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NOIRE-Net–a convolutional
neural network for automatic
classification and scaling of
high-latitude ionograms
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Millions of ionograms are acquired annually to monitor the ionosphere. The
accumulated data contain untapped information from a range of locations,
multiple solar cycles, and various geomagnetic conditions. In this study,
we propose the application of deep convolutional neural networks to
automatically classify and scale high-latitude ionograms. A supervised approach
is implemented and the networks are trained and tested usingmanually analyzed
oblique ionograms acquired at a receiver station located in Skibotn, Norway.
The classification routine categorizes the observations based on the presence
or absence of E− and F-region traces, while the scaling procedure automatically
defines the E− and F-region virtual distances and maximum plasma frequencies.
Overall, we conclude that deep convolutional neural networks are suitable
for automatic processing of ionograms, even under auroral conditions. The
networks achieve an average classification accuracy of 93% ± 4% for the E-region
and 86% ± 7% for the F-region. In addition, the networks obtain scientifically
useful scaling parameters with median absolute deviation values of 118 kHz
±27 kHz for the E-region maximum frequency and 105 kHz ±37 kHz for the F-
region maximum O-mode frequency. Predictions of the virtual distance for the
E− and F-region yield median distance deviation values of 6.1 km ± 1.7 km and
8.3 km ± 2.3 km, respectively. The developed networks may facilitate EISCAT
3D and other instruments in Fennoscandia by automatic cataloging and scaling
of salient ionospheric features. This data can be used to study both long-term
ionospheric trends and more transient ionospheric features, such as traveling
ionospheric disturbances.
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1 Introduction

The ionosphere is the uppermost layer of the Earth’s atmosphere
and the link between the neutral atmosphere and the plasmasphere
(Russell et al., 2016). This region of the Earth’s atmosphere is
partly ionized (thereof the name ionosphere) and exhibits plasma
behavior. The plasma density (ne) in the Arctic ionosphere is
highly variable in both altitude and time, and balanced by
different sources and sinks, such as solar radiation, particle
precipitation, and recombination with neutrals (with density
nn). Figure 1 illustrates the typical ionospheric variability in
altitude and time (day/night and solar minimum/maximum). The
ionosphere is traditionally divided into 3 regions: the D-region
(60–90 km), the E-region (90–160 km) and the F-region ( >
160 km), the F-region is often subdivided into the F1 (160–180 km)
and F2 ( > 180 km) layers (Hunsucker and Hargreaves, 2007,
p 13–15).

Nearly a century ago, Breit and Tuve (1925, 1926) provided
the first experimental evidence of the ionosphere by observing that
pulsed high-frequency radio waves are reflected by a conducting
and variable layer in the upper atmosphere. Their observations were
made by the first version of an ionosonde, a radar system that
is still in active use today with more than 100 ionosondes being
deployed worldwide (Xiao et al., 2020). An ionosonde consists of an
antenna and a receiver that transmit and receive pulsed radio waves
that are swept through the typical ionospheric plasma frequency
range (0.5 MHz–20 MHz). The distance to the reflection point is
calculated from the time delay of the signal from the transmitter
to the receiver and is referred to as the virtual distance in this
article. Radio waves transmitted vertically are reflected when the
transmitted frequency ( fT) is equal to the local plasma frequency
( fp), i.e., ( fT = fp), while waves transmitted at an angle are reflected

FIGURE 1
An illustration of the high-latitude plasma density as a function of
altitude and time (day/night and solar minimum/maximum), estimated
by the International Reference Ionosphere (Bilitza, Dieter et al., 2014)
above the EISCAT facilities in Ramfjordmoen, Norway. Ionization by
auroral precipitation greatly enhances the plasma density in the
E-region, making the Arctic ionosphere more complex than the
ionosphere at mid and equatorial latitudes. The green line illustrates
the enhanced plasma density during auroral conditions, calculated by
the mean plasma density under auroral conditions observed by
EISCAT on 12th December 2006, from 16.00 to 23.00 UT.

at lower altitudes due to refraction in the ionosphere. The plasma
frequency in the ionosphere is related to the local plasma density by:

fp =
1
2π
√ nee

2

meϵ0
(1)

this expression can therefore be used to estimate the altitude profile
of the plasma density (ne(z)) up to the altitude of the maximum
plasma frequency in the E− and F-region. Here, (e) is the elementary
charge, (me) is the electron mass and (ϵ0) is the permittivity
of free space. Additionally, ionosondes transmit both left-hand
and right-hand circular polarized waves, commonly referred to
as the Ordinary mode (O-mode) and Extraordinary mode (X-
mode) waves, respectively. Note that these mode definitions are
traditionally opposite in the fields of physics and engineering (Rexer,
2021). Radio waves transmitted in these two modes are reflected
at different altitudes in the ionosphere. In this work, we focus on
the O-mode reflection whenever the O- and X-mode traces can be
discerned in the F-region.

The ionogram is the basic data product acquired by the
ionosonde. The ionogram is a 2-D visualization of the received
echo as a function of transmitted frequency and virtual distance
(time-of-flight). Each ionosonde typically produces an ionogram
every 1–15 min, resulting in several thousand ionograms every
month. This data can be used to support ionospheric observations
from radars (Patra et al., 2009) and rockets (Savio Odriozola et al.,
2017; Neelakshi et al., 2022) and to track both long-term
ionospheric trends (Xu et al., 2004) and more transient

FIGURE 2
NOIRE consists of 4 oblique sounding receivers positioned in Skibotn,
Oulu, Kuusamo and Ivalo. The NOIRE receivers are linked to an
ionosonde transmitter located in Sodankylä. This work focuses on
ionograms acquired by the Skibotn receiver, with a skip distance
of 338.8 km (Floberg, 2022). Additional receiver stations will be
installed in Fennoscandia in the upcoming years. Auroral images from
the All-sky camera in Kiruna, operated by the Swedish Institute of
Space Physics, are used to infer auroral conditions i n this study.
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FIGURE 3
Histograms of solar and geophysical indices during periods of
ionogram acquisition. (A) summarizes the number of ionograms for
each Month. (B) the solar elevation is highly correlated to the F-region
frequency, the histogram indicates a balanced data set around a
90-degree solar zenith angle. (C) The solar radiation flux in the 10.7 cm
wavelength is an indication of solar activity King and Papitashvili
(2005), the histogram indicates good coverage between ∼90-160 s.
f.u. Note that the bins are 10 s. f.u. from 90 to 230 s. f.u. and a single
bin from 230 to 350 s. f.u. (D) The SuperMAG electrojet index (SME)
estimates the ionospheric current in the auroral oval by evaluating the
magnetic H-component across more than 100 magnetometer
stations near the auroral oval Bergin et al. (2020); Newell and Gjerloev
(2011). The histogram indicates that ionograms were acquired over a
range of auroral activities, with good coverage over SME values
ranging from 100 to ∼500. A high SME value indicates enhanced
auroral activity and is correlated to the E-region maximum frequency.
The bins are spaced from 0 to 1000 with a bin size of 100 SME, and a
single bin from 1000 to 2000 SME.

ionospheric features, such as traveling ionospheric disturbances
(Pederick et al., 2017).

Several tools have been developed to extract important
features from ionograms automatically, e.g., Autoscala (Scotto
and Pezzopane, 2002; Pezzopane and Scotto, 2007), Univap
Digital Ionosonde Data Analysis (UDIDA) (Pillat et al., 2013) and
other methods, see for example,: Ding et al. (2007); Jiang et al.
(2013, 2015); Chen et al. (2018). In addition, automatic methods
specialized for processing oblique ionograms have been developed,
see for example,: (Ippolito et al., 2015; Song et al., 2016; Jiang et al.,
2022). Automatic Real-Time Ionogram Scaling with True-
heights (ARTIST), version 5, is currently the most widely used
routine (Reinisch and Xueqin, 1983; Galkin and Reinisch, 2008).
However, ARTIST-5 achieves sub-optimal performance compared
to human scaling, in particular for low signal-to-noise ratio
data (Xiao et al., 2020). Themens et al. (2022) compared the

FIGURE 4
The 3-step preprocessing procedure. (A) displays the raw ionogram,
acquired on 15 November 2022, at 13:44 UT in Skibotn. The ionogram
processed by step 1: noise normalization, is shown in (B). (C) displays
the ionogram after step 2: min-max cap. (D) shows the ionogram after
being processed by step 3: pixel normalization.

ARTIST-5 performance to ∼35 000 manually analyzed ionograms
acquired by the Global Ionospheric Radio Observatory (GIRO).
They concluded that ARTIST accurately extracts the F2-layer
O-mode frequency and the F-region height for ionograms with
high confidence scores ( > 75), but is unreliable for processing
ionograms with low confidence scores. The Themens et al.
(2022) study further indicated that ARTIST-5 is unreliable for
identifying the F1-layer, leaving out 39% of the F1-layer ionograms,
and is inaccurate for scaling the F1-layer O-mode frequency,
achieving performances worse than those estimated by the
International Reference Ionosphere (Bilitza, Dieter et al., 2014).
In addition, Stankov et al. (2023) estimated the error bounds of
the scaling parameters of ARTIST-5 by comparison to more than
50 000 manually analyzed ionograms. Using a 95% confidence,
they found the error bounds: E-region O-mode frequency
[-0.3 MHz, +0.8 MHz], F2-layer O-mode frequency [-0.35 MHZ,
+0.25 MHZ], E-region height [-6 km, +6 km] and F2-layer height
[-115 km, +45 km]. Overall, these studies indicate that reliable
and accurate ionogram scaling remains a challenge, especially at
high latitudes.

More recently, supervised deep learning methods, in
particular deep convolutional neural networks (CNNs), have
been implemented for automatic ionogram analysis with
promising results. Deep convolutional neural networks are
versatile algorithms designed for processing grid-like data, such
as image (Krizhevsky et al., 2012; Clausen and Nickisch, 2018),
video (Karpathy et al., 2014; Redmon et al., 2016) or time series
(Wang et al., 2017; Kvammen et al., 2023). Deep, in this context,
refers to the multi-layered architecture of the convolutional neural
networks, often consisting of millions of free parameters that are
optimized using manually labeled observations (i.e., ionograms)
to solve the task at hand. Mochalov and Mochalova (2019) used
∼40 000 manually scaled ionograms from the Parus-A ionosonde,
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FIGURE 5
Each ionogram is classified based on the presence or absence of a
clearly visible E-region and/or F-region trace. Examples of ionograms
with a clearly visible E-region trace are presented in the top row along
with the manually scaled E-region virtual distance and maximum
frequency (indicated by the yellow lines). The third E-region example
displays an E-region trace under auroral conditions. The second row
displays typical F-region profiles with the manual scaling in red. Note
that two F-region traces can often be observed, the echo from the
transmitted O-mode frequency and the X-mode frequency with
slightly higher frequency values, we focus on extracting the maximum
usable O-mode frequency. Ionograms with both E-region and
F-region traces are presented in the third row. In the case of a clearly
visible F1-layer, as in example 1, the F1 virtual distance is scaled. The
bottom row presents examples of ionograms without a clearly visible
ionospheric trace.

operated by the Pushkov Institute of Terrestrial Magnetism, near
Moscow, Russia, to develop a deep neural network for detecting
the ionospheric trace and separating the E, F1, and F2-region
traces. Xiao et al. (2020) implemented and evaluated several
convolutional neural network architectures to identify the E, F1
and F2-region traces using ∼20 000 ionograms from the DPS4D
ionosonde near Wuhan, China. Xiao et al. (2020) concluded
that the DIAS model (based on the ResNet-50 architecture)
achieved the highest performance, outperforming ARTIST and
obtaining scaling accuracies close to human experts. De La Jara and
Olivares (2021) used convolutional neural networks to accurately
detect the ionospheric echo using ∼51 000 ionograms from
the Jicamarca VIPIR ionosonde near Lima, Peru, and further
developed methods to isolate the ionospheric trace from noise and
interference. Rao et al. (2022) implemented a pre-trained VGG-
16 convolutional neural network to classify ionograms acquired

TABLE 1 The manually labeled and scaled ionograms. This data set is
used to train, validate and test the convolutional neural networks. The
random draw results in a fairly balanced number of observations for each
class with a 65.2% probability for an E-region trace and a 44.8%
probability for a clear F-region trace.

Class No. ionograms

E-region 5772 (34.4%)

F-region 2344 (14.0%)

E− and F-region 5173 (30.8%)

No trace 3487 (20.8%)

Total 16776 (100.0%)

by the Canadian Advanced Digital Ionosonde (CADI) system in
Hyderabad, India. Rao et al. (2022) used 40 000 ionograms to
develop the VGG-16 model, achieving a classification accuracy
of 97% and an F1-score of 89%, and further demonstrated that
the VGG-16 network provided useful outputs even under highly
disturbed geomagnetic periods. Finally, Sherstyukov et al. (2023)
tested several convolutional neural network architectures for
processing ionograms acquired at high latitudes. A large data set
consisting of 86 500 ionograms from the Sodankylä Geophysical
Observatory was used. Sherstyukov et al. (2023) concluded that
the InceptionV3 architecture achieved the highest performance,
achieving 87.3%E-region classification accuracy and 92.8%F-region
accuracy, and frequency scaling estimates with ∼0.10 MHz mean
absolute error.

Following the previous work, the main purpose of this
study was to develop a deep convolutional neural network
specialized for processing high-latitude oblique ionograms. The
high-latitude ionosphere is different from the low- and mid-
latitude ionosphere due to differences in, for example, particle
precipitation, solar zenith angles and plasma convection patterns
(Ratovsky et al., 2014). Thus, automatic tools developed for
processing low and mid-latitude oblique ionograms are sub-
optimal for processing high-latitude data. In addition, previous
implementations of deep neural networks have focused mainly
on automatically detecting and isolating the ionospheric trace,
while we use a somewhat different approach, more similar to
Sherstyukov et al. (2023). In this work, we seek to automatically
classify ionograms into categories (E-region, F-region and no
ionospheric trace) and further quantify the characteristic E−
and F-region virtual distances and maximum frequencies. This
study was further motivated by the expected increased number
of high-frequency radar sounders in Fennoscandia, and a great
demand for reliable monitoring of the ionosphere in relation to the
anticipated EISCAT 3D incoherent scatter radar in Skibotn, Norway
(McCrea et al., 2015).

2 Data acquisition and processing

This work focuses on ionograms acquired by the Network
of Oblique Ionospheric Receivers Experiment (NOIRE) (Floberg,
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FIGURE 6
The manually analyzed ionograms in Table 1 were chronologically
sorted and split into 10 subsets (folds), each fold is illustrated by a
colored circle. 10 convolutional neural networks were then developed
using different subsets of the data, 8 folds were used for training the
models (illustrated in teak), one fold for validation (blue) and one fold
was left out for testing the trained networks (orange). This method
ensures that all ionograms are used for training, validation and testing,
while being robust to time-correlated observations.

2022). NOIRE consists of 4 oblique sounding receivers positioned
in Skibotn, Oulu, Kuusamo and Ivalo, illustrated in Figure 2.
These receivers are linked to the ionosonde transmitter located in
Sodankylä and operated by the Sodankylä Geophysical Observatory
(Kozlovsky et al., 2013; Enell et al., 2016). Each receiver station is
equipped with an active magnetic loop antenna and a universal
Software Radio Peripheral (USRP) platform. NOIRE acquires one
ionogram on each minute, resulting in 1440 ionograms each day
at all receiver stations. The ionograms have dimension (310 × 310),
310 transmitted frequencies spanning linearly between 0.5 MHz and
16 MHz and 310 range gates spanning linearly between 200 km
and 1500 km.

For the purpose of this study, ionograms acquired in Skibotn
between 2022-04-01 and 2023-04-01 are considered. Figure 3
summarizes the solar and geophysical background conditions
during this period. The data has a good representation of the
seasonal variability, with more than 1000 monthly ionograms, and a
broad coverage of the solar elevation angles. However, a wider range
of solar and geophysical conditions would be beneficial, e.g., over an
entire solar cycle, but is unobtainable since NOIRE has only been
in operation (with the current software) since 2022. The framework
outlined in this article can however be used to extend the considered
dataset in future work. The proposed methodology can further be
used to include ionograms from other receiver stations and even
other ionosondes with additional training.

2.1 Preprocessing

The ionogram data is preprocessed in order to enhance the
ionospheric trace and standardize the input to the convolutional
neural network. Standardized data further makes manual scaling
more consistent and eases parameter optimization during training.
A 3-step preprocessing procedure was used on each ionogram in the
considered data set (Figure 4 illustrates the step-by-step procedure
on a sample ionogram).

1. Noise normalization: Each column (i.e., frequency channel) of
the ionogram is independently normalized by division of the
median absolute deviation.This is done to clean the ionograms
from radio and high-frequency communication interference.

2. Min-max cap:The received ionograms typically contain a wide
range of values. The ionospheric echo is of interest, not the
signal strength, which can vary up to 6 orders of magnitude.
The pixel values are therefore capped between 0 and 20,
meaning that intensities below 0 are set to 0 and intensities
above 20 are set to 20. The min-max capping ensures a more
robust representation under variable ionospheric conditions.

3. Pixel normalization: The ionogram pixel values are scaled
to [0,255] for efficient 8-bit image storage. The images are
however normalized to a pixel range [0,1] before network
training and testing.

2.2 Manual ionogram analysis

Supervised machine learning techniques require manually
labeled data to both train and test the classifiers (Goodfellow et al.,
2016, p 101–102). Attention is therefore needed in order to construct
a high-quality labeled data set that can be used to develop reliable
classifiers without significant contamination of biases, corrupted
data files and mislabeled ionograms (McKay and Kvammen, 2020).
For this work, a two-step routine was employed. The initial step
involves the classification of ionograms based on the features of
interest, namely, the presence or absence of a clearly discernible E-
region and/or F-region trace. These two binary classifications yield
four categories: E-region, F-region, E and F-region and no trace.The
second step is manually identifying the E-region and/or F-region
virtual distance and maximum frequencies (if traces are present).
Figure 5 presents examples of ionograms with E-region, F-region,
E and F-region and no trace, along with the manual scaling for
the positive classes. Table 1 presents the number of ionograms in
each class.

In practice, each ionogram was drawn randomly from the
considered data set (without replacement) and displayed. A
Graphical User Interface (GUI) was then used to implement the
two-step routine, making it easy for the human user to assign
an ionogram class and the relevant scaling parameters rigorously
and efficiently. In total, 16 776 ionograms were manually classified
and scaled by 5 different scientists with knowledge of the salient
ionogram features.

2.3 10-fold cross-validation

The manually analyzed data was chronologically sorted and
split into training, validation and testing sets using a 10-fold cross-
validation approach (Hastie et al., 2009). This method divides the
sorted data into 10 subsets (or folds) with approximately equal size
(Chollet, 2021; Varoquaux and Colliot, 2023). 8 folds (∼224 h of
data) was used for training the convolutional neural networks, one
fold (∼28 h) was used for validating the models and the last fold
was held out for testing. 10 convolutional neural networks were then
developedusing different data subsets through circular permutation,
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FIGURE 7
Visualization of the NOIRE-Net architecture, made using the visualkerasprogram (Gavrikov, 2020). The CNN consists of 12 convolutional layers, 6
maximum pooling layers and 3 fully connected layers. This architecture implements f(w,x), the non-linear function that maps the input ionogram (x) to
the output class or scaling parameters (y).

illustrated in Figure 6, allowing the mean performance across the 10
networks to be reported with error estimates.

The 10-fold cross-validation approach was implemented to
minimize the number of observations in the validation and testing
sets with a high correlation (in time) to the ionograms in the
training data. Highly correlated ionograms are problematic since
near-consecutive observations are likely to be similar, leading to an
overestimation of the reported performance (Camporeale, 2019).
Note that a random split would cause approximately one-third
(on average 36.2% ± 0.9%) of the validation and testing data to
be highly time-correlated with the training data. Highly time-
correlated observations are defined here as ionograms that are
separated by no more than 10 min.

3 Convolutional neural network
training

This project aimed at developing a tool that can take an
ionogram as input and automatically output the ionogram class
and the ionogram scaling parameters for the positive classes.
Mathematically, the objective becomes to find a non-linear function
( f), parameterized using the trainable weights and biases (w),
that maps an input ionogram (x) to the output class or scaling
parameters (y), this yields Eq. 2:

y = f (w,x) (2)

In this work, the free parameters (w) are structured in a
CNN consisting of 12 convolutional layers and 3 fully connected
layers, which implements the non-linear function f(w,x). For an
introduction to convolutional neural network designs see e.g.,
Goodfellow et al. (2016, Chapter 9). The employed CNN, named
NOIRE-Net, is illustrated in Figure 7 and the number of free
parameters in each layer are summarized in Table 2.

The rectified linear unit (ReLU) was used as the activation
function (Nair and Hinton, 2010), i.e., the function that determines
the activation of the neurons in hidden layers based on the
network weights and the input ionogram. Six maximum pooling
layers were introduced to the network in order to downscale
the data as information propagates through the network while
extracting the most important features (Zhou and Chellappa, 1988).
Batch normalization (Ioffe and Szegedy, 2015) was added after
each convolutional layer to stabilize the learning process while
dropout (Srivastava et al., 2014) was added between two of the
fully connected layers to prevent overfitting. This architectural
design was influenced by well-known CNN designs such as AlexNet
(Krizhevsky et al., 2012) and VGG (Simonyan and Zisserman,
2015). The main difference is that NOIRE-Net was adapted to the
specific input image size of the ionograms.

In order to solve the ionogram classification and scaling tasks,
four CNNs were trained, these CNNs are jointly referred to as
NOIRE-Net.

1. E-classify: This network was trained to classify the ionograms
into two predefined labels: E-region or no E-region, indicating
the presence or absence of an E-region trace, see Figure 5
for examples.

2. F-classify: The F-classify network was optimized to catalog
ionograms into the binary labels: F-region or no F-region.

3. E-scale: This network was trained to solve the regression
task of determining the E-region maximum frequency and
the E-region virtual distance for cases where an E-region
exists.

4. F-scale:TheF-scale networkwas developed to find the F-region
maximum usable O-mode frequency and the virtual distance
for cases where an F-region is clearly visible.

As commonly used for binary classification tasks
with CNNs, a logistic sigmoid activation function ϕ(z) =
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TABLE 2 The NOIRE-net architecture consists of ∼842 000 free
parameters, the exact number depends on the task. The last layer with
one output is for classifying the presence of an E-region trace or
classifying the presence of an F-region trace. The last layer with two
outputs is used for the regression of the E-region virtual distance and
maximum frequency or the regression of the F-region virtual distance
and maximum O-mode frequency. The input images all have dimensions
(310 × 310 × 1), and this is also the expected input format to NOIRE-Net.
The size of the information “volume”, as information propagates from the
input image through the network, can be tracked by the output shape,
where the last dimension represents the number of filters in each layer.
Each 2D convolutional layer (Conv2D) and fully connected layer (Dense),
except for the last layer, employs the rectified linear unit (ReLU) as the
activation function. All 2D convolutional layers use a kernel size of (3,3)
to define the filters.

Layer (type) Output shape Param #

Conv2D (310, 310, 32) 320

Conv2D (308, 308, 32) 9248

MaxPooling2D (154, 154, 32) 0

Conv2D (154, 154, 32) 9248

Conv2D (152, 152, 32) 9248

MaxPooling2D (76, 76, 32) 0

Conv2D (76, 76, 64) 18496

Conv2D (74, 74, 64) 36928

MaxPooling2D (37, 37, 64) 0

Conv2D (37, 37, 64) 36928

Conv2D (35, 35, 64) 36928

MaxPooling2D (17, 17, 64) 0

Conv2D (17, 17, 128) 73856

Conv2D (15, 15, 128) 147584

MaxPooling2D (7, 7, 128) 0

Conv2D (7, 7, 128) 147584

Conv2D (5, 5, 128) 147584

MaxPooling2D (2, 2, 128) 0

Flatten (512) 0

Dense (256) 131328

Dense (128) 32896

Dense (2/1) 129/258

Total 841 889/842 018

(1+ e−z)−1 was applied to the output of the E-classify and F-
classify networks (Goodfellow et al., 2016, p 65–66), i.e., an output
≥0.5 indicate a positive class (presence of E/F) and an output < 0.5
indicate a negative class (absence of E/F). For the ionogram scaling,
a linear activation was used to output the E/F-region virtual distance
and maximum frequency. The networks were otherwise identical.

Note that a single CNN could be trained to solve all tasks, this
approach requires however a multi-headed model which is more
challenging to both train and test.

The parameters (w) were optimized using stochastic gradient
descent (Adam algorithm) (Kingma and Ba, 2017) and the
training data set, consisting of input-output pairs (xi,yi). For
the labeling task, we used the binary cross-entropy between
the distribution of true (yi) and predicted ( f(w,xi)) labels to
define the loss function (Theodoridis and Koutroumbas, 2009b,
p 172–173), as expressed in Eq. 3:

ŵ = argmin
w
∑
i
(−yi log( f (w,xi)) − (1− yi) log(1− f (w,xi))) (3)

where ŵ denotes the optimized parameters (which are fixed after
training).

For the regression task of estimating the E− or F-region
virtual distance and maximum frequencies, a sum of squared
errors between the manually scaled parameters (yi) and the
predictions ( f(w,xi))was used as the loss function (Theodoridis and
Koutroumbas, 2009a, p 108–109), as expressed in Eq. 4:

ŵ = argmin
w
∑
i
‖yi − f (w,xi)‖

2. (4)

The CNNs were implemented using the TensorFlow and Keras
frameworks. The training was conducted on a MacBook Pro with
a M1 Max 32-core GPU and required about 2 h for each network.
A dynamic learning rate between 0.001 and 1 ⋅10–5 over 100 epochs
with a batch size of 64 was used to optimize the network parameters.
These hyper-parameters were selected after a few experimental runs
with different parametrizations. The effect of varying dropout rates,
optimization methods and activation functions are unexplored.
A systematic tuning of all these hyper-parameters, e.g., using
an automatic optimization tool like Optuna Akiba et al. (2019),
might further enhance the NOIRE-Net performance, but was not
attempted in the interest of time. For more information about
the training and testing of NOIRE-Net, please visit the relevant
Notebooks at https://github.com/AndreasKvammen/NOIRE-Net/.

4 Results and discussions

The classification and scaling performances of NOIRE-Net are
evaluated using the testing data. We report the average performance
from 10 independent training runs with random initialization of
the NOIRE-Net weights and biases (w). For each training run,
the manually labeled and scaled ionograms are split into training,
validation and testing data sets with a (0.8, 0.1, 0.1) partitioning
using the 10-fold cross-validation method described in Section 2.3.
This approach, using the ensemble performance from 10 runs,
provides a more robust performance and further allows for error
estimates between the trained CNNs.

4.1 Classification performance

Table 3 presents the performance scores of NOIRE-Net for the
classification task. The classifier is compared to a simple baseline
probability model. The probability model randomly predicts the
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TABLE 3 Summary of the classification performance. NOIRE-Net achieves high (≥0.90) performance scores over all metrics for the E-region
classification and an acceptable (≥0.85) performance for the F-region precision and accuracy, but has a lower score for the recall and F1 score
(0.81 ±0.15 and 0.84 ±0.01).

Precision Recall F1-score Accuracy

NOIRE-Net E-classify 0.93 ± 0.06 0.96 ± 0.03 0.94± 0.04 0.93 ± 0.04

Probability model E-classify 0.65 ±0.11 0.65 ±0.01 0.65 ±0.06 0.55 ±0.04

NOIRE-Net F-classify 0.88 ± 0.05 0.81 ± 0.15 0.84 ± 0.01 0.86 ± 0.07

Probability model F-classify 0.51 ±0.08 0.45 ±0.02 0.47 ±0.04 0.50 ±0.01

FIGURE 8
(A) The confusion matrix is populated by the true (correctly classified) and false (erroneously classified) observations, as compared to the manual labels.
Positive (+) ionograms indicate the presence of an E/F trace while negative (−) ionograms indicate the absence of an E/F trace. (B) The CNN E-region
classification performance. 96% ±3% of the observations manually labeled to contain an E-region trace are correctly predicted by the CNN, while 89%
±6% of the ionograms without E-region traces are correctly classified by the CNN. (C) The performance of F-region classification. The CNN correctly
classifies 81% ±15% of the ionograms with a clearly visible F-region trace while 89% ±5% of ionograms without F-region traces are correctly predicted.

TABLE 4 Summary of the scaling performance. NOIRE-Net provides scaling parameters with MAD values within 3 pixels for the E and F-region scaling.

MAD freq [kHz] RMSE freq [kHz] MAD dist [km] RMSE dist [km]

NOIRE-Net E-scale 118 ± 27 490 ± 126 6.1 ± 1.7 11.2 ± 3.9

Mean model E-scale 1760 ±478 2902 ±222 7.3 ±0.9 14.7 ±3.3

NOIRE-Net F-scale 105 ± 37 277 ± 134 8.3 ± 2.3 24.8 ± 5.8

Mean model F-scale 1260 ±739 1671 ±843 44.9 ±10.4 72.7 ±12.1

TABLE 5 The manually labeled and scaled ionograms used for testing the stability of NOIRE-Net across the parameter space. Each ionogram was labeled
and scaled by 1-5 humans. Note that a single ionogram can contain both an E-region trace and an F-region trace. In total, 652 unique ionograms
were analyzed.

Class Human 1 Human 2 Human 3 Human 4 Human 5 Unique ionograms

E-region 385 397 386 367 126 424

F-region 310 289 343 249 97 350

Total 620 620 561 558 199 652

class of the ionogram based on the probability of a positive class
(65.2% for the E-region and 44.8% for the F-region), calculated
using themanually labeled data in Table 1. NOIRE-Net outperforms
the probability model across all metrics. NOIRE-Net achieves a
reliable E-region classification performance with very high (≥0.9)

scores over all metrics, see the Appendix for the definitions of
the evaluation metrics. For the F-region, NOIRE-Net archives a
good performance (≥0.85) for the precision and accuracy metrics
but has a lower score for the recall (0.81 ± 0.15) and F1-
score (0.84 ± 0.01). This indicates that some observations that
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FIGURE 9
A comparison of the multi-human and NOIRE-Net scaling predictions across the output parameter space. The ionogram number is sorted by
increasing NOIRE-Net output values. (A) presents the E-region maximum frequency comparison. A few outliers can be seen, but there is no clear skew
between the human and NOIRE-Net scaling. Note that the ±standard deviation values around the median NOIRE-Net predictions across the 10 CNNs
are included, but are generally too small to be seen within the human vs. human spread. (B) displays the E-region virtual distance comparison. The
E-region virtual distance has a small range in output values and the NOIRE-Net scaling is in line with human interpretation. (C) The F-region maximum
frequency has a large dynamic range, still, the agreement between NOIRE-Net and the human scaling is consistently good. (D) Overall, the NOIRE-Net
predictions of the F-region virtual distance are in-line with human interpretation, however, a few outliers can be seen spread across the parameter
space. A possible reason for these outliers is ambiguity in F1-layer or F2-layer scaling, which is not treated separately in this project (the lowermost
F-region trace is defined as the F-region height).

were manually labeled as F-region are misclassified (no F-region)
by NOIRE-Net.

Figure 8 presents the NOIRE-Net performance as confusion
matrices. Overall, NOIRE-Net achieves a reliable E-region

classification performance and a good performance for the
F-region classification, although with a significant (19% ±
15%) proportion of false negative F-region observations (as
expected from the lower recall score).
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TABLE 6 The manually labeled and scaled ionograms used for analyzing
the NOIRE-Net stability in time. Note that the E-region and F-region
labels are not mutually exclusive. In total, 1404 ionograms
were analyzed.

Class Number of ionograms

E-region 813

F-region 1053

Total 1404

4.2 Scaling performance

The scaling performance of NOIRE-Net is evaluated by
the median absolute deviation (MAD) and the root mean
square error (RMSE). Table 4 summarizes the performance for
each output parameter across 10 training runs. The NOIRE-
Net scaling performance is compared to a mean reference
model. The mean model always predicts the mean value of
the scaling parameters, 6.21 MHz for the E-region maximum
frequency and 6.07 MHz for the F-region maximum O-mode
frequency, and 404 km and 611 km for the virtual distances,
respectively.

Overall, NOIRE-Net outperforms the mean model and provides
scientifically useful outputs with MAD values of 118 kHz ±27 kHz
for the E-region maximum frequency and 105 kHz ±37 kHz
for the F-region maximum O-mode frequency. Predictions
of the virtual distance for the E− and F-region yield MAD
values of 6.1 km ± 1.7 km and 8.3 km ± 2.3 km. Note that the
ionograms have dimensions (310 × 310), with 50 kHz frequency
resolution and a ∼4.2 km virtual distance resolution for each
pixel. Thus, NOIRE-Net provides predictions with MAD values
within 3 pixels of manually scaled E and F-region traces. The
RMSE values are sensitive to outliers and NOIRE-Net archives
RMSE values within 10 pixels. The E-region frequency is the
most uncertain parameter, indicating a significant number of
outliers, possibly due to specular meteor trail echoes (Ellyett
and Goldsbrough, 1976) and a large variability from quiet to
auroral conditions.

4.3 Automatic ionogram classification and
scaling with NOIRE-Net

In this section, the NOIRE-Net performance is studied by
analyzing the stability across the parameter space and by evaluating
the consistency (in time) during both quiet and active auroral
conditions. These analyses are performed using additional testing
data sets, auxiliary to the manually labeled and scaled data set
presented in Table 1.

4.3.1 Scaling stability across the parameter space
Thestability ofNOIRE-Net across the parameter space is studied

by analyzing the performance on an additional testing data set
consisting of 652 ionograms. In this data set, each ionogram was

labeled and scaled by 1-5 human experts, with a mean value
of 3.92 human experts per ionogram. A summary of this data
set is presented in Table 5. The NOIRE-Net scaling predictions
are compared to the multi-human analysis in Figure 9. Note that
ionograms in the multi-human data set (Table 5) with a high
time correlation to the observations in the NOIRE-Net data set
(Table 1) were excluded. In total 46.2% of the multi-human data was
rejected due to high time correlation, excluding ionograms acquired
within 10 min of an observation in Table 1. Still, the remaining data
presented in Figure 9 contain the 48.5% semi-correlated ionograms
(observations sampled within 10-20 min) and might present an
overestimated performance compared to data outside the time
domain of the NOIRE-Net data set.

In summary, Figure 9 indicates that NOIRE-Net provides
scaling parameters that are generally in-line with the human
interpretation. A few outliers can be seen, especially for the E-
region maximum frequency and the F-region virtual distance, as
already implied by the large RMSE values in Table 4. It should
be noted that ionograms with low signal-to-noise ratios are often
ambiguous, and the “correct” class and scaling parameters differ
from person to person. Still, there is no clear skew between the
NOIRE-Net predictions and the human consensus, suggesting that
NOIRE-Net provides scientifically useful scaling results across the
parameter space.

4.3.2 Classification and scaling stability in time
Consecutive ionograms acquired over a 24-h period (24

October 2022) were manually analyzed to study the self-
consistency of NOIRE-Net (in time). Furthermore, this data set
was used to compare NOIRE-Net and human analysis during
both quiet and active auroral conditions. A summary of this
data set is presented in Table 6. Ionograms from 24 October
2022 were selected for this analysis since auroral emissions were
clearly visible in the Kiruna all-sky camera for a longer period
(21:00-00:00) without cloud contamination or significant light
pollution from the moon or other sources. Figure 10 presents
the comparison of the NOIRE-Net and human classification and
scaling. A movie of the NOIRE-Net performance on this data is
added to the Supplementary Material.

Figure 10 demonstrates that NOIRE-Net scaling generally
follows human interpretation under various conditions and further
provides self-consistent outputs (in time) with few outliers.
Figure 10 further suggests that inconsistency predominantly
occurs for ambiguous ionograms, often with low signal-to-
noise ratios, ionograms that are difficult to interpret for
human experts as well. In addition, NOIRE-Net provides
some disagreement with human interpretation under auroral
conditions, as seen in the E-region maximum frequency scaling
in Figure 10A.

Figure 11 investigates the E-region maximum frequency
prediction in detail for a variable period 21:00-00:00 with auroral
precipitation.The observed green-line intensity enhancement (I5577)
is approximately proportional to the production of secondary
electrons (qe) from precipitating particles (Rees and Luckey, 1974).
Further, at E-region heights during steady-state, the electron density
is proportional to √qe (Brekke, 2012; Section 7.9). Combining
this with the plasma frequency expression, Eq. 1, gives the first-
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FIGURE 10
Manually analyzed ionograms are compared to the NOIRE-Net predictions during a 24-h period (October 24, 2022) in subplots (A–D). The error bars
mark the standard deviation around the median, calculated using outputs from 10 independently trained CNNs. Classification disagreements can be
seen as periods where there are either NOIRE-Net predictions or human scaling. Disagreement is seen in the E-region for ionograms with high
maximum frequencies that only last for one ionogram frame (likely due to specular meteor trail echoes) and some disagreement can be seen in the
frequency scaling during auroral conditions (characterized by high maximum frequencies that last for longer periods). Some disagreements are also
seen in the F-region around 04:30 UT and around 21:00 UT, these disagreements are due to ambiguous and/or weak F-region echoes, as displayed by
the example ionograms from 03:00 UT and 21:00 UT in subplots (E) and (G). The dotted red lines in subplots (E–G) represent the ± standard deviation
values around the median predicted values across the 10 CNNs. In general, NOIRE-Net provides stable outputs (in time) that are mostly in-line with
human interpretation. Note, however, that for ionogram (E), the human erroneously scaled the F-region X-mode trace while NOIRE-Net correctly
scaled the O-mode maximum frequency. In addition, there is no NOIRE-Net F-region scaling in subplot (G) since NOIRE-Net provided a negative
F-region label for this ionogram while the human classified the ionogram as containing an F-region, the ionogram has a low signal-to-noise ratio and
the “true” label is ambiguous.

order relationship: I5577 ∝ f 4
p−max, allowing the E-region maximum

frequency to be compared to the intensity enhancement in the
green-light camera channel, assuming that the altitude distribution

of I5577 is roughly stable. Figure 11 shows thatNOIRE-Net can detect
auroral conditions as enhancements in the E-region maximum
frequency, consistent with human interpretation.
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FIGURE 11
The top row (A) compares the E-region maximum frequencies predicted by NOIRE-Net to the manual scaling during variable auroral activity on
October 24. The black vertical lines indicate the time-stamps of the images, acquired by the Kiruna all-sky camera. The red circle marked in each
image indicates the refraction point of the radio waves from the transmitter in Sodankylä to the receiver station in Skibotn. The refraction point is
estimated by calculating the location of the midpoint on a great circle between the transmitter and the receiver, projected to an altitude of 110 km in
the camera field-of-view using star calibration. The fourth root of the green-light mean pixel intensity enhancement around this point is plotted in
green. Strong auroral emissions appear north of the refraction point around 21:45 UTC, as displayed in (C), with less active conditions both before,
shown in (B) at 21:30 UTC, and after, as illustrated in (D) at 22:30 UTC. The auroral display is enhanced around the same time as the E-region maximum
frequency is enhanced, as predicted by NOIRE-Net although not for the manual scaling. Later, a stronger auroral enhancement suddenly appears
around 22:50 UTC within the refraction point, as shown in (E). A sharp E-region maximum frequency increase can be seen at the same time in both the
NOIRE-Net prediction and the human scaling. After this point, both the E-region maximum frequency and the auroral intensity decrease as shown in
(F)at 23:07 UTC and in (G)at 23:45 UTC.

5 Conclusion and future work

In this study, deep convolutional neural networks have been
trained and tested for automatic classification and scaling of
high-latitude oblique ionograms. Overall, the trained networks
(jointly named NOIRE-Net) obtained reliable outputs in-line
with human interpretation. NOIRE-Net achieved an average
classification accuracy of 93% ± 4% for the E-region and 86% ± 7%

for the F-region. Furthermore, NOIRE-Net obtained scientifically
useful scaling parameters with median absolute deviation values
of 118 kHz ±27 kHz for the E-region maximum frequency and
105 kHz ±37 kHz for the F-region maximum O-mode frequency.
Predictions of the virtual distance for the E− and F-region
yielded median distance deviation values of 6.1 km ± 1.7 km
and 8.3 km ± 2.3 km, respectively. In general, NOIRE-Net
therefore achieves scaling performances with median absolute
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deviation values well within the 95% confidence error bounds
of ARTIST-5 (Stankov et al., 2023): E-region O-mode frequency
[-0.3 MHz, +0.8 MHz], F2-layer O-mode frequency [-0.35 MHZ,
+0.25 MHZ], E-region height [-6 km, +6 km] and F2-layer height
[-115 km, +45 km].

The stability of NOIRE-Net over several testing data sets and
under auroral conditions has been studied. Overall, NOIRE-Net
provides stable classification and scaling performances. Our analysis
indicates that disagreement with human interpretation primarily
arises for ambiguous ionograms, often with low signal-to-noise
ratios or acquired under challenging auroral conditions, i.e., under
conditions that are difficult to interpret for human experts as
well. An enhanced E-region scaling performance may however be
achieved for periods with auroral precipitation by adding auroral
conditions as an independent class in the classification network
and further train a network specialized for scaling ionograms
with clearly discernible auroral features. This additional routine,
where auroral ionograms are explicitly cataloged, may provide a
useful data product for auroral researchers using ionogram data
or data from co-located instruments. Further improvements to
NOIRE-Net might be achieved by enriching the training data set,
e.g., by adding ionograms from other years (with different solar
activity levels), and by systematically tuning the NOIRE-Net hyper-
parameters.

Our study concludes that deep convolutional neural
networks are suitable for classification and scaling of high-
latitude ionograms. The framework outlined in this article may
serve as a foundation for implementing ionograms from other
NOIRE receiver stations with additional training. Automatic
classification and scaling of ionograms acquired by the Network
of Oblique Ionospheric Receivers Experiments (NOIRE) will be
a great asset for studies of the ionosphere over Fennoscandia
in general and in particular for ionospheric monitoring in
relation to the anticipated EISCAT 3D incoherent scatter radar
in Skibotn, Norway (McCrea et al., 2015).
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Appendix: The classification
performance metrics

The performance metrics are calculated using the True
Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) values, defined by comparing
the predicted classes and the manually labeled classes,
illustrated in Figure 8.

The overall accuracy of the classifier is the proportion of
observations that were correctly predicted by the classifier. The
accuracy is defined as:

Accuracy = TP+TN
TP+TN+ FP+ FN

(A1)

Precision is defined as the proportion of observations
predicted by the classifier as a positive class, whose

manual label is indeed positive. Precision is therefore
calculated as:

Precision = TP
TP+ FP

(A2)

Recall is the proportion of observations manually labeled as
positive, that were correctly predicted as positive by the classifier.
Recall is defined as:

Recall = TP
TP+ FN

(A3)

The F1 score acts as a weighted average of precision and recall
and is calculated as:

F1 = 2( Precision ⋅Recall
Precision+Recall

) (A4)
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