 draws of ⃗ϵ vectors (curves show analytical
PDFs). The blue histogram empirically duplicates the χ PDF from the left panel.

multinomial distribution, with probabilities fk for objects to fall in
each of K bins (∑k fk = 1). The likelihood function associated with a
set of observed counts nk is then

L( f1,…, fK) =
N!
∏

k
nk!
∏
k

f nkk , (24)

where N = ∑knk is the total number of objects counted. It is
straightforward to show that the maximum likelihood estimates
(MLEs) are f̂k = nk/N, an intuitively appealing result.

For a Bayesian analysis, a tempting choice of prior, intending
to be uninformative about the fi parameters, is a flat or uniform
prior over the simplex ∑k fk = 1; intuitively, that would seem to be
noncommittal. What does such a distribution say about our prior
expectations for { fi}?

Figure 5 tries to build insight into this question by looking at
random samples from the prior. The left panel shows a stack of
10 random fi vectors from a flat prior for K = 5 bins. The samples
show a reasonable amount of diversity, with some samples appearing
roughly flat, and some samples having one ormore large- fi bins.The
right panel shows another stack of 10 random vectors, but now for
K = 30. Perhaps surprisingly, there is now little diversity; all of the
samples are nearly flat.

A bit of analytical work confirms the visual
impression (see Frigyik et al., 2010 for a tutorial covering the math).
We can compute themarginal PDF for a particular fk (marginalizing
over all of the other fk values). For K = 2, this marginal PDF is flat
over the unit interval, but asK increases, it increasingly concentrates
near fk = 0, with a skew distribution whose expectation value is 1/K
and whose variance becomes increasingly small. The random draws
and analytical work are telling us that, as dimension grows, most of
the volume of a simplex is in the region where all of the fk are nearly
equal to each other, near the middle of the simplex. (Notably, this is
different from the better-known “curse of dimensionality” behavior
of hypercubes, where volume accumulates at the boundary.)

How might we fix this? Consider the family of symmetric
Dirichlet priors, of the form

p( f1,…, fK) ∝ δ(1−∑
k
fk)∏

k
f α−1k (25)

(the δ-function imposes the normalization constraint on the
fk parameters). Note that the fk dependence is a product of
powers of each fk—the same form of dependence that is in the
likelihood function, Equation 24. This prior has a single (scalar)
“hyperparameter,” α > 0, that we can experiment with to control its
behavior (it is called the concentration parameter or the flattening
parameter for the symmetric Dirichlet). For α = 1, the symmetric
Dirichlet becomes a flat (uniform) prior. For other values, the net
effect of the prior on the likelihood function is to add α− 1 to each
count,nk; crudely speaking, the prior is addingα− 1 “a priori counts”
to the likelihood function. Finally, this prior is analytically tractable,
and produces analytically tractable posteriors. (This is thanks to
conjugacy—a Dirichlet prior (symmetric or not), multiplying the
multinomial likelihood function, produces a Dirichlet posterior.)

How to setα?One appealing idea recognizes that the binning can
be done in different ways, and seeks some kind of consistency across
different binning choices, e.g., different choices of K. Consider in
particular aggregation consistency: devise a rule for choosing α such
that applying that rule forK = 10, say, and then aggregating adjacent
pairs of bins to produce a 5-bin model, yields the same prior as one
would get by applying the α rule directly for K = 5. It is not hard to
show that setting α = C/K for any constant C satisfies aggregation
consistency (for any K and any kind of aggregated binning), while a
constant value—like α = 1, corresponding to the uniform prior used
for Figure 5—does not. (Perks, 1947 appears to have offered the first
argument along these lines.).

Figure 6 shows samples from an aggregation-consistent prior
with C = 2, so α = 2/K. For K = 2 bins, this becomes a flat
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FIGURE 5
10 samples of f i vectors from a flat prior distribution on the probability simplex, plotted as distributions for a quantity binned over the unit interval. Left:
Samples from a distribution for K = 5 bins. Right: Samples from a distribution for K = 30 bins.

FIGURE 6
As in Figure 5, but with samples drawn from an aggregation-consistent
symmetric Dirichlet distribution for K = 30 bins, with α = 2/K.

prior, which we saw has acceptable behavior for small K. The
figure shows prior samples for K = 30, to be compared with the
right panel in Figure 5. The prior samples no longer are all flat; in
most samples, one or more bins may have significantly larger values
of fi than other bins.

We have focused on the prior; what is the impact on the
posterior? For estimating all K bin heights fi jointly, the impact is
negligible if there are at least a few counts per bin; the new prior
effectively subtracts C/K− 1 from each nk counts value, which is not
much of a change compared to use of the uniform prior. However, if
we are interested in just one or few bins, and so will marginalize over
many other fk parameters, the difference can be dramatic. Finally, if
we want to do model comparison, comparing models with different
numbers of bins via their marginal likelihoods (thus marginalizing

over all fi parameters), then the two priors can lead to very different
results. See Loredo (2012) for further discussion and examples.

A lesson of this section is that we should be cautious and
skeptical of our intuition when attempting inference in high-
dimensional parameter spaces (Genovese et al. (2004) have urged
similar caution from a frequentist perspective). Prior probabilities
let us get something integrable from likelihood functions, enabling
diverse useful calculations when we are interested in composite
hypotheses. But the “extensive” (summable) nature of prior and
posterior distributions means that parameter space volume effects
can have surprising impacts on inference. If we think of priors
merely asmodulating or penalizing the likelihood function, it would
seem that a uniform prior would not divert attention from the peak
of the likelihood function. But the notion of typical sets, and the
behavior of uniform priors in multinomial inference, alert us that
even flat priors may divert attention from the maximum likelihood
region when the parameter space is high-dimensional. On the one
hand, this is a warning that optimization can be misleading; it can
focus attention on parts of parameter space that are very atypical. On
the other hand, it is also a warning against relying on low-dimension
intuition, like equating prior uniformity with being noncommittal
or uninformative. A practical lesson is to always look at samples
from the prior, particularly when working in high-dimensional
parameter spaces.

7 Nuisance parameters:
marginalization vs optimization

Of the many tasks using the LTP listed in SS 4, one of the
most important is marginalizing over nuisance parameters. It is
very common (in our experience, essentially ubiquitous) for a data
modeling problem to require introducing parameters that are not
of direct scientific interest, but that are necessary for describing
how the data relate to the quantities of interest. Estimation of the
interesting quantities has to somehow account for the uncertainty in
the uninteresting “nuisance” quantities. In this section we elaborate
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on how marginalization over nuisance parameters accomplishes
this, in particular the role of parameter space volume in the behavior
of marginal posterior PDFs.

A frequently-arising nuisance parameter setting is analysis
of measurements contaminated by uncertain backgrounds or
foregrounds. A somewhat more subtle but also prevalent setting
is estimating population distributions (density estimation) or
correlations and scaling laws for a population (regression), when
the properties of members of the population are measured with
uncertainty—so-called measurement error problems (statisticians
use this term for density estimation with noisy measurements, or
regression with noise in both the measured predictors/covariates
(Xs) and the dependent/response variables (Ys); see Carroll et al.,
2006). Examples of density estimation withmeasurement error (and
possibly also with selection effects) include: estimating luminosity
functions of star, galaxy, and transient object populations; estimating
joint distributions of exoplanet properties such as orbital period
and planet size; estimating distributions of minor planet sizes
based on brightness measurements; and estimating the distribution
of binary black hole system parameters from gravitational wave
measurements of masses and spins. Examples of regression
with measurement error include estimating correlations between
galaxy properties (as in the Tully-Fisher and fundamental plane
“luminosity indicator” relations, or gas density–star formation rate
relationships like the Kennicutt-Schmidt relation), and calibrating
the Type Ia supernova luminosity vs light curve shape relation.

In a Bayesian treatment of such measurement error problems
(and in many frequentist formulations), the unknown true
properties for each object formally appear as latent parameters,
estimated with uncertainty. For inference about a population
as a whole, the latent parameters are nuisance parameters, and
their uncertainty must be propagated into population inferences.
Importantly, in measurement error problems the number of
latent parameters grows with sample size; as a result, even
small inaccuracies in accounting for measurement error per-
object can accumulate and lead to incorrect population-level
inferences (Loredo, 2004). Hierarchical Bayesian (HB) models
handle measurement error by marginalizing over the latent
parameters. Some entry points into the rapidly growing literature
on HB demographic modeling in astronomy include: Loredo
(2004); Kelly (2012); Mandel (2012); Loredo (2013); Andreon
and Hurn (2013); Hsu et al. (2018); Loredo and Hendry (2019);
Mandel et al. (2019); Vitale (2020).

7.1 Understanding marginalization

Given the prevalence and importance of nuisance parameter
problems in astronomy, it is worth building insight into how
marginalization accounts for nuisance parameter uncertainty. To
do so, we will consider the signal-plus-background setting, with
interesting signal parameter, s, and background nuisance parameter,
b. We suppose the available data provides useful information
about b, so the joint posterior PDF, p(s,b|Dobs,C), exhibits some
dependence between s and b. For example, Dobs may include
independent data about b from an off-source measurement at
a location away from a candidate source in an image analysis
setting. In such “on/off” settings, the on-source data provide a noisy

measurement of s+ b, and the off-source data provide a separate
noisy measurement of b. The joint likelihood function for (s,b) then
typically resembles the left panel of Figure 7, exhibiting a negative
correlation (the larger b may be, the smaller s is likely to be).

Specifying the value of one parameter in a multiparameter
problem is a composite hypothesis: specifying just s in a problem
with parameters (s,b) corresponds to saying that, for the given s,
some parameter choice in the set {(s,b): b ∈ [bl,bu]} holds, though
we do not know which (here [bl,bu] denotes the range of allowed b
values, e.g., [0,∞]).

To summarize implications for s, accounting for b uncertainty,
we compute the marginal posterior PDF for s,

p(s|Dobs,C) = ∫db p(s,b|Dobs,C)

∝ ∫db p (s,b|C) L (s,b) , (26)

where the second line uses the numerator of BT, with likelihood
function L(s,b) and a joint prior PDF p(s,b|C).

Now factor that joint prior as the prior for s, p(s|C), times a
conditional prior for b given s, p(b|s,C). In many settings there may
be no contextual information linking b and s a priori, making this
factor independent of s; to simplify the notation, we assume such
independence, so the b prior factor is simply p(b|C).

Since the marginalization integral is over b, the s prior can be
taken out of the integral:

p(s|Dobs) ∝ p (s)∫db p (b) L (s,b) ‖ C

∝ p (s) Lm (s) (27)

where we have defined the marginal likelihood function for s as

Lm (s) ≡ ∫db p (b) L (s,b) (28)

(where we suppress C henceforth to simplify the notation). Since the
integration underlying marginalization is isolated to the marginal
likelihood function, we will focus henceforth on Lm(s).

To build insight into what marginalization accomplishes, we
approximate the integral over b in two steps (the ingredients for this
approximation are depicted in the right panel of Figure 7):

1. Assume the data are informative, so the prior PDF
for b is nearly constant in the region where the
integrand in Equation 28 has most of its area. This lets us pull
the p(b) factor out of the integral, setting it equal to its value at
the location of the peak of the sliced likelihood function.

2. Approximate the remaining integral of L(s,b) over b—the
area under the likelihood function in the nuisance parameter
dimension—as the product of the height of the likelihood
function and some convenient measure of its width (in the b
dimension).

We need some notation to implement these steps. Let b̂s denote
the value of b that maximizes the likelihood function when s is fixed,
i.e., along a vertical slice on the left panel of Figure 7 (the depicted
slice has s = s1):

b̂s = argmax
b

L (s,b) . (29)

Graphically, b̂s as a function of s traces the points where tangents
to the contours of L(s,b) become vertical. The uninformative prior
assumption of Step 1 implies

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2024.1326926
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Loredo et al. 10.3389/fspas.2024.1326926

FIGURE 7
Left: An example joint likelihood function for (s,b) in a signal-plus-background setting with on/off data that produces a bivariate Gaussian likelihood
function. Gray dotted horizontal line shows b̂, the global MLE for b. Blue line shows b̂s, the MLE for b when s is given; it crosses contours of the joint
likelihood function where they become vertical. Vertical green dashed line indicates slice of the joint likelihood function at s = s1 displayed in right
panel. Right: Ingredients for approximating the marginal likelihood function for s. Green curve shows a slice of the joint likelihood function at s1, as a
function of b. Blue dashed curve shows the (conditional) prior PDF for b. See text for symbols.

∫db p (b|s) L (s,b) ≈ p(b̂s|s)∫db L (s,b) . (30)

The integral over b gives the area under the likelihood function
curve. Let δbs denote some convenient measure of the width of the
sliced likelihood function. Approximate the integral as the product
of the height and width of the sliced likelihood function,

∫db L (s,b) ≈ L(s, b̂s) δbs (31)

The first factor is the joint likelihood function maximized over b for
each s. This is a function solely of s; it is called the profile likelihood
function for s,

Lp (s) ≡ L(s, b̂s) . (32)

It corresponds to looking at the 3D L(s,b) surface along the b
direction, producing a 2D projection or profile of the surface.

Assembling these results, we have this helpful approximation for
the marginal likelihood function for s:

Lm (s) ≈ p(b̂s) Lp (s) δbs. (33)

The last two factors are the data-dependent factors. Much of the
work done by marginalization is captured in the profile likelihood
factor. A naive approach to handling a nuisance parameter would
be to fix it at its best-fit value. This would correspond to slicing
L(s,b) horizontally along the gray dotted line (through the global
MLE point, ( ̂s, b̂)). The profile likelihood function instead slices
L(s,b), accounting for the fact that a choice of s implies a different
“best” choice for b than the global MLE. But the marginal likelihood
function includes the additional factor, δbs, that accounts for how
the uncertainty in the nuisance parameter may change as a function
of the interesting parameter. Essentially, marginalization is saying
to start by profiling (rather than just using the best-fit nuisance
parameter), but then adjust the profile likelihood, weighting regions
where the nuisance parameter uncertainty is largemore heavily than
regions where it is small.

Figure 7 depicts a joint likelihood function that is a bivariate
Gaussian function. Recall that a bivariate Gaussianmay bewritten as
the product of aGaussian for one variable (say, shere) and aGaussian
for the second variable withmean related linearly to the first one (the
b̂s line in the figure), and constant standard deviation in the second
dimension.This implies that δbs is constantwith respect to shere: the
marginal likelihood function is proportional to the profile likelihood
function. But that is a special property ofmultivariate Gaussians that
does not hold in general.

Figure 8 shows two scenarios where marginal and profile
likelihood functions may noticeably differ (here s and b denote
generic interesting and nuisance parameters). The top left panel
shows a “flaring” two-variable likelihood function, with the
uncertainty in b changing significantly as a function of s.The bottom
left panel indicates how the flaring shifts the marginal likelihood
function away from the joint peak, reflecting that the larger b
uncertainty to the right makes it more likely the true parameter
values are to the right of the MLE point. The top right panel shows
a “banana-shaped” two-variable likelihood function. These arise
commonly in settings where predictions depend on the parameters
via power laws (so predictions vary more weakly along a curve than
orthogonal to it). Here the δbs weighting of the profile likelihood
function arises because as the likelihood contours tilt upward with
increasing s, the uncertainty in b increases.

7.2 Measurement error
problems—handling many nuisance
parameters

It is often the case that the nuisance parameter volume
correction is noticeable in a single measurement, but not
hugely significant; it may shift the profile likelihood function
by only a fraction of its width. But the effect tends to be in a
similar direction for similar measurements. When combining
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FIGURE 8
Illustration of two-parameter likelihood function geometries where marginalization and profile likelihood may lead to significantly different inferences.
Top panels show joint likelihood functions for parameter of interest s and nuisance parameter b. Blue curves show b̂s, the MLE for b when s is given, the
path defining the profile likelihood function. Bottom panels show profile (green) and marginal (blue) likelihood functions for s. Left: A likelihood
function with “flaring” contours, with the nuisance parameter uncertainty varying significantly as a function of the interesting parameter. Right: A
likelihood function with “banana-shaped” contours, with nuisance parameter uncertainty varying because of the curvature of the profile path.

information across many measurements, the systematic effect
from the nuisance parameter volume factor can accumulate, and
ignoring it can corrupt aggregated inferences, such as demographic
inferences.

Figure 9 illustrates this with a somewhat contrived but
illuminating example7. For each of a set of N objects, we make a
pair of measurements of some object property, μi for object i, with
an instrument that provides measurements with additive Gaussian
noise with zero mean and fixed but unknown standard deviation, σ.
Denote the pair of measurements by xi and yi. For object i, there is a
likelihood function for its μi and the shared σ parameter that is the
product of two normal distributions,

ℓi (μi,σ) =
1

σ√2π
exp[−
(xi − μi)

2

2σ2 ]×
1

σ√2π
exp[−
(yi − μi)

2

2σ2 ].

(34)

7 Statisticians know this problem as the Neyman-Scott problem, a well-

known counterexample to maximum likelihood estimation (Neyman and

Scott, 1948). Neyman and Scott did important work on statistics in

astronomy. Although the Neyman-Scott problem was first described in

an econometrics journal, they posed it in terms of measuring “some

physical constant such as the radial velocity of a star or the velocity

of light.” They noted the connection to measurement error problems,

and described several settings in astronomy where the issues they

addressed potentially arise. Our discussion here expands on a shorter

treatment in Loredo (2004).

From a single pair of measurements, there is substantial uncertainty
in both μi and σ. The left panel in Figure 9 displays this; it shows
contours of ℓi(μi,σ) for the pair of measurements depicted as dots
along the ordinate. Notably, this is an example of a flaring likelihood
function, which we see is not an unusual phenomenon; it is relevant
even for the familiar normal distribution when there is uncertainty,
not just in its mean, but also in its standard deviation.

We should be able to improve inference by pooling information
across many pairs of measurements. Each pair brings in more
information about σ, letting us calibrate the noise level of the
instrument. That combination of σ information should then let
us measure each μi more precisely, as if σ became known. The
right panel of Figure 9 shows ingredients for inferring σ from the
pooled data.The solid curves show the profile (orange) andmarginal
(blue) likelihood functions from a single pair of measurements
(for the marginal, a uniform prior was used for μi). The behavior
illustrated in Figure 8 is apparent here; the peak of the marginal
is shifted to the right of the peak of the profile curve. Moreover,
the marginal curve is considerably broader. That said, the two
curves have substantial overlap. From a single pair measurement,
inferences based on the two curves would differ noticeably, but
perhaps not strongly.

The dashed curves in the right panel of Figure 9 show what
happens when we accumulate information across multiple paired
measurements (here drawn from a broad, uniform distribution,
though the findings described here do not depend on this choice).
Formally, we do this by computing a likelihood function for the full
dataset that is the product of the likelihood functions for the pairs,
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FIGURE 9
Joint, marginal, and profile likelihood functions for the normal pairs (Neyman-Scott) problem. Left: Joint likelihood function for the standard deviation
σ, and the mean μ of a normal distribution, inferred using a pair of samples (depicted as dots adjacent to the μ axis). Vertical dashed line shows the true
value of σ for the ensemble of pairs of which this pair is a member. Contours bound approximate 25%, 50%, 75%, 90%, 95%, 99%, and 99.9% confidence
regions. Right: Likelihood functions for σ based on a single pair (solid curves, scaled to unit height) or a set of measurements of 50 pairs (dashed curves,
scaled to height 0.5 for visibility). Blue curves are marginal likelihood functions, orange curves are profile likelihood functions. Vertical dashed line
shows the true value of σ for the ensemble of pairs.

L(μ⃗,σ) =
N

∏
i=1

ℓi (μi,σ) , (35)

where μ⃗ denotes the collection of μi parameters. We can again
summarize the implications for σ by profiling or marginalizing
over μi—but now over N of the μi parameters. The dashed curves
show the resulting profile and marginal likelihood functions. Both
are becoming usefully narrow. But the profile likelihood function
is converging away from the true value (σ = 1 here). One can
show that the MLE is in fact an inconsistent estimator for σ in
this setting—it converges to the wrong value as N→∞ (this
remains the case even if more than two measurements are made
per object, provided the number of per-object measurements
is finite). In the first (frequentist) treatment of this problem,
Neyman and Scott (Neyman and Scott, 1948) noted that a
useful estimate for σ could be obtained by averaging unbiased
moment-based point estimates of σ from the pairs. But they
commented that “This is undoubtedly true but beside the point”
that such problems expose a problem with maximum likelihood
estimation that has no general solution. (Bayesian methods were
uncommon in statistics at that time, and they did not explore
marginalization.)

To make the point that such problems are not uncommon in
astronomy, Figure 10 shows likelihood functions from simulated
data for isolated dim point sources observed with a CCD
camera with a critically-sampled Gaussian PSF (the calculations
are based on the description of the Hyper Suprime-Cam
pipeline in Bosch et al., 2018). The left panel is for a ≈6σ source
whose true position is in the middle of a pixel. Contours are
in the space of flux, F, and one of the direction coordinates, x
(position on the CCD; the other coordinate is fixed at its best-
fit value). The contours exhibit flaring; they are nearly symmetric
in x, but are very asymmetric in F, showing the significant flux-
direction dependence: positions away from the best-fit position, in

either direction, imply lower flux estimates. The growth of area
in the contours with decreasing flux means that the marginal
likelihood for flux gets shifted downward from the joint best-fit
flux. The shift is at the percent level, much smaller than in the
paired measurement problem above. But, as in that problem, the
shift is systematic, in the same direction and of similar scale for
all 6σ sources; it impacts accuracy (bias), more than precision,
and would dominate statistical errors in analyses averaging over
a few hundred sources. The right panel shows likelihood contours
for a ≈3σ, sub-threshold measurement of a source with a quarter-
pixel offset. It shows that the likelihood function rapidly becomes
more complicated for sources dimmer than ≈5σ, amplifying the
need to thoroughly account for nuisance parameter uncertainty
when studying the flux distribution of dim sources (e.g., via forced
photometry).

For those requiring a frequentist solution to measurement
error problems, there is a large and growing literature presenting
numerous techniques specialized to specific problem settings.
From a Bayesian perspective, specialized inference techniques
are unnecessary; marginalization over latent parameters handles
such problems generally and flexibly (though the resulting
computational challenges can demand nontrivial computational
algorithms specialized to different settings). Notably, even
statisticians who generally favor frequentist methods recommend
Bayesian approaches that marginalize over latent parameters in
complicated settings, particularly for nonlinear modeling of data
with heteroscedastic measurement error (i.e., with measurements
that have differing standard deviations); see Carroll et al. (2006).
Astronomical data commonly has heteroscedastic measurement
error, and the ability of marginalization to flexibly accommodate
this complication has been a strong motivation for the spread
of Bayesian methods for measurement error problems in
astronomy.
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FIGURE 10
Likelihood functions as a function of flux, F, and one position coordinate, x for dim point sources in an astronomical image. Crosshairs show the true
(x,F); diamonds shows maximum likelihood estimates. Contours have nominal 1σ spacing. Left: Likelihood for a source that would just pass a 6σ
detection threshhold. Left: Likelihood for a source that would just pass a 3σ detection threshhold.

8 Systematic error and model
misspecification

A well-known aphorism attributed to George Box motivates
our final marginalization application area: “All models are wrong,
but some are useful” (Box and Draper, 1987; see also Box,
1976). In some data analysis settings, we may be largely secure
about our model, but still want to explore the possibility that
inferencemay be corrupted by potential influences omitted from the
model. In other settings we may knowingly adopt an approximate
model, and want to account for the lack of fidelity to the data
when we make inferences about salient features of the model.
Here we briefly describe the role composite hypotheses and
marginalization can play to improve uncertainty quantification in
such settings. We consider two settings: first, where systematic
error arises due to model selection uncertainty (i.e., whether
to include terms for anticipated corrupting effects), and second,
where a model aims to account only for salient features of a
phenomenon, andwewant to account for uncertainty in deliberately
unmodeled details.

8.1 Systematic error and model selection
uncertainty

A fairly common way astronomers try to account for systematic
error from identified potential corrupting effects is to use a classical
null hypothesis significance test (NHST) to see if there is significant
evidence in the data for the effects. A statistic is devised to test for
the presence of a potential effect; if the null hypothesis of no effect
is not rejected, analysis proceeds assuming no effect is present. A
significant issue with this approach is that failure to reject a null
hypotheses need not correspond to a strong preference for the null

over the alternative (see, e.g., Berger, 2003; Wasserstein and Lazar,
2016; Greenland et al., 2016; Wasserstein et al., 2019). Ideally we
would like to take into account potential systematic effects, weighted
in a way that measures the strength of evidence for or against
their presence.

Marginal likelihoods can provide such a weighting (see the
brief description of model averaging above). However, marginal
likelihoods typically aremore sensitive to the choice of prior than are
parameter estimates—in particular, to the ranges of the parameter
spaces considered for rival models—and onemust be cautious about
using them to account for systematic error.

An example of systematic error quantification using marginal
likelihoods and Bayes factors is the work of Drell et al. (2000)
(DLW00) exploring the potential impact of systematic error from
source evolution on early analyses of the evidence for dark energy
from measurements of Type Ia supernova (SN Ia) light curves
(“SN cosmology”). The dark energy discovery papers found no
significant evidence for SN Ia source evolution (dependence of
light curve properties on redshift), and so assumed there was
exactly zero evolution in their analyses. DLW00 computed Bayes
factors indicating the data were equivocal regarding the presence of
evolution. An important aspect of the calculation was consideration
of a variety of priors for parameters in evolution models, to
ensure the findings were robust. Allowing for plausibly small
levels of evolution, and marginalizing over its impact, significantly
weakened the strength of the evidence for dark energy, unless one
assumed a flat cosmology, which was not justified at the time.
Fortunately, within a few years accumulating evidence from other
cosmological phenomena honed in on flat cosmologies. From the
perspective of the DLW00 systematic error analysis, it was only in
the context of this later evidence that the discovery of dark energy
became secure.
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FIGURE 11
Depiction of the multiplicative discrepancy approach. Blue histogram shows the Poisson distribution PMF from a salient feature model. Green dots
depict the PMF resulting from multiplying the Poisson expectation values by draws from a gamma distribution discrepancy process. Inset shows the
unit-mean gamma distribution for the discrepancy factors.

8.2 Systematic error, overdispersion, and
model discrepancy

In astronomy we often knowingly use models that capture
only the salient features of a phenomenon. This is particularly
true when first exploring a frontier area, where learning such
features can provide significant insight, even if the salient feature
model overlooks details. Examples include counting pulses in
gamma-ray burst prompt light curves (where we may care only
about the number of pulses and their time scales, not every
minor wiggle), or modeling luminosity functions with broken
power laws (where we would like to estimate a power law
slope and a break luminosity, irrespective of minor bumps in
the distribution). Simply adopting the salient feature model
and ignoring model misspecification can corrupt inferences, in
particular by providing artificially tight constraints on the salient
model parameters.

One approach to handling this is to simply inflate sampling
distributions. For example, in the statistics literature analyzing count
data, it is common to adopt negative binomial (NB) rather than
Poisson distributions at the outset, since the NB distribution has
an extra parameter that can be used to overdisperse the predictive
distribution for counts, and it includes the Poisson distribution as
a special case (see, e.g., Hilbe 2011; de Souza et al. (2015) for an
application in astronomy; see the Supplementary Appendix for a
brief discussion of the NB distribution and its use for modeling
overdispersion). Bonamente (2023) has adapted this idea to account
for systematic error in astronomical data analysis of Poisson data
in the regime where χ2 fitting is nominally accurate, devising a new
overdispersed χ2 distribution.

We are developing complementary methods for salient feature
modeling of Poisson count and point process data that are closely
tied to use of NB distributions. But we do not adopt overdispersed
distributions outright. In contrast to most applications of the
Poisson distribution in the statistics literature, inmany astrophysical
applications there is a strong physical basis for adopting a Poisson
distribution as the description of the repeated-sampling variability
expected in the data—the so-called aleatoric uncertainty (from the
Latin aleator for “dice player”). We use overdispersion to reflect a
combination of aleatoric and epistemic sources of uncertainty (with
the epistemic component capturing the systematic errors that may
not vary randomly across replications).

We construct overdispersed distributions via representations
that tie them to the underlying aleatoric sampling distribution
via a plausible discrepancy mechanism (adapting the notion of
additive discrepancy functions from Gaussian process emulation
of computer models; see the Supplementary Appendix). We
consider the actual intensity function (event rate) for the Poisson
process governing the data to be the product of the parametric
salient model rate that we wish to estimate, and a nonnegative
discrepancy factor. Figure 11 illustrates the construction for a
model for photon counts from a time-varying source, binned
in time, used to estimate parameters of a salient light curve
model. The blue histogram depicts the predictions of a Poisson
model for the photon counts in bins, as expectation values, λi.
These are from the salient feature model, an idealized description
of the true light curve that captures key features of scientific
interest (e.g., location, duration, amplitude). To predict the
observed counts in a bin, ni, we multiply each intensity, λi, by an
uncertain discrepancy factor, αi, drawn from a distribution with
positive support and unit mean, shown in the inset. We use
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a gamma distribution for αi; with themean fixed to one, there is only
a single parameter, the shape parameter, β, controlling the variance.
In the fitting process, we marginalize over all of the αi factors, and
treat β as an uncertain parameter, estimated from the data.

The choice of a gamma distribution enables analytic
marginalization over the discrepancy factors, producing a
predictive PMF for the counts that is NB, with a variance
that may be inflated with respect to that of a Poisson
distribution. (See the Supplementary Appendix for further details.)
More deeply, the gamma choice lets us introduce discrepancy
in a manner that preserves aggregation consistency in a sense
analogous to what we described above regarding Dirichlet priors
for histograms. This framework explicitly acknowledges that the
actual count variability distribution is expected to be Poisson. It also
points toward generalizations that can apply to point data, and that
can account for bin-to-bin correlations in the discrepancy. Details
for specific astrophysical applications will be reported elsewhere.

9 More than Bayes’s theorem

The theme of this tutorial has been that BT and the LTP are
partners in Bayesian inference—arguably unequal partners, with
the LTP carrying much of the burden in analysis and computation.
This is because of how common composite hypotheses are in
astrophysical data analysis.We hope we havemade a strong case that
the role of the LTP and marginalization should be highlighted more
prominently in the Bayesian astrostatistics literature, particularly in
pedagogical presentations.

Python and R code producing figures from this paper are
available at https://github.com/tloredo/MoreThanBT2024-Figures.
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