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In the present paper, we investigate the effects of latitude-dependent wave
power spectrum on the interactions of chorus with electrons. Great errors in
evaluating the electron diffusion coefficients and the resultant electron temporal
evolutions are introduced by the widely adopted latitudinally constant model,
compared with the latitudinally varying model. The latitudinally constant model
tends to overestimate (underestimate) the diffusion coefficients for electrons
below (above) 200 keV. The overestimation and underestimation are mainly
confined in small to intermediate pitch angles, increase with decreasing pitch
angles, and can reach up to several orders of magnitude. The large differences
in diffusion coefficients significantly alter the net changes of electron phase
space densities and the resultant shapes of electron pitch angle distributions.
Our simulations demonstrate that the wave power spectrum distribution along
the magnetic field line plays an important role in controlling the dynamics of
radiation belt electrons.

KEYWORDS

Earth’s inner magnetosphere, radiation belt, wave-particle interactions, chorus waves,
electron diffusions

1 Introduction

Whistler mode chorus waves are natural, coherent, and right-hand polarized
electromagnetic emissionswidely present in the Earth’smagnetosphere (Burtis andHelliwell,
1969; Meredith et al., 2001; Santolík et al., 2003; Cao et al., 2005; Cao et al., 2007; Fu et al.,
2012; Li et al., 2013; Zhima et al., 2013; Yu et al., 2017; Su et al., 2018; Yu et al., 2020a;
Liu et al., 2021; Yu et al., 2022).They are commonly believed to be excited near the magnetic
equator through the cyclotron instability of anisotropic energetic electrons in the energy
range of several keV to ∼100 keV injected from the plasma sheet during geomagnetic
disturbed times (Kennel and Petschek, 1966; LeDocq et al., 1998; Su et al., 2014a; Yu et al.,
2018; Liu and Chen, 2019). Chorus waves are typically separated into the lower-band
(0.1–0.5fce) and upper-band (0.5–0.8fce) by the deep power gap at 0.5fce ( fce is the equatorial
electron gyrofrequency; Teng et al., 2019a) and are usually consist of discrete rising- or
falling-tone elements with duration less than 1 s (Tsurutani and Smith, 1977; Santolík et al.,
2003; Li et al., 2012; Teng et al., 2017; Yu et al., 2018; Teng et al., 2019b).

Chorus waves have caught increasing attention over the past few decades due to their
fundamental dual role in precipitating trapped electrons into the upper atmosphere and
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accelerating seed electrons to relativistic energy in the outer
radiation belt (Horne et al., 2005; Li et al., 2005; 2017; Ni et al., 2008;
Su et al., 2010; Thorne et al., 2010; Ni et al., 2011a; Reeves et al.,
2013; Thorne, 2013; Su et al., 2014b; Tu et al., 2014; Su et al., 2016;
Yu et al., 2016; Yu et al., 2019a; Yu et al., 2020a). It is well known
that the efficiency of resonant interaction between chorus waves
and radiation belt electrons can be quantified by the quasi-linear
diffusion coefficients (Lyons, 1974; Glauert and Horne, 2005),
which are used as the inputs of the Fokker-Planck equation to
model the temporal evolutions of electron distributions (Schulz and
Lanzerotti, 1974; Li et al., 2016; Hua et al., 2018; Ma et al., 2018).
However, in the computation of diffusion coefficients, most previous
studies usually assume that the chorus wave power spectrum
does not vary along the geomagnetic field line (e.g., Lyons, 1974;
Albert, 2005; Glauert and Horne, 2005; Summers and Ni, 2008;
Shprits andNi, 2009; Xiao et al., 2009; Su et al., 2010; Subbotin et al.,
2010; Thorne et al., 2010; He et al., 2011; Thorne, 2013; Su et al.,
2014b; He et al., 2014; Tu et al., 2014; Xiao et al., 2015; Su et al.,
2016; Li et al., 2017; Yu et al., 2019a; Yu et al., 2020a). In fact,
recent statistics, based on the observations from Polar (Bunch et al.,
2013), Cluster (Breuillard et al., 2015), and Van Allen Probes
(Agapitov et al., 2018), have clearly shown that the power spectrum
of lower-band choruswaves highly depends on themagnetic latitude
which is probably caused by the wave amplification, damping and
propagation (e.g., Bunch et al., 2013; Breuillard et al., 2015).

Some recent studies incorporated the effects of latitude-
dependent chorus spectra in calculating the quasi-linear diffusion
coefficients (e.g., Agapitov et al., 2018; Agapitov et al., 2019; Wang
and Shprits, 2019; Aryan et al., 2020; Wang et al., 2020). In their
works, the effects of some other parameters, including wave power,
plasma density, wave normal angle, radial diffusion, etc., are also
implied in the calculations and simulations by using statistical wave
models. Their results are the comprehensive impacts of these all
above parameters. Thus, the exact effects of the latitude-dependent
wave power spectrum remain unclear since they are difficult to
differentiate from the effects of other parameters. Bunch et al. (2013)
evaluated the impact of latitude-dependent chorus spectra on the
diffusion time scales only for 1 MeV electrons, indicating that it has a
potentially significant impact. Nonetheless, their effects on electrons
with other energies are still unknown. In addition, the dynamics of
electrons with a certain energy relate to not only their own diffusion
coefficients and distributions but also those electrons with other
energies. Thus, the current research aims at addressing the effects of
latitude-dependent wave power spectrum on both two-dimensional
diffusion coefficients of radiation belt electrons and their temporal
evolutions.

2 Model description

To compute the diffusion coefficients, the distributions of wave
spectral intensity with frequency (ω) and wave normal angle (θ) are
necessary to be predefined. Following previous studies, we assume
that each of them is a Gaussian distribution expressed by (e.g.,
Glauret and Horne, 2005; Yu et al., 2019a)

B2(ω) =
{
{
{

A2 exp(−(
ω−ωm

δω
)
2
) ωlc≤ ω ≤ωuc

0 otherwise,
(1)
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w
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2
√π
[erf(
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δω
)+ erf(
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exp(−(
tan θ− tan θm

tan δθ
)
2
) θlc≤ θ ≤θuc

0 otherwise,
(3)

where Bw is the wave amplitude, ωm (θm) is the frequency
(normal angle) with peak wave power, δω (δθ) is the frequency
(angular) width, ωlc (θlc) is the lower cutoff frequency
(normal angle), and ωuc (θuc) is the upper cutoff frequency
(normal angle).

To examine the effects of latitudinal dependence of wave power
spectrum, two types of spectralmodels, namely, latitudinally varying
and constant models, are adopted for the lower-band chorus waves
in our calculations.Thepeak frequency varies linearlywithmagnetic
latitude (λ) for the former (ωm/2π = (0.35− 0.0125λ) fce) taking
from Agapitov et al. (2018), while it is independent on magnetic
latitude for the latter (ωm/2π= 0.35 fce) based on previous widely
used models (e.g., Shprits and Ni, 2009). According to the statistical
study of Agapitov et al. (2018), δω/2π, ωlc/2π, and ωuc/2π are set
to be 0.07 fce, 0.1 fce and 0.5 fce, respectively. Along with previous
works (e.g., Li et al., 2017; Yu et al., 2020a), we assume that the
direction of wave propagation is essentially field-aligned with
θm = 0∘, θw= 30∘, θlc = 0∘ and θuc = 45∘. Additionally, the ratio of
electron plasma frequency to equatorial electron gyrofrequency
fpe/fce is taken to be 2.5 at L = 5 (Ne = 3.74 cm−3; e.g., Shprits
and Ni, 2009; Agapitov et al., 2019). Lastly, the amplitude of chorus
is set to be 100 pT and the waves are assumed to be confined
within |λ| ≤ 20∘ to represent near equatorial nightside chorus
(e.g., Agapitov et al., 2018; Yu et al., 2020a). Except for the peak
frequency, all other parameters are the same for both models and
are kept constant along the magnetic field line to eliminate their
interferences.

Once the diffusion coefficients obtained, we can model the
temporal evolutions of electron phase space density (F) distributions
by numerically solving the two-dimensional bounce-averaged
Fokker-Planck diffusion equation (Eq. 4) under reasonable initial
distributions (Eq. 5) and boundary conditions (Eqs 6, 7), written as
(Yu et al., 2019a)

∂F
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= 1
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∂
∂αeq
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1
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∂F
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+ 1
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F(t= 0) = exp [−E/0.1](sin αeq − sin αLC)/p2, (5)

F|αeq≤αLC= 0,
∂F
∂αeq
|
αeq=90°

= 0, (6)

F|E=10keV = constant,F|E=10MeV= 0, (7)

where αLC is the equatorial loss cone, G = p2T(αeq) sin αeq cos αeq
with T(αeq) ≈ 1.30− 0.56sin αeq, and ⟨Dαα⟩, ⟨Dαp⟩ and
⟨Dpp⟩ are respectively the bounce-averaged pitch angle,
mixed and momentum diffusion coefficients computed by
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FIGURE 1
The wave frequency (A), wave power for latitudinally varying (B) and constant (C) models of field-aligned chorus resonant with 0.5 MeV electrons as
functions of pitch angles and magnetic latitudes. (D–F) The same format as (A–C) except for 1.0 MeV electrons.

our previous developed code (e.g., Li et al., 2017; Yu et al.,
2019a; Yu et al., 2020a) on the basis of aforementioned
parameters.

3 Numerical results

Figure 1, from left to right, shows the resonant frequency, the
resonant power for latitudinally varying and constant models of
field-aligned chorus interactingwith 0.5 (top) and 1.0 MeV (bottom)
electrons as functions of equatorial pitch angles and magnetic
latitudes. Consistent with previous studies, the resonant latitude
increases with decreasing pitch angles. For electrons at a fixed
pitch angle, they interact with higher frequency chorus waves
at higher magnetic latitudes. Although the resonant latitude and
resonant frequency remain unchanged (left column), the latitude-
dependent wave model can significantly alter the resonant power of
chorus waves interacting with electrons (middle column), especially
for electrons at small pitch angles, compared with the latitude-
independent wave model (right column). Thus, it is expected
that these changes will strongly alter the chorus-induced electron
diffusions which can be quantified by diffusion coefficients and
simulated by Fokker-Planck equations.

The two-dimensional bounce-averaged diffusion coefficients
calculated separately by using the latitudinally varying and
constant models are shown in the left and middle columns of
Figure 2, and their normalized differences in the regions where
⟨Dαα⟩/p2 > 10−6 s−1 are shown in the right column of Figure 2.
The calculations of diffusion coefficients include the contributions

from cyclotron harmonic resonances up to ±5 as well as Landau
resonance. The normalized differences in diffusion coefficients
between latitudinally varying (⟨D⟩vary) and constant (⟨D⟩cont)

models are defined as
|⟨D⟩vary|−|⟨D⟩cont|

|⟨D⟩vary|+|⟨D⟩cont|
with values close to 1 and

-1 respectively representing that the former is substantially larger
and ignorable smaller than the latter.

The trend of the diffusion coefficient variations for both models
exhibits similar features, that is, the resonant range enlarges and the
peak shifts to larger pitch angles with increasing electron energies
(shown in Figures 2A–F), consistent with previous studies (e.g.,
He et al., 2014; Yu et al., 2020a). However, as shown in the right
column of Figure 2, obvious differences between the two models are
seen for electrons below 60° since only these electrons can interact
with chorus waves at high latitudes where the wave power spectrum
of these two models are significantly different (shown in Figure 1).
The differences aremore apparent (deeper colors) in themomentum
diffusion coefficients for relatively low-energy electrons (<200 keV),
while they aremore apparent in the pitch angle diffusion coefficients
for relatively high-energy electrons (>300 keV). As the pitch angle
increases, the differences tend to reduce for all electron energies.
Overall, the diffusion coefficients of electrons above 200 keV for the
latitudinally varyingmodel are substantially larger than those for the
latitudinally constant model (positive normalized differences close
to 1), while it is exactly opposite for those of electrons below 100 keV.

The differences in diffusion coefficients between the twomodels
are shown more clearly by the lineplots in Figure 3. The diffusion
coefficients at different electron energies using the latitudinally
varying and constantmodels are represented by the solid and dashed
color-coded curves, respectively. Obviously, the differences aremore
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FIGURE 2
The 2-D bounce-averaged pitch angle (top panels: A, D, and G), mixed (middle panels: B, E, and H) and momentum (bottom panels: C, F, and I)
diffusion coefficients for latitudinally varying (left panels: A–C) and constant (middle panels: D–F) models of chorus resonant with electrons. The
corresponding normalized differences are shown in the right panels (G–I).

apparent in momentum diffusion coefficients for 0.02 and 0.1 MeV
electrons which can exceed an order of magnitude for 0.02 MeV
electrons near the loss cone (<20°). However, they aremore apparent
in pitch angle diffusion coefficients for 0.5, 1, and 2 MeV electrons
which can reach approximately an order of magnitude at pitch
angles below 40°. It is worth noting that the differences in both
diffusion coefficients are extremely large for 0.5 MeV electrons.
Compared with the results using the latitudinally constant model,
the pitch angle diffusion coefficients of 0.5 MeV electrons using the
latitudinally varying model are two to three orders of magnitude
larger and exceed 10−4 s−1 near the loss cone (<15°), indicating a
much rapider pitch angle scattering loss.

Figure 4 shows the temporal evolutions of electron distributions
driven by chorus waves as functions of pitch angles and energies at
different times (∆t = 1, 2 and 3 h).The initial distribution of electrons
is shown in Figure 4A, while their temporal evolutions driven
by latitudinally varying and constant chorus waves are shown in
Figures 4B–G, respectively. Regardless of the wave power spectrum
models, the temporal evolutions of electron distributions driven by
choruswaves have similar tendency, namely, tens to hundreds of keV
electrons are rapidly depleted while MeV electrons are efficiently
enhanced. Obviously, the pitch angle coverage broadens for electron
loss but narrows for electron acceleration as the electron energy

increases. Generally, the depletion of tens of keV electrons is mainly
confined in the small to intermediate pitch angles, whereas the
depletion of hundreds of keV electrons occurs at almost all pitch
angles. The enhancement of MeV electrons is mainly confined in
the intermediate to large pitch angles. However, great differences are
also found in the temporal evolutions of electron distributions under
the impact of different models of chorus waves. The differences
highly depend on the electron energy and tend to be more
pronounced for lower and higher energy electrons.The involvement
of latitudinal variations of wave power spectrum strongly weakens
both the depletion of energetic electrons below ∼300 keV and the
enhancement of relativistic electrons above ∼900 keV but deepens
the depletion of electrons with energies between them.

Figure 5 illustrates the temporal evolutions of pitch angle
distributions for five different indicated electron energies based on
the latitudinally varying (top) and constant (bottom) models. The
color-coded curves in each panel represent the electron pitch angle
distributions from t = 0 (blue) to 3 (red) hours with 10 min time
interval. Regardless of the wave power spectrum models, chorus
waves lead to the formation of top-hat distributions for 0.02 and
0.10 MeV electrons through pitch angle scattering below ∼60° (first
two columns) and flat-top distributions for 1.00 and 2.00 MeV
electrons through acceleration above ∼30° (last two columns). In
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FIGURE 3
The bounce-averaged pitch angle (A), mixed (B) and momentum (C) diffusion coefficients for latitudinally varying (solid) and constant (dashed) models
of chorus resonant with electrons at different indicated energies.

FIGURE 4
(A) The initial 2-D distributions of electron phase space density. The 2-D distribution evolutions of electron phase space density driven by the
latitudinally varying (B–D) and constant (E–G) models of chorus waves.

addition, the phase space densities of 0.5 and 1 MeV electrons
firstly increase to their maximum values, and then start to decrease
and remain at a stable level, showing a natural upper limit of
electron acceleration as reported in the study of (Hua et al., 2022;
Hua et al., 2023a). However, compared with latitudinally constant
chorus waves, latitudinally varying chorus waves slow down both
the depletion of 0.02 and 0.10 MeV electrons by several times and
the enhancement of 1.00 and 2.00 MeV electrons by an order of
magnitude but speed up the depletion of 0.50 MeV electrons. It is
worth noting that the influence is stronger with decreasing pitch
angles for 0.50 MeV electrons, whereas it is almost irrelative to

pitch angles for the other four energy electrons. Consequently, the
shape of pitch angle distributions changes from flat-top to pancake
distributions for 0.50 MeV electrons, whereas it is kept almost
unchanged for the electrons in other four energies.However, the top-
hat distributions are weaker for 0.02 and 0.10 MeV electrons due to
the weaker depletion, and the flat-top distributions are broader for
1.00 and 2.00 MeV electrons due to the wider pitch angle coverage
of efficient acceleration.

Figure 6 shows the temporal evolutions of energy spectra
of electron phase space densities. The electron energy spectra
have similar temporal evolutions regardless of the wave models.
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FIGURE 5
Temporal evolutions of pitch angle distributions for electrons with energies E = 0.02 MeV (A and F), 0.10 MeV (B and G), 0.50 MeV (C and H), 1.00 MeV
(D and I) and 2.00 MeV (E and J) based on the latitudinally varying (A–E) and constant (F–J) models. The color-coded curves in each panel represent
the electron pitch angle distributions from t = 0 (blue) to 3 (red) hours with 10 min time interval.

FIGURE 6
Temporal evolutions of energy spectra of omnidirectional electron phase space densities for the latitudinally varying (A) and constant (B) models. The
color-coded curves in each panel represent the electron energy spectra from t = 0 (blue) to 3 (red) hours with 10 min time interval.

Low-energy (high-energy) electrons experience continuous
losses (accelerations), and middle-energy electrons experience
accelerations first followed by losses. When considering the
variation of wave frequency spectrum along the latitude, the
transition energy from loss to acceleration increases slightly

from ∼700 keV to ∼900 keV. Around the transition energy, the
accelerations of electrons with energies above it slow down,
while the losses of electrons with energies below it speed up. For
those electrons with energies far away from it, the impacts are
limited.
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4 Conclusion and discussions

In the present paper, we investigate the effects of latitudinal
dependence of wave power spectrum on the resonant interactions
between chorus waves and radiation belt electrons. On the basis
of quasi-linear theory, the bounce-averaged diffusion coefficients
are firstly calculated, and the temporal evolutions of electron
distributions are subsequently simulated using both the latitudinally
varying and constant models. The computations show that the
variations of chorus wave power spectrum with magnetic latitudes
can significantly affect the electron diffusion coefficients and thus
the electron temporal evolutions. Since the differences in wave
power spectrum between the latitudinally varying and constant
models increase with magnetic latitudes, their differences in
diffusion coefficients, which can reach up to several orders of
magnitudes, are mainly confined in small to intermediate pitch
angles (<60°) and increase with decreasing pitch angles. Using the
latitudinally constant model, the diffusion coefficients tend to be
overestimated for electrons below 200 keV and underestimated for
the energy above that. The overestimations are more apparent in
momentum diffusion coefficients, while the underestimations are
more apparent in pitch angle diffusion coefficients. Although the
major differences in diffusion coefficients are confined below 60°
pitch angles, their impacts on the temporal evolutions of electron
distributions above 100 keV can expand to large pitch angles above
that. The widely adopted assumption latitudinally constant model
strongly overestimates both the depletion of energetic electrons
below ∼300 keV and the enhancement of relativistic electrons
above ∼900 keV but underestimates the depletion of electrons
with energies between them. The errors can exceed an order of
magnitude. Consequently, the inclusion of latitudinal variations of
wave power spectrum tends to weaken the top-hat distributions
of low-energy electrons, change the distribution shape of middle
energy electrons, and broaden the flat-top distributions of high-
energy electrons.

The study of Hua et al. (2023b) also investigated the influence of
variations in chorus wave peak frequency on the simulated electron
acceleration. In their work, the variations of thewave peak frequency
and frequency spectrum are latitude-independent. Thus, electrons
at all pitch angles will be affected during the bounce motion.
Compared to their work, the influences of latitude-dependent
wave frequency spectrum on electrons highly depend on the pitch
angles. Since the peak wave frequency decreases linearly along the
magnetic latitude, the variation of wave frequency spectrum is more
pronounced with the increasing latitude. Thus, those electrons with
lower pitch angles are affected more strongly due to their higher
mirror latitudes whereas those nearlymirroring electrons are almost
unaffected. As a result, their and our models have different impacts
on diffusion coefficients. Such differences in diffusion coefficients
will eventually result in the different processes of electron
accelerations.

Previous numerical studies have shown that themagnetospheric
wave-induced diffusions of radiation belt electrons are controlled by
various parameters, such as the wave amplitude (e.g., Summers and
Ni, 2008), wave normal angle (e.g., Shprit and Ni, 2009; Ni et al.,
2011b), background magnetic field (e.g., Orlova and Shprits, 2010),
plasma density (e.g., Summers and Ni, 2008; Agapitov et al., 2019)
and hot plasmas (e.g., Chen et al., 2013; Yu et al., 2019b; Yu et al.,

2020b). Their results show that the differences in wave-induced
diffusion coefficients due to the variations of above parameters
are mostly from several times up to orders of magnitude. Our
calculations indicate that the differences due to the latitudinal
dependence of wave power spectrum can be as large as orders
of magnitude, which is comparable to or even over those other
parameters. Thus, we strongly suggest that future statistical works
are required to establish the realistic models of power spectrum
of various magnetospheric waves (e.g., hiss and electromagnetic
ion cyclotron waves) against magnetic latitude, which should be
incorporated into future modeling to enrich our understanding of
the radiation belt particle dynamics.
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