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The upcoming Geospace Dynamics Constellation (GDC) mission aims to
investigate dynamic processes active in Earth’s upper atmosphere and their
local, regional, and global characteristics. Achieving this goal will involve
resolving and distinguishing spatial and temporal variability of ionospheric and
thermospheric (IT) structures in a quantitative manner. This, in turn, calls for
the development of sophisticated algorithms that are optimal in combining
information from multiple in-situ platforms. This manuscript introduces an
implementation of the least-squares gradient calculation approach previously
developed by J. De Keyser with the focus of its application to the GDC
mission. This approach robustly calculates spatial and temporal gradients of
IT parameters from in-situ measurements from multiple spacecraft that form
a flexible constellation. The previous work by De Keyser, originally developed
for analysis of Cluster data, focused on 3-D Cartesian geometry, while the
current work extends the approach to spherical geometry suitable for missions
in Low Earth Orbit (LEO). The algorithm automatically provides error bars for the
estimated gradients as well as the scales over which the gradients are expected
to be constant. We evaluate the performance of the software on outputs of
high-resolution global ionospheric/thermospheric simulations. It is shown that
the software will be a powerful tool to explore GDC’s ability to answer science
questions that require gradient calculations. The code can also be employed
in support of Observing System Simulation Experiments to evaluate suitability
of various constellation geometries and assess the impact of measurement
sensitivities on addressing GDC’s science objectives.

KEYWORDS

multi-point in-situ measurements, satellite constellation, Geospace Dynamics
Constellation (GDC), ionospheric dynamics, gradient calculation

1 Introduction

Determining and disentangling the spatial and temporal variability of a field from
sparse in-situ measurements is a long-standing problem in space physics. Addressing this
problem, along with providing broader coverage in measurements, is commonly raised
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as a major justification for designing and launching multi-platform
satellite missions (e.g., Escoubet et al., 2001; Burch et al., 2016). The
Geospace Dynamics Constellation (GDC) mission, that is currently
in the formulation phase, is one of the latest of such missions.
GDC’s goal is to significantly increase our understanding of how
the coupled ionosphere-thermosphere (IT) system reacts to external
energy input from the Sun and the magnetosphere. Specifically,
it will aim to address the following overarching science goals:
1) Understand how the high latitude ionosphere-thermosphere
system responds to variable solar wind/magnetosphere forcing; and
2) Understand how internal processes in the global ionosphere-
thermosphere system redistribute mass, momentum, and energy.
Successfully addressing these objectives is challenging as the IT
system is known to vary locally and globally, with scale-sizes ranging
from sub-kilometer to thousands of kilometers and on timescales
that range from seconds or minutes to hours or days.

Completely characterizing the dynamics of the IT system and
determining the physical processes underlying its variability would
ideally require a very dense (in altitude, longitude, and latitude)
sampling of various plasma and neutral parameters over a wide
range of spatial and temporal scales. As a practical matter, the
number of spacecraft in such a constellation that can provide
accurate comprehensive measurements is finite—for example, GDC
will fly six spacecraft. This immediately introduces important
challenges. On the one hand, relatively fine spatial and temporal
resolutions, when compared to the physical scales, are required
to properly capture the behavior of the system locally; and on
the other hand, the global nature of the GDC mission would
require a broad coverage of observing platforms in local time and
longitude. Satisfying both conditions with a limited number of
in-situ platforms can only be possible via a flexible constellation
that evolves to observe the full range of relevant scales. A flexible
satellite architecture, in turn, requires sophisticated algorithms that
are themselves flexible and optimal in combining observations from
individual points.

In this paper, we introduce a software package ‘LSGC-AS-
LEO 1.0’, which is an implementation of the least-squares gradient
calculation approach developed by De Keyser et al. (2007) and
De Keyser (2008) with the focus on its application for the GDC
mission. The gradients characterize variations of the field in space
and time, helping to disentangle the spatial and temporal ambiguity
in measurements in an inherently quantitative manner. In the
following section, we briefly describe GDC’s expected constellation
architecture and its evolution during different phases of the mission.
In Section 3, we present a brief overview of the gradient calculation
technique. In Section 4, we evaluate the performance of the
technique on simulated GDC measurements of the IT parameters,
and discuss its significance for the GDCmission. Section 5 includes
the summary, conclusions, and a description of the future steps.

2 GDC constellation architecture

GDC’s constellation consists of six spacecraft in a circular orbit at
the altitude of 350–400 km with an inclination of about 81–82°. At a
given time, the spacecraftwill sample plasma andneutral parameters
on a relatively thin spherical shell, the altitude of which will slowly
vary between 350 and 400 km due to orbital drag and subsequent

reboosts via onboard propulsion. The satellites will be deployed
via a single launch vehicle with small inclination differences. Over
time, differential precession will lead to separation of the six orbital
planes in local time, leading to an ever-widening instantaneous
longitudinal coverage. Different phases of the mission can then be
defined that are appropriate for the investigation of the IT processes
over local (referred to as phase 1, with scale-lengths < 2 h in local
time), regional (phase 2, with cross-track (primarily longitudinal at
the equator) scale-lengths between 2 and 9 LT hours), and global
(phase 3, towards the end of the mission with scale-lengths > 9 h in
local time) scales.

Figure 1 shows the expected evolution of the satellite
configuration during days 92 (top), 190 (middle), and 764 (bottom)
from the start of the science phase of the mission.These correspond
to the beginning of phase 1, end of phase 1, and sometime in
the late regional/early global phase of the mission, respectively.
Shown in each panel are instantaneous positions of all six spacecraft
(shown as colored circles) for a scenario where the constellation
is in the northern hemisphere and traveling northward. Thin
vertical and horizontal lines show 5-degree increments in longitude
and latitude. Dashed lines in colors matching each circle show
the near future trajectory of that GDC spacecraft, demonstrating
near-latitudinal direction around the equator, and predominantly
longitudinal direction above ∼75° geographic latitude. Figure 1
clearly demonstrates the dynamic nature of the constellation
in space and time and the complexities that one may face
when attempting to determine spatio-temporal variability of the
ionosphere and thermosphere from GDC measurements. For
example, the hexagonal shape of the constellation seen in Panel A1
near the equator may be suitable to simultaneously determine local
variability in latitude, longitude, and time; while at higher latitudes
(see Panel A6), where the trajectories of the individual spacecraft
cross, little information can be obtained in latitude due to lack of
broad latitudinal sampling. In this case, the form of the constellation
which briefly approximates a ‘pearls on a string’ configurationwould
be better suited for investigating variability in longitude and time.

The variability in constellation architecture along with the need
to monitor its ability to estimate gradients in both latitude and
longitude at a given time motivated the creation of a quantity called
the ‘quality’ (or ‘Q’) value and the associated ‘Q-vector’. The Q-
value can be defined as Qval = 1+

A
Ae
, in which A is the area of the

spherical polygon formed by the satellite constellation at a given
time after being projected onto a 2D surface using a Mercator
projection, and Ae is the area of an equilateral polygon with the
same perimeter. A maximum value ofQval = 2 indicates a ‘regularly’
distributed constellation in space, while lower values imply that
the sampling constellation is anisotropically distributed, which may
result in less-than-optimal spread simultaneously in both latitude
and longitude—for example, a minimum value ofQval = 1 denotes a
set of co-linear spacecraft. Since Qval does not provide information
on the ‘direction’ of anisotropy associated with a constellation, it can
be complimented by a second quantity Qdir = tan−1 (

Δlat
Δlong
) which

quantifies the direction of the skewness.Qdir is defined as the inverse
tangent of the ratio of the constellation’s latitudinal spread to its
longitudinal spread. For a constellation consisting of at least two
spacecraft Qdir is always defined and ranges from 0° to 90°. Qdir
values of 0° and 90° indicate that the constellation only samples along
the longitudinal and latitudinal directions, respectively. Using both
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FIGURE 1
The expected evolution of the satellite configuration for days 92 (top), 190 (middle), and 764 (bottom) from the start of the science phase of the mission.
Instantaneous positions of all six spacecraft (shown as colored circles) and the near future trajectory of that GDC spacecraft (shown as dashed lines in
matching colors) are shown. Thin vertical and horizontal lines show 5-degree increments in longitude and latitude. The GDC ephemeris used here are
from the ‘Revision C’ version, released in May 2022. The latest ephemeris is publicly available at https://ccmc.gsfc.nasa.gov/mission-planning/GDC/.

components of the Q-vector, i,e., Qval and Qdir , one can interpret
the evolution of the constellation over time and its ability to provide
sampling in different spatial directions. In the context of this work,
Q-vector is used to monitor the constellation architecture and
quantify the latitudinal and longitudinal spread of the spacecraft
array. This provides insight into the array’s ability to compute
gradients in those specific directions. It is worth mentioning that
a more mathematically rigorous approach to evaluate the effective
constellation dimensions based on error considerations and through
investigation of the eigenvalues and eigenvectors of the spacecraft
position tensor was developed by Vogt et al. (2020). There, in the
general 3-dimensional case, the eigenvalues give insight into the
amount of variance in each of the principal directions of the
spacecraft array, which are captured through the eigenvectors.
The eigenvectors with the largest eigenvalues correspond to the
directions most heavily sampled by the spacecraft array. The
approach developed by Vogt et al. (2020) provides a more formal
description of the constellation and will be adopted in the updated
versions of the LSGC-AS-LEO. It is important to note that the
assumption that an isotropic constellation is ideal for sampling is
only strictly true when the gradients are isotropic. When this is
not the case, ideal constellation configurations may have Q-values
appropriate to the ratio of longitudinal to latitudinal gradients in the
measured fields.

Figure 2 shows the trajectories of GDC spacecraft as a function
of latitude and longitude (top panels) for three orbits corresponding

to the beginnings of phases 1a (left), 2a (middle), and 3a (right).
For each case, the magnitude and angle of the Q-vector is
shown in the bottom panels as the constellation evolves in time.
The drop in the magnitude of the Q-value is evident at high
latitudes, consistent with the anisotropic constellation shape shown
in Figure 1. As will be shown in Section 4, the ability of LSGC-
AS-LEO 1.0 to fully determine both longitudinal and latitudinal
variability in the IT system using GDC measurements may reduce
for smaller Q-values below a threshold. Q-vector can, thus, be
used as an empirical measure to optimize constellation design
and provide an indication of where robust gradient calculations
may be achievable.

Figure 1 and Figure 2 demonstrate the variability of GDC’s
constellation geometry as a function of latitude and mission phase.
As a result of this variability, any approach that would aim to
utilize multi-point measurements from GDC to characterize the
dynamics of the IT system would ideally need to be general and
flexible, without many assumptions on the sampling scheme, and
at the same time ensure the optimum utilization of data from
all satellites. Further, a successful approach would need to take
into account spatial and temporal scales over which ionospheric
and thermospheric structures evolve relative to the size of the
constellation, and provide measures of reliability for its calculations.
The least-squares gradient calculation with adaptive scaling (LSGC-
AS method, De Keyser et al., 2007; De Keyser, 2008) is such an
approach and is briefly described in the next section.
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FIGURE 2
(A,C,E) GDC constellation latitudes (black) and longitudes (blue) for three orbits on the first days of phases 1a, 2a, and 3a, respectively. (B,D,E)
parameters of the Q-vector for the orbits shown above.

3 Least-squares gradient calculation
with adaptive scaling—overview

Optimally combining information from multi-point
measurements to quantitatively determine the local dynamics of
a measured field often proves to be challenging. This topic has been
the subject of many previous works that have let to the development
of different algorithms and tools (e.g., Chanteur, 1998; Harvey, 1998;
Paschmann and Daly, 1998; Robert et al., 1998; Amm and Viljanen,
1999; Darrouzet et al., 2006; Denton et al., 2020; Dunlop and Lühr,
2020; Fiori, 2020; Torbert et al., 2020; Bard and Dorelli, 2021;
Denton et al., 2022; Zhu et al., 2022). Mathematically, the problem
can be translated to one involving calculation of gradients—once
the gradients of a field are known with respect to space and time
its local dynamics can be better understood. Precise calculations
of gradients, however, are generally difficult due to a number of
reasons, the most important of which are the presence of noise
in data and under-sampled variations of the measured field in
between the spacecraft. On the one hand, for estimated gradients
to be accurate the spacecraft should form a close constellation to
fully resolve variations of the sampled field; and on the other hand,
for the estimated values to be meaningful the difference between
sampled values should be large compared to the measurement
noise—a condition which may require a larger separation between
the spacecraft. It is balancing between the two constraints that
necessitates the use of sophisticated algorithms for computing
gradients. In addition, the spatial scales of variation in the sampled
field may vary depending on the process being studied, or the
location of the measurements, which introduces further complexity
and a need for the algorithm to assess its own performance.
Given the complexity of the task of calculating gradients, a
significant amount of effort has gone towards developing appropriate
algorithms and tools. Much of these works have been performed in

support of the European Space Agency’s (ESA) three-satellite Swarm
mission (Friis-Christensen et al., 2008). For example, Ritter and
Lühr (2006) and Ritter et al. (2013) were among the first to address
current estimation in the context of a multi-satellite LEO mission.
Vogt et al. (2009) and Vogt et al. (2013) provided tools and an
error analysis framework for planar spacecraft configurations with
special consideration of physical constraints to estimate out-of-plane
contributions. Shen et al. (2012a) and Shen et al. (2012b) developed
magnetic gradient estimation techniques with particular relevance
to measurements in an environment dominated by field-aligned
currents. Blagau and Vogt (2019) and Blagau and Vogt (2023)
implemented relevant techniques in a publicly available software
package based on Python. Of the mentioned works, those described
by Shen et al. (2012b) and Vogt et al. (2020) stand out as general
approaches to gradient calculations, both of which utilize some
adaptation of the position tensor of the satellite configuration to
compute spatial gradients in a least-squares sense. Very recently, in
the past 2 years, a series of publications have emerged that introduce
further methods to combine information from multiple in-situ
platforms. These recent works include: Shen and Dunlop (2023),
who introduced a geometrical method based on integral theorems
to compute the linear gradients; Shen et al. (2021b), who developed
a novel method to estimating both the linear and quadratic
gradients using multiple spacecraft observation; Shen et al. (2021a)
and Dunlop et al. (2021), who developed algorithms specifically
for determining nonlinear magnetic gradients; and the book by
Dunlop et al. (2021), that covers a number of multispacecraft
techniques that were initially developed to analyze data from the
Cluster mission (Escoubet et al., 2001). As mentioned before, here
we implement the approach described by De Keyser et al. (2007)
and De Keyser (2008), which is also a general gradient calculation
tool, developed based on the concept of homogeneity scales in
orthogonal directions, including in time.Themethod aims to ensure
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the utilization of themaximum amount of information available and
allows to assess the meaningfulness of the result by providing error
estimates. This approach is briefly described below. The description
only includes high-level intuition behind the approach and is not
meant as a substitute for the detailed mathematical description in
De Keyser et al. (2007) and De Keyser (2008).

Imagine a scalar field f sampled at xi = [xi;yi;zi; ti], for i = 1⋯N,
by an arbitrary number of satellites that form a flexible constellation.
At a given time, f may be approximated in the vicinity of point
x0 = [x0;y0;z0; t0] via its Taylor series expansion: f(x) = f0 +Δx

⊤g0 +
1
2
Δx⊤H0Δx+⋯ , where Δx = x − x0, f0 = f(x0), and g0 and H0 are

the gradient and the Hessian at x0. If we assume that f changes
linearly in the vicinity of x0, thus ignoring the terms of the Taylor
expansion beyond the second term, we will reach the approximate
equation fa(x) = f0 +Δx

⊤g0. Using fa(x), the field can be estimated
at each sampled point xi. Defining residues ri = fa(xi) − fi at each
point, where fi is the measured value at xi, and requiring the
residues to be zero leads to a system of N equations for the five
unknowns—with the unknowns being f0 and four partial derivatives
with respect to x, y, z, and t. Often times, gradients would be
determined using data obtained in a period of time over which
the field is continuously sampled via multiple in-situ platforms.
For example, calculating gradients in a 30-s window where six
satellites obtain measurements every three seconds would lead to
60 samples. In this case, N = 60≫ 5 and the system is highly over
determined. One may proceed to select five samples to uniquely
determine the unknowns, but the outcome would likely depend
on the choices as well as the amount of measurement noise in the
system. Furthermore, this approach would not utilize the maximum
amount of information available, nor would it provide any insight on
the reliability of the estimates. A more suitable approach would be
to utilize all the available data points and solve the over-determined
system of equations using a weighted least squares minimization
procedure. In this case, equation i, corresponding to sample xi,
would be weighted inversely proportional to the total amount of
error that is expected for the residue ri. Once the weights are
known, the system of equations may be written in the matrix form
and solved via singular value decomposition. Error bars on the
estimated gradients as well as the ill-conditioning degree of the
problem can be obtained from an appropriate covariance matrix
and singular values—formore details seeDe Keyser et al. (2007) and
De Keyser (2008).

Much of the complexity of the weighted least-squares
minimization approach mentioned above is condensed in obtaining
proper weights, wi, for each equation based on the expected error
associated with the corresponding measured sample. The choice of
weights as inverse of the total error is to ensure that measurements
with large errors do not contribute much to the solution of the over-
determined system of equations. In the absence of systematic errors,
the error δfi in estimating sample fi via fa(xi) may include three
components. One is the ‘measurement error’ which is the inherent
uncertainty associated with the instrument that provides fi; the
second is the ‘approximation error’ (or the ‘curvature error’) which
exists due to ignoring the nonlinear terms of the Taylor expansion
in fa(x); and the third is the error due to the potential presence
of unresolved small-scale fluctuations in the field. As described
by De Keyser et al. (2007), the small-scale fluctuation error can be
incorporated in a statistical sense, the measurement error can be

modeled via a zero-mean random noise with a standard deviation
specific to each instrument, and the approximation error can be
modeled as δ fa ∝ fc|xi − x0|

2
β, where fc is a constant related to the

Hessian of the field at point x0 and |xi − x0|β is the normalized
distance between the measurement point xi and x0—such that the
modeled approximation error increases with distance according to
the third term of the Taylor expansion. Here, |xi − x0|β is not merely
the physical distance between two points but one that takes into
account the linearity of the field along each orthogonal direction

(including time). In other words, |xi − x0|β = √Σk
(xik−x0k)2

l2k
, where

the subscript k indicates components along an orthogonal direction
k and lk are homogeneity lengths defined below. To clarify this
point imagine a scenario where the field f varies linearly over
short scales along axis x but over large scales along axis y. In
this case, approximating f along y via the first two terms of the
Taylor expansion remains accurate over a longer distance when
compared to x. As such, the approximation error would need to be
scaled differently along x and y. To incorporate such conditions,
De Keyser et al. (2007) utilized the concepts of ‘homogeneity
lengths’.The homogeneity length, lk, is the distance along a direction
k over which a linear variation is a good approximation to a function
f. The geometry defined by all homogeneity lengths thus defines the
homogeneity space in which the field can be reasonably modeled
by the first two terms of the Taylor expansion with relatively small
errors in the form of δ fa ∝ fc|xi − x0|

2
β. Beyond the homogeneity

space the modeled approximation error would need to increased
rapidly with |xi − x0|β such that the information obtained outside
of the homogeneity space contribute minimally to the computation
of gradients. This can be enforced via incorporating an additional
term in the approximation error.

The homogeneity scales are properties of the physical field
and change in space and time. In general, their determination
is not trivial. De Keyser (2008) has described an approach
to automatically determine the homogeneity scales from the
measurements. The approach could be best understood by noting
that solving the weighted over-determined system is equivalent to
minimizing χ2, where:

χ2 = 1
N

N

∑
i=1

r2i
δ f2i

However, one should bear in mind that in the presence of
measurement and curvature errors, minimizing χ2 may not be a
suitable target. In reality, the computations should be performed
such that the residue ri reflect the correct amount of expected
error associated with the calculations at point xi. In other words,
one would reasonably expect that r2i ≈ δ f

2
i , and thus χ2 ≈ 1 (for

N≫ 1). In fact, it can be shown mathematically that under certain
assumptions χ2 follows the χ2-statistics, under which the most likely
value for χ2 is ∼1.

The process of identifying the homogeneity scales, and
consequently solving the over-determined system of equations,
then starts from a set of initial guesses for the homogeneity scales,
followed by the calculation of the total expected error for each
measurement point, assigning weights to each equation, computing
the gradients, determining χ2, then updating the homogeneity scales
based on the value of χ2. This cycle may be incorporated in an
optimization scheme to allow χ2→ 1 after a number of iterations.
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Several optimization approaches are introduced in De Keyser
(2008). We have currently implemented the ‘common rescaling’
approach, which will be further discussed in the context of Figure 5.
Future work will involve implementing the other approaches
developed by De Keyser (2008) and exploring additional ones.

4 Implementation of the least-squares
gradient calculation for the GDC
mission

Motivated by the upcoming GDC mission, and with the goal
of evaluating the ability of the satellite constellation to resolve local
dynamics of the IT system, we have implemented the approach in
an open-source software LSGC-AS-LEO 1.0, presently written in
MATLAB. Despite the immediate focus of the software on GDC,
LSGC-AS-LEO 1.0 is implemented in a general form, utilizingmany
settings that can be adjusted by the user, and as such it maintains
the ability to support other missions with minimal updates to
few functions. Here, we present and discuss typical outputs of
the software on synthetic and simulated fields relevant to the IT
system. Evaluating the results using simple synthetic test cases
allows to validate the implementation, examine the robustness of
the underlying algorithms, and further provides the opportunity
to clarify certain important concepts of the algorithm described
in Section 3 and in De Keyser et al. (2007) and De Keyser (2008).
Additional test cases using realistic global simulations of the IT
system along with GDC’s proposed ephemeris data further allows
showcasing the significance of the software for GDC’s future
measurements. BecauseGDC’smeasurementswill occur in a narrow
altitude region between 350 and 400 km, our implementation of
the LSGC-AS algorithm is tailored to assume spherical coordinates,
and to assume zero radial variation, i.e., all measurement points are
sampled at the same altitude and all the gradient calculations are
performed in the spherical coordinates. Extending this procedure
to account for non-zero radial variations is straightforward.

For the first test case, imagine a synthetic thermospheric neutral
temperature of the form

Tn = 1000+ 200 sin (1.5θ− 40) + 200 sin (2ϕ) + 0.1(
t

100
)
2.1

where θ, ϕ, and t are latitude, longitude, and time in units of degree,
degree, and seconds, respectively. Tn is not meant to represent
the actual neutral temperature in the thermosphere; instead it
serves as a simple function with simultaneous variability in latitude,
longitude, and time. Running the software with an appropriate
label specifying the synthetic function results in the following
actions: GDC’s predicted ephemeris data over a predefined period
of time are imported and used to sample the synthetic Tn with
an adjustable cadence; a predefined level of measurement noise is
then introduced to the sampled values; datapoints [xi, fi] from all
or selected spacecraft gathered within a period of time centered
at ti are then passed onto a routine in order to determine the
gradients at point xi. The gradients are calculated at an arbitrary
‘evaluation point’, which by default is defined at the geometric center
of the constellation. An optimization routine is used that adaptively
modifies the homogeneity scales such that computations result in an
appropriate outcome for χ2. Various settings that define the details

of the computations are specified prior to running the routine.
These include the initial guesses for homogeneity scales, fc, the
measurement noise level, available satellites, the phase and time
of the GDC mission, the evaluation point, optimization method,
measurement cadence, integration time, whether calculations are
performed on f or log( f), etc. The final result is an estimate of the
value of Tn at the evaluation point, the longitudinal and latitudinal
gradients of Tn at the evaluation point, the temporal rate of change
of Tn at the evaluation point, and error bars for these quantities, as
well as estimates for the homogeneity lengths.

Figure 3 shows the results of the gradient calculations for the
synthetic function Tn sampled during the first 100 min of GDC’s
phase 1a. The input parameters to LSGC-AS-LEO that have been
used to produce this and the following plots are summarized
in Table 1. In the top panel of Figure 3, Tn, as seen by six
individual satellites, are shown with thin black lines. The size of the
constellation in phase 1a is small compared to the scales over which
Tn varies in space and time, and as a result the six spacecraftmeasure
relatively similar values—i.e., the black lines nearly overlay each
other—with the exceptions at the highest latitudes near times 14 and
60 min. Also shown in Panel A are the true (red) and the estimated
(blue) values of Tn at the evaluation point, here defined as the
center of the constellation. The calculated latitudinal, longitudinal,
and temporal gradients along with their expected errors (i.e., their
3− σ error bars) are shown in Panels B–D in blue. The calculated
gradients closely follow the true gradients which are shown in
red, with the exceptions at times ∼14 and 60 min where ∇latTn
briefly deviates from the red curve and its error bars significantly
increase. Noting the latitude and longitude of the evaluation point
and the components of the Q-vector in Panels E and F, respectively,
it becomes clear that the difficulty in determining ∇latTn (the
latitudinal vector component of the gradient) around times ∼14 and
60 min is due to the shape of the constellation as the spacecraft
approach the polar regions. As was shown in Panel A6 of Figure 1, at
these times (primarily poleward of 75° geographic latitude in either
hemisphere) the constellation spreads along longitudewithoutmuch
coverage in latitude, leading to poorly-constrained estimates for
∇latTn. This longitudinal elongation of the constellation is also
reflected in Panel G which shows the condition number defined
in De Keyser et al. (2007) as cond = s2min/s

2
max, where smin and smin

are the minimum and maximum singular values obtained during
the singular value decomposition of the over-determined system of
equations. The condition number serves as a general measure of
ill-conditioning of the problem and decreases by about an order
of magnitude as the constellation elongates at higher latitudes,
signaling large errors in parts of the calculations. Finally, the
bottom two panels of Figure 3 demonstrate the performance of
the implemented common rescaling optimization routine described
in De Keyser (2008). The purpose of the optimization routine is
to adaptively rescale the initial homogeneity lengths such that χ2

approaches a predefined value, resulting in refinements to the error
estimates as well as an estimate of the scale lengths over which
the calculated gradient is expected to be accurate. In this case, in
order for the error bars in Panels A–D to represent the 3− σ errors,
optimization works to enforce χ2 ∼ 1/9. Panels H and I show the
calculated latitudinal homogeneity length and χ2, respectively.While
the initial homogeneity scales in latitude, longitude, and time has
been chosen as Llat = 60°, Llong = 160°, and Lt = 30 min, respectively,
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FIGURE 3
From top to bottom: (A) function values as observed by individual satellites (thin black lines), true (red), and reconstructed (blue) values of the function
at the evaluation point, at the center of the constellation; (B) true (red) and estimated (blue) latitudinal gradients at the evaluation point; (C) true (red)
and estimated (blue) longitudinal gradients at the evaluation point; (D) true (red) and the estimated (blue) temporal gradients at the evaluation point; (E)
latitude (black) and longitude (blue) of the evaluation point; (F) components of the Q-vector; (G) condition number; (H) latitudinal homogeneity length
Llat; (I) χ

2. Synthetic function is sampled during the first 100 min of phase 1a, and is subjected to a small measurement noise of 0.1%. Other settings
include: initial guesses for homogeneity length scales Llat: 60°, Llong: 160°, Lt: 1,800 s; maximum ‘time window’ over which to combine samples MaxT:
2.5 min; Measurement cadence: 15 s. The input parameters to LSGC-AS-LEO that have been used to produce various plots in this paper are
summarized in Table 1.

the optimization routine scales all the homogeneity lengths by a
common factor that varies between∼7–50 as the constellationmoves
in space and sample different features of Tn. Most notably, as the
constellation approaches the polar region between times 10–20 and
55–65 min the homogeneity scales decrease, consistent with larger
variations in ∇longTn.

It will be insightful to repeat the gradient calculation test
described above with slight modifications. In the left panels of
Figure 4 we show the results from a similar run in which the
measurement error introduced to Tn is now significantly increased
from 0.1% to 3% of fi. This is an important test as GDC will
include various particle and field instruments with different levels of
measurement accuracy for which the performance of the gradient
calculation need to be tested. As can be seen in Panels A–D, an
immediate consequence of the elevated noise level is larger errors
for the calculated gradients, which are also reflected by the increased
error bars. This is not surprising since gradient calculations are

highly sensitive to the presence of background noise. Further, it is
seen that, unlike in Figure 3B, the incorrect latitudinal gradients
between 13–19 and 59–62 min are no longer properly covered by
the error bars—this is perhaps due to inaccurate choices of initial
homogeneity scales or fc. Nevertheless, the decreased condition
number at these times can still serve as a cautionary flag regarding
the accuracy of the results. In the right panels of Figure 4 we show
the results from a similar run with yet another modification: the
time axis now corresponds to the first 100 min of GDC’s phase 2b.
In this phase the constellation size (i.e., the average distance between
spacecraft) increases.The individual spacecraft now sample different
values ofTnwith differences that are greater than the 3% background
noise level—see Panel J. Consequently, the accuracy of the estimated
gradients increases and their error bars significantly drop in Panels
K–M. This is due to the reduced noise amplification nature of the
gradient operator over longer distances, and applies to cases where
the measurement error dominates over the approximation error.
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TABLE 1 Input parameters to LSGC-AS to produce each of the example plots shown in Figures 3–9.

Input
parameters
to
LSGC-AS
runs

Figure 3 Figure 4
left

Figure 4
right

Figure 6 Figure 7
left

Figure 7
right

Figure 8 Figure 9

Mission phase 1a 1a 2a 1a 2a 2b 1a 2b

Noise level (%) 0.1 3 3 4 4 4 1 2

Llat (degree) 60 60 60 10 10 10 10 50

Llong (degree) 160 160 160 50 50 50 20 50

Lt (second) 1800 1800 1800 2,500 2,500 2,500 500 2,500

Cadence
(second)

15 15 15 20 20 20 20 20

MaxT
(minute)

2.5 2.5 2.5 2 2 2 3 2.5

FIGURE 4
In the same format as that in Figure 3, but with increased added measurement noise level of 3%. The left and right panels correspond to the first
100 min of GDC’s phases 1a and 2a, respectively.

Before wrapping up the evaluation of the gradient calculation
approach on the synthetic field Tn, it would be helpful to revisit
the impact of the optimization and the adaptive scaling of the
homogeneity lengths from a different prospective. Consider the
results shown in Figure 4J–R at the single time t0 = 74.75 min. Here,
the constellation approached the polar regions with the latitude of
the evaluation point at 80.1°. At this time, about 120 samples [xi, fi],

collected by all six spacecraft within 2.5 min from t0, have been
used to calculate the gradients shown in panels K–M. According to
Panel H, the optimization has decreased the homogeneity lengths
by a common factor of about 7, from the initial scales of Llat = 60°,
Llong = 160°, andLt = 30 min. In Figure 5we show the distribution of
the residues |ri| for each datapoint xi as a function of the normalized
distance |xi − x0|β. The absolute value of the residues are shown for
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FIGURE 5
Absolute values of the residues as a function of the normalized
distance for datapoints used to calculate gradients at time
∼75 min (latitude ∼80°) for the example shown on the right panels of
Figure 4. Optimization results in reducing the homogeneity scales by a
factor of ∼7. As a result, |xi − x0|β increases, updating the weights
assigned to each datapoint, and subsequently modifying the
calculated ∇lat, ∇long, and ∇t by −96, 97, −740%, respectively, while
altering the distribution of the residues as a function of the
normalized distance.

the following two cases: the black datapoints correspond to the case
where the least-squares minimization problem is solved without
the optimization procedure (thus, only according to the initial
homogeneity lengths); whereas the blue datapoints correspond to
the case where the optimization has been turned on (thus allowing
the homogeneity lengths to be rescaled). For the case of adaptive
scaling turned off, the least-squares minimization approach is
successful in solving the over-determined system of equations such
that the residues are small and on the order of the measurement
noise added to fi (shown by the horizontal black bar). Despite
the reasonably small residues, however, we note that the gradients
calculated using the initial homogeneity scales do not correctly
represent the actual values—in other words, the calculated gradients
are legitimate, yet inappropriate, solutions of the over-determined
system. With adaptive scaling enabled, the homogeneity scales
decrease, |xi − x0| increases, and as a result only a fraction of the
datapoint that are closest to evaluation point are effectively used
to calculate the gradients. The calculated gradients in latitude,
longitude, and time are then modified by −96, 97, and −740%,
respectively, compared to the previous case which brings them very
close to the true gradients. At the same time, we observe that
the distribution of |ri| as a function of the normalized distance
|xi − x0| follows the following expected form: from the definition
of fa(x) in Section 3, one would generally expect |ri| = | fa(xi) − fi| ≈
δ fm,i + fc|xi − x0|

2
β, where δfm,i is the measurement error at point xi.

Accordingly, in Figure 5 for smaller values of |xi − x0| the residues
are small, on the order of the measurement noise, while at larger
distances |ri| increases rapidly due to larger approximation errors.

With the implementation of the least-squares gradient
calculation approach validated via the synthetic example, we
now turn to more realistic scenarios to test the ability of the
software to determine the local dynamic of the ionosphere and
thermosphere using GDC measurements. Figure 6A shows a
frozen-in-time snapshot of the electron density as a function
of geographic latitude and longitude from a three-dimensional
TIEGCM simulation, featuring the Equatorial Ionization Anomaly
(EIA). EIA is a dayside/dusk ionospheric feature that is formed from
a phenomenon known as the Fountain/Appleton effect (Appleton,
1946). This phenomenon is a result of a vertical ion drift near the
magnetic equator that is related to the E-region dynamo (Hanson
andMoffett, 1966). This results in a concentration of plasma at ±20°
in magnetic latitude with a depletion of plasma at the magnetic
equator primarily in the F-region (200–450 km) (Rishbeth, 2000).
The EIA is in a highly collisional domain and is coupled with the
thermosphere, but due to the lack of spatial and temporal resolutions
from data collected in previous missions, there are unanswered
questions to the exact coupling mechanisms in this region. Here,
we employ simulations of the EIA using NCAR’s High-Resolution
Thermosphere-Ionosphere-Electrodynamics General Circulation
Model (HR-TIEGCM). HR-TIEGCM is a global 3D numerical
model that can simulate the IT region from ∼97 km to ∼600 km
with a longitude/latitude grid of 0.625° × 0.625°, a vertical resolution
of 0.25 of a scale height, and a timestep of 60 s (Qian et al., 2014;
Dang et al., 2021). This temporal and spatial resolution is on par
with what the GDC mission will be capable of capturing.

Our goal in this example is to evaluate the performance of LSGC-
AS-LEO 1.0 to calculate the spatial gradients associated with the EIA
usingGDCdata. In order to properly display the calculated gradients
in the context of the two-dimensional image on Panel A, we briefly
ignore the temporal variations of the electron density and assume
that temporal gradients are zero at all locations. Upon running the
software, the simulated data are imported and interpolated every
20 s along the trajectories of the GDC spacecraft during the first
few hours of phase 1a. 4% measurement noise is then introduced to
the data, which is comparable to the expected performance (i.e., 2%
accuracy, and 1%precision) ofGDC’sAtmospheric Electrodynamics
probe for THERmal plasma (AETHER) instrument. The gradients
are calculated with the initial homogeneity scales of Llat = 10°,
Llong = 50°, and Lt = 2,500 s. Overplotted on the electron density
map on Panel A is the trajectory of the evaluation point (the
continuous black curve), as well as the spatial gradient vectors (black
arrows). One can verify that the gradient vectors always point nearly
perpendicular to the electron density contours. Shown on the right
panels, in a similar format as those in Figure 3, are the electron
densities seen by individual satellites (Panel B), the latitudinal (C),
longitudinal (D), and temporal (E) gradients, latitude and longitude
of the evaluation point (F) at the center of the constellation, Llat
(G), and χ2 (H). While in Panel A gradient vectors are calculated
and shown for about 5 GDC orbits through the simulated field, the
right panels only show time series for the first 120 min (∼1.3 orbits)
from the beginning of the interval starting at round −30° latitude
and −106° longitude. The blue circles overplotted on the trajectory
of the evaluation point in Panel A mark temporal timesteps of
10 min, allowing to compare the time series plots with the two-
dimensional map in Panel A.The gradients are calculated accurately
with the exception of the temporal gradients which suffer from
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FIGURE 6
Results of the gradient calculation technique on simulated ionospheric electron density via TIEGCM. (A) 2d map showing the equatorial ionization
anomaly, with gradient vectors calculated during GDC’s phase 1a. The continuous black lines shows the trajectory of the evaluation point. For
reference, the white dots show trajectories of individual satellites, representing the size of the constellation. (B) time series results of the computations
are shown in a similar format as those in Figure 3. 4% measurement noise has been added to the sampled data. Other settings include: Llat: 10°, Llong:
50°, Lt: 2,500 s, MaxT: 2 min; Measurement cadence: 20 s.

very large error bars. The reason for these error estimates will
be discussed later when visiting Figure 7. The spatial gradients
shown in Panels C and D allow us to visualize the underlying
electron density field without referring to the two-dimensional map
on Panel A. For example, from the large negative longitudinal
gradients around time 40 min, one could conclude that the electron
density peak seen in Panel B at that time is due to a primarily
longitudinal structure. This can indeed be confirmed by visiting
Panel A and noting that observed electron density enhancement
around time 40 min is due the constellation traversing along the
eastern edge of the EIA at the longitude of ∼60° and the latitude
range of −20 to +40°.

In Figure 7 we repeat a similar test as that in Figure 6 while
focusing on the constellation architecture at later phases of the
mission. Here, the left panels correspond to the first 100 min of
phase 2a and the panels on the right correspond to the beginning
of the phase 2b. The figures show electron densities observed by
individual satellites (Panel A and F), the calculated gradients (B–D
and G–I), and the latitude and longitude of the evaluation point (F
and J). In both exampleswe allow the simulated electron density field
to evolve in time, such that the true temporal gradient are non-zero.
At the beginning of phase 2a, it appears that the spatial gradients
associated with the EIA are often properly captured. However, by
the beginning of phase 2b, the size of the constellation has increased
such the certain smaller scale features are no longer resolved, and
at times the sharpest gradients are underestimated—e.g., around
time 140–150 and 185–195 min. As a consequence of these errors,
the estimated electron density at the evaluation point, at the center
of the constellation, also deviate from the true values in Panel F.
With respect to the temporal gradients, in both Panels D and J, the

estimated values are significantly greater than true gradients and are
accompanied by very large error bars, indicating that the estimates
are likely not meaningful.

Thedifficulty in determining∇tNe in this case arises from several
factors which include: 1) the constellation architecture during
the chosen phases of the mission, including the large (∼7 km/s)
velocity of the satellites, that limits the duration of time over which
a given spatial region is visited; 2) the ratio of the spatial gradients
to ∇tNe at a given point; and 3) the relatively large measurement
noise introduced to the samples. For example, consider the largest
true temporal gradients in Figure 7D that reach a maximum of
∼4× 107m−3/s at time 64 min. If persisted during a 2-min interval
over which the gradients are computed δNe due to ∇tNe may reach
to ∼5× 109m−3. This is an order of magnitude smaller than the
measurement noise introduced at these times, and two orders
of magnitude smaller than δNe due to the latitudinal gradients.
Nevertheless, as will be shown in Figure 8, temporal gradients of IT
parameters can still be reasonably obtained using LSGC-AS-LEO
1.0 and GDC data depending on a number of factor, including the
phase of the mission, measurement noise level, and the form of the
variations of the measured field. It should also be emphasized that
in low-measurement-noise conditions (< 1%), applicable to high-
precision electric and magnetic field data and their products such as
E ×B ion drifts, or plasma densities obtained from the background
plasma frequency, even small temporal gradients can be reliably
captured by the current approach. Finally, it should be noted that,
as can be seen in the predicted GDC ephemerides (Rev C data files:
https://ccmc.gsfc.nasa.gov/RoR_WWW/GDC_support/Proposer_
Resources/GDC_EphemerisRevC.zip; description of data files:
https://ccmc.gsfc.nasa.gov/static/files/GDC-SCI-DESC-0005RevC.
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FIGURE 7
In a similar format as Figures 6B–F, the results of the gradient calculations on electron density but during the initial periods of GDC’s phases 2a (left)
and 2b (right). The increased size of the constellation is evident in the top panels as the individual satellites measures increasingly different values.

pdf), there are other sampling configurations (e.g., ‘Follow
the Leader’ configurations in Phases 2 and 3) in which GDC
will have longer revisit times, allowing the study of slow
temporal variations.

In Figure 8 we return to the constellation geometry in phase 1a
and evaluate the performance of the software in disentangling the
spatial and temporal variability in a vector quantity: the zonal (U,
shown on the left) and meridional (V, shown on the right) neutral
winds as simulated by TIEGCM. Here, in order to demonstrate the
ability of the approach to capture temporal gradients only 1% noise
has been added to the simulated values. For reference, the expected
performance of GDC’s neutral wind measurements by the Modular
Spectrometer for Atmosphere and Ionosphere Characterization
(MoSAIC) instrument is the accuracy and precision of no more
than 4.5 m/s. With this level of measurement noise, all the
gradients are determinedwith reasonably small error bars, including
periods of non-zero ∇tUn and ∇tVn between times ∼120–150,
as well as the most prominent variations of spatial gradients
near the polar regions. While the specified 4.5 m/s accuracy of
neutral wind measurement by the MoSAIC instrument translates
to measurement noise levels as low as 2.25% in our example,
an effective measurement noise of 1% or below is achievable by
averaging multiple datapoints from MoSAIC that will be obtained
within the 20-s measurement cadence used in our example shown
in Figure 8. MoSAIC will provide independent samples of ion
and neutral densities, temperatures, compositions, and velocities
every two seconds or faster, providing a minimum of 10 samples

within 20 s, providing the possibility to effectively reduce random
measurement noise level by a factor of ∼3, to below 1%.

It is important to recognize that the ability of amission like GDC
to measure gradients relies on a reasonably good match between
the spatiotemporal separation of the satellites and the phenomena
being studied. Early phases of the mission are best for studying
small-scale, sharp variations, and later phases are best for studying
larger-scale, more gradual variations. As an example consider the
simulated neutral temperature field shown in Figure 9A. The image
shows variation ofTn in space at a fixed time, with theminimum and
maximumvalues of∼850 and 1200 K, respectively. For reference, the
trajectory of the GDC constellation during the first orbit of phase 2b
are also overplotted on the image. In the right panels of Figure 9,
the gradients computed during phase 2b of the mission are shown
to successfully capture the spatial variations of the underlying field.
It should also be emphasized that, while the examples shown in
Figures 3–9 demonstrate that the least-squares gradients calculation
approach is a powerful tool capable of estimating the gradients of the
IT parameters using GDC’s future measurements, the utilization of
the approach is not necessarily trivial or free from limitations and
caveats. For example, the performance of the algorithm currently
relies on appropriate choices for several parameters, such as the
homogeneity lengths, the determination of which may prove to
be difficult in a real scenario. Further, for the approach to be
applicable in a routine and robust manner, the sensitivity of the
chosen parameter values needs to be studied. Such investigations
will be the subject of future works.
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FIGURE 8
Results of the gradient computation on zonal (left) and meridional (right) neutral winds from TIEGCM simulations. 1% measurement noise has been
added to the data sampled during the initial stages of the phase 1a. Other settings include: Llat: 10°, Llong: 20°, Lt: 500 s, MaxT: 3 min; Measurement
cadence: 20 s.

FIGURE 9
(A) shows a snapshot of the neutral temperature from TIEGCM as a function of latitude and longitude. For reference, the trajectory of the center of the
constellation and those of the individual satellites during the first orbit of phase 2b are also shown via the black line and white dots, respectively. (B–J)
show results of the gradient computation for neutral temperature measurements at the beginning of phase 2b, subject to 2% measurement noise—that
is MoSAIC’s expected accuracy and precision in determining the neutral gas temperature. Other settings include: Llat: 50°, Llong: 50°, Lt: 2,500 s, MaxT:
2.5 min, Measurement cadence: 20 s.
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5 Summary and conclusion

In preparation for the Geospace Dynamics Constellation
mission, we have implemented the least-square gradient calculation
approach described byDe Keyser et al. (2007) andDe Keyser (2008)
in a open-source software LSGC-AS-LEO 1.0. Calculation of the
gradients of the ionospheric and thermospheric parameters would
allow to disentangle the spatial and temporal variability of the
measured fields in an inherently quantitative manner. The approach
that is implemented is flexible and, thus, highly suitable for GDC’s
dynamic constellation architecture. Via a number of examples, and
by utilizing synthetic and simulated IT fields, we have validated
the performance of the software and demonstrated its power to
explore GDC’s ability to resolve spatial and temporal structures
that may exist in the ionosphere and the thermosphere. We have
also established the usefulness of the software to evaluate suitability
of various constellation geometries and assess the impact of
measurement sensitivities on addressing GDC’s science objectives.
For example, from the test cases discussed one may draw the
following several conclusions: 1) computation of the temporal
gradients of neutral and plasma variables, while are sensitive to the
measurement noise level, are possible with GDC measurements;
2) The spatial gradients of the equatorial ionization anomaly can
be reasonably resolved during phase 1 of the mission, while at the
later phases the gradients are likely to be underestimated. On the
other hand, in the presence of measurement noise, computing the
gradients of the neutral temperature would likely be more difficult
in the earliest phases of the mission due to the small gradients and
large homogeneity lengths involved; 3)Gradients of the neutral wind
can be well determined in the earliest phases of the mission even at
the highest latitudes where the constellation skews in longitude.

We will continue to enhance the software in several directions.
The future work will include further refinements to the optimization
scheme and implementation of direction-dependent scaling for the
homogeneity lengths, implementation of constrains (e.g., divergence
free or curl free) in the algorithm for vector fields, enhancement
of computation efficiency, and performing additional tests on

simulated data to further probe GDC’s ability to address its
science questions.
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