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Editorial on the Research Topic

Observations and simulations of layering phenomena in the
middle/upper atmosphere and ionosphere
s

Introduction

The middle/upper atmosphere and ionosphere are the transition between neutral
and ionized components of the Earth’s atmosphere, including stratosphere, mesosphere,
thermosphere, ionospheric E region and ionospheric F region (Laštovička et al., 2006;
Xu, et al., 2007; Smith, 2012). The atmospheric thermal structure and composition are
significantly affected by dynamical processes through coupling. The layering phenomena
such as mesospheric metal layers, sporadic E layers, and noctilucent clouds are important
tracers to studymechanisms of the vertical coupling from the lower to the upper atmosphere
(Dou et al., 2010; Plane, 2012; Xue et al., 2013).

Although extensive research employing satellite data and global models have
been conducted on the middle/upper atmosphere and ionosphere in recent years
(Froidevaux, et al., 2006; Gettelman et al., 2019; Yu et al., 2019; Cai et al., 2020; Cai et al.,
2021; Wu et al., 2021; Yu et al., 2021; Cai et al., 2022; Emmons et al., 2022; Yu et al., 2022),
it is still a challenge to forecast changes in ionospheric irregularities and dynamic processes
in the Earth’s upper atmosphere (Tian et al., 2022; Tian et al., 2023). The objectives of
this Research Topic are the new results of “Observations and simulations of layering
phenomena in themiddle/upper atmosphere and ionosphere” that can advance our knowledge
of atmospheric dynamics, chemistry as well as vertical coupling of atmospheric layers. It
comprises five research articles contributed by 39 authors with more than 7,500 views to
date.The research objects of the papers involve ionospheric irregularities,mesosphericmetal
layers, atmospheric winds, and polar mesospheric clouds.

Equatorial plasma bubbles (EPBs) are large-scale ionospheric plasma depletions
at the magnetic equator. EPBs can cause the degradation of radio signal, and thus
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significantly impact the measurement accuracy of global navigation
satellite systems. Carmo et al. analyzed the EPB features over
the Brazilian sector using total electron content index under
different solar and magnetic activity conditions. The latitudinal
extension and zonal drift velocity of EPBs are higher during the
solar maximum than those in the solar minimum. The EPBs
presented longer durations in winter, attributed to the electric field
direction associated with either prompt penetration electric fields or
disturbance dynamo electric fields.

The sporadic E layer is one of the typical ionospheric layering
phenomena between 90 and 130 km. Unlike the more predictable
F1 and F2 layers of the ionosphere, the sporadic E exhibits
irregularities in its occurrence and intensity. Radio occultation
observations from satellites have been shown considerable promise
for monitoring sporadic E layers. Knisely and Emmons investigated
the power spectra of sporadic-E layers during Kelvin-Helmholtz
billow formation. By the two-fluid simulations of K-Hbillowswithin
a sporadic-E layer over time, it is found that the intense sporadic-
E layers transform into wider, more turbulent layers. The large
variations in amplitude profiles over 5 min during billow formation
can result in large variation of amplitude (S4) and phase (σϕ)
scintillations. The rapid change in the ionospheric scintillation
over a short period of time can introduce uncertainty in the
characteristics of Es layers, thereby leading to the uncertainty of
simultaneous observations of GNSS RO for the Es layers. Therefore,
a comparison of GNSS ROmeasurements with high time-resolution
measurements using such as the incoherent scatter radars would
provide crucial validation of global measurements of Es layers for
the predicting models.

The polar mesospheric clouds (PMCs) are mainly composed of
small water ice crystals in the mesopause region at high latitudes
during summer times. Qiu et al. studied the impact of activity and
variability of solar radiation on the PMCs from observations of the
Solar Occultation For Ice Experiment onboard the Aeronomy of Ice
in the Mesosphere satellite and Microwave Limb Sounder onboard
the Aura satellite. The solar 27-day modulation affects PMCs.

The mesospheric meteoric metal layers occur at 70–120 km
altitude in themesosphere and lower thermosphere (MLT) as a result
of meteoric ablation. The sporadic sodium layers (SSLs) refer to the
sodium layer whose number density increases rapidly to be more
than double the background value. Qiu et al. analyzed the sodium
density data observed from a narrow band lidar at the Andes Lidar
Observatory. The oscillation characteristics of SSLs are proposed to
be strongly related to wave fluctuations.

These are oscillations in global atmospheric parameters such
as neutral density, temperature, and wind in the MLT region. The
MLT region is the temperature minimum that delineates the middle
atmosphere from the thermosphere, stands as the coldest region
within the Earth’s atmosphere. The sudden stratospheric warming
(SSW) is a large-scale meteorological event that occurs in the
winter polar stratosphere and impacts the global atmosphere. It
is typical evidence for dynamical coupling phenomena from the
lower atmosphere to the upper atmosphere. Zhou et al. investigated
the response of neutral density from four meteor radars to a
major stratospheric warming. The four meteor radars include
Beijing (40.3°N, 116.2°E), Mohe (53.5°N, 122.3°E), Tromsø (69.6°N,
19.2°E), and Svalbard (78.3°N, 16°E) meteor radars at mid-to-high
latitudes in the Northern Hemisphere. The neutral density over

Svalbard and Tromsø at high latitudes increased at the beginning of
SSWs and decreased after the zonal mean stratospheric temperature
reached the maximum, while the neutral density over Mohe at
midlatitudes exhibits precisely the opposite trend. The temperature
cooling in the MLT region was found throughout SSWs, with
more days’ lag to the higher latitudes. It has been proven that the
SSW effect can extend beyond the stratosphere and modulates the
mesosphere and thermosphere.

Conclusion

In summary, the articles in theResearchTopic “Observations and
Simulations of Layering Phenomena in theMiddle/Upper Atmosphere
and Ionosphere” report various prominent layers and their coupling
behaviors in the MLT region. This will further advance our
knowledge on chemical and dynamics in the upper atmosphere
and ionosphere. A future challenge is to predict the changes
in Earth’s upper atmospheric conditions by comprehending the
physical mechanisms governing the coupling between the various
layers of the Earth’s atmosphere as one whole system. In the face of
growing demand for accurate prediction of the upper atmosphere
and ionosphere environments, it is crucial to understand both the
long-term changes and short-term dynamical coupling processes
through trace species in the region. Therefore, we can gain an
understanding of how the upper atmospheric layers behave and its
fundamental atmospheric interaction processes.
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