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Several models for estimating sporadic-E intensity from Global Navigation
Satellite System (GNSS) radio occultation (RO) observation have previously
been developed using a single perturbation or intensity parameter, such as
phase-based total electron content (TEC) or the amplitude-based S4 index.
Here, we outline two new models that use a combination of phase and
amplitude parameters for the L1 and L2 signals. These models show a significant
improvement over the baseline models used for comparison. Furthermore,
the GNSS-RO parameters are compared with several different ionosonde
intensity parameters including the direct foEs and fbEs measurements along
with the metallic-ion based foμEs and fbμEs parameters which account for
the background E-region density. Interestingly, the phase-based σϕ scintillation
index shows the strongest correlation to foEs and fbEs while amplitude-based S4
shows the strongest correlation to foμEs and fbμEs. While themetallic-ion based
foμEs and fbμEs parameters are physically ideal for GNSS-RO observations,
we show difficulties in practical implementation due to the reliance on a
background E-region density estimate using a model such as the International
Reference Ionosphere (IRI). Ultimately, we provide two improved sporadic-E
intensity models that can be used for future GNSS-RO based studies along with
a recommendation to compare against the ionosonde-based foEs parameter.

KEYWORDS

sporadic-E, GNSS radio occultation, ionosondes, foEs, fbEs, foμEs, fbμEs

1 Introduction

Sporadic-E (Es) is characterized by an unusually dense plasma at E-region
altitudes caused by elevated metallic-ion densities from meteor deposits converged
through neutral wind shears (Whitehead, 1989; Mathews, 1998; Haldoupis, 2011;
Shinagawa et al., 2021). These enhanced ion layers can significantly affect radio
propagation, especially high-frequency (HF) skywaves (McNamara, 1991; Fabrizio,
2013) and Global Navigation Satellite System (GNSS) signals used for Low Earth
Orbit (LEO) satellite position and timing (Yue et al., 2016). Therefore, understanding
both the global occurrence rates (Smith, 1957; Chu et al., 2014; Arras and Wickert,
2018; Hodos et al., 2022) and Es intensities [i.e., peak ion densities; Yu et al. (2020);
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Merriman et al. (2021); Yu et al. (2022)] are vital to many aspects of
our modern civilization.

While ionosondes provide direct measurements of Es intensities
in terms of the peak blanketing frequency, fbEs, and the peak
frequency of the ordinary mode return, foEs, ionosondes are
inherently land-locked with a sparse distribution throughout
the globe (e.g., see Digisonde stations at https://giro.uml.edu/).
For this reason, we must use indirect measurements of Es
intensities obtained through GNSS radio occultation (RO) to
obtain truly global coverage (Wu et al., 2005; Yeh et al., 2014;
Tsai et al., 2018; Niu et al., 2019; Yu et al., 2019; Luo et al., 2021).
However, the indirect nature of GNSS-RO observations makes
it difficult to accurately extract Es parameters, resulting in large
uncertainties and ambiguities (Gooch et al., 2020; Carmona et al.,
2022).

Specifically, many GNSS-RO techniques have been proposed
to extract sporadic-E intensities from phase (Hocke et al., 2001;
Niu et al., 2019; Gooch et al., 2020) and amplitude (Arras and
Wickert, 2018; Yu et al., 2020) perturbations using direct ionosonde
measurements for validation. The phase techniques referenced
above rely on total electron content (TEC) calculations using L1
(1,575.41 MHz) and L2 (1,227.60 MHz) phase-based perturbations
while the amplitude-based techniques use an L1 scintillation
index such as S4 to estimate Es intensities. No technique that
we are aware of uses both amplitude and phase information for
intensity estimates. Furthermore, phase perturbation techniques
will be affected by phase scintillation (σϕ) for stronger Es layers
(Emmons et al., 2022), and the amplitude scintillation indices
have been shown to plateau for stronger layers (Stambovsky et al.,
2021).

To further complicate matters, it is unclear which ionosonde-
based Es intensity measurement is appropriate for comparison
against GNSS-RO observations. Ionosondes provide two commonly
used Es intensity parameters: fbEs and foEs. The fbEs typically
correspond to more uniform layers that block HF signals from
penetrating with frequencies below the fbEs, while the foEs
correspond to the peak plasma frequency measured in patchy or
cloudy layers (Reddy and Mukunda Rao, 1968). The GNSS-RO
community is generally divided on which parameter to use for
comparison, with some using foEs as the validation parameter
(Hocke et al., 2001; Niu et al., 2019; Yu et al., 2020) and others using
fbEs (Arras and Wickert, 2018; Gooch et al., 2020). Furthermore,
GNSS-RO measurements have been shown to actually measure
the metallic-ion density perturbation from the background E-
region plasma density, which requires a conversion of foEs/fbEs
to foμEs/fbμEs as outlined by Haldoupis (2019). These metallic-
ion foμEs and fbμEs parameters are calculated by subtracting the
electron density of the background E region from the total ion
density derived from foEs or fbEs, such that the metallic-ion density
is obtained for the Es layer. No GNSS-RO technique that we are
aware of uses these perturbation-based metallic-ion parameters for
comparison.

In this study, we develop two improved models for sporadic-
E intensity using a combination of L1 and L2 amplitude and phase
data in comparison with ionosonde observations. Additionally,
we create separate models for foEs, fbEs, foμEs, and fbμEs
to determine which parameter shows the strongest agreement
with ionosonde observations. The results outlined below show a

significant improvement in the Es intensity estimates from GNSS-
RO observations, which can be used to refine global empirical
models and provide valuable near-real-time information to radio
operators.

2 Materials and methods

COSMIC-I 50 Hz atmPhs data obtained from the COSMIC
Data Analysis and Archive Center (CDAAC; https://cdaac-www.
cosmic.ucar.edu/cdaac/index.html) from 2010 to 2017 are used for
GNSS-RO observations. Since GNSS-RO methods do not provide
a direct measurement of sporadic-E intensity, a separate dataset
must be used for validation. Here, we use ionosonde foEs and fbEs
measurements obtained through the Digital Ionogram DataBase
(DIDBase; https://giro.uml.edu/didbase/) as the validation data
set. Due to the large number of ionograms analyzed in this
study, we rely on ionograms automatically scaled by Automatic
Real-Time Ionogram Scaler with True height software, version
5 [ARTIST-5; (Galkin and Reinisch 2008)]. Most Digisondes
incorporated ARTIST-5 around 2010, which is why RO data
before 2010 are not included in this comparison. No Confidence
Score (CS) threshold was implemented on the automatically
scaled ionograms due to the fact that the CS grading criteria is
based on standard electron density profiles that deduct points for
irregularities like sporadic-E (Galkin et al., 2013). Requiring high
CS values can unintentionally remove ionograms with reliable
sporadic E measurements, which would be detrimental to this
analysis.

Uncertainties in ARTIST-5 predictions have recently been
quantified by Stankov et al. (2023) through a comparison with
manually scaled ionograms. They found an foEs error bound of
[−0.80,0.35] MHz for the ARTIST-5 estimates minus manually
scaled values. This interval contains 95% of the ionograms in
the comparison, providing an uncertainty range for the validation
dataset used in the present study.

Figure 1 shows example ionograms and the corresponding
GNSS-RO amplitude and phase profiles measured with and
without sporadic-E present. The amplitude scintillation and phase
perturbation caused by the sporadic-E layer is immediately obvious,
especially when compared against the measurements without
sporadic-E. To limit the spatial and temporal difference between
ionosonde and GNSS-RO measurements, RO tangent points
must be within 30 min and 50 km of an ionogram that measures
sporadic-E. This spatial extent corresponds to half of the 100 km
median length of sporadic-E layers as observed by Maeda and
Heki (2015), such that a layer directly over an ionosonde can be
observed within a 50 km radius. While reducing the comparison
distance causes a reduction in the overall number of concurrent
measurements, it allows for more confidence in the fact that both
the ionosonde and occultation are measuring the same layer. We
also examined larger comparison distances (results not shown),
which produced similar results with larger uncertainties caused by
measurements of separate Es clouds or RO observations that miss
the clouds altogether. All concurrent (within 30 min and 50 km)
COSMIC-1 GNSS-RO and DIDBase ionosonde measurements
throughout the globe during 2010–2017 are used for this
analysis.

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2023.1327979
https://giro.uml.edu/
https://cdaac-www.cosmic.ucar.edu/cdaac/index.html
https://cdaac-www.cosmic.ucar.edu/cdaac/index.html
https://giro.uml.edu/didbase/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Emmons et al. 10.3389/fspas.2023.1327979

FIGURE 1
Ionograms and corresponding GNSS-RO amplitude (normalized SNR) and relative excess phase data (A) with sporadic-E present and (B) without
sporadic-E. The normalized L2 SNR is shifted horizontally to improve readability. Note the strong SNR scintillation and phase perturbation caused by
the sporadic-E layer near 95 km in the top row. The CDAAC descriptors displayed here are (A) atmPhs_C006.2014.024.22.34.G18_2013.3520_nc and
(B) atmPhs_C002.2013.054.04.43.G22_2013.3520_nc.

As a baseline for comparison, two commonly used RO
techniques for estimating sporadic-E intensity are included in
the results: the S2 amplitude scintillation-based technique from
Arras and Wickert (2018) and the total electron content (TEC)
based technique from Gooch et al. (2020). Note that we use S2 for
the amplitude scintillation index here instead of the S4 intensity
scintillation index following the Briggs and Parkin (1963) definition
with COSMIC-1 signal-to-noise-ratio (SNR [V/V]) corresponding
to the signal amplitude. The Arras and Wickert (2018) model was
selected instead of the updated (Yu et al., 2020) S4 model, as we
calculate all parameters directly from the CDAAC 50 Hz atmPhs
files, while the Yu et al. (2020) technique uses scnLv1 files that are
calculated in a slightly different manner (see Syndergaard, 2006).
After the S2 is calculated using a sliding window of 50 points (one
second in time for 50 Hz atmPhs data), the empirical conversion fEs
[MHz] = 3.8×S2 + 2.0 is used to calculate the sporadic-E intensity
fEs. Throughout this comparison, we use fEs for the GNSS-RO
derived intensities instead of foEs, fbEs, etc., as it is unclear which
(if any) of the ionosonde specific parameters is measured by RO.

The Gooch et al. (2020) technique uses the L1 and L2 phases
to calculate a TEC, which is then detrended with a Savitzky-
Golay (Savitzky and Golay, 1964) filter using a 25 km window. The
detrended TEC is then smoothed using a 1 km Savitzky-Golay filter,
and the final TEC perturbation is divided by an effective path length
of 176 km for an assumed vertical thickness of 0.6 km (Ahmad,
1999) to obtain an electron density for the layer. This technique
provides a physically straightforward approach to estimate layer
intensities. However, it relies on the assumption of an unknown path
length (horizontal length) that can introduce a large uncertainty into
the calculations.

In addition to the S2 and TEC calculations discussed
above, a variety of scintillation and perturbation parameters are
calculated for each RO crossing to examine previously unexplored
relationships with sporadic-E intensity. These parameters include
the amplitude scintillation index S4, the standard deviation of
the nondetrended (measured) excess phase σϕ, and the phase
perturbation Δϕ calculated from a 25 km Savitzky-Golay filter used
for detrending. All these parameters are calculated for both the L1
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TABLE 1 Details on the GNSS-RO scintillation and perturbation parameters calculated from 50 Hz atmPhs observations of sporadic-E. Here, SNR is the signal
amplitude, ϕ is the excess phase, z is the altitude, SG stands for Savitzky-Golay, and ⟨ ⟩ denotes the average over the specified window. The S2 and S4 formulas
shown here follow Briggs and Parkin (1963) for COSMIC-1 SNR representing the signal amplitude.

Parameter Units Calculation details

L1 S2 V/V 50 point sliding window of√(⟨SNR2(z)⟩ − ⟨SNR(z)⟩2)/⟨SNR(z)⟩2

L1 and L2 S4 V2/V2 121 point sliding window of√(⟨SNR4(z)⟩ − ⟨SNR2(z)⟩2)/⟨SNR2(z)⟩2

L1 and L2 σϕ m 51 point sliding window of√⟨ϕ2(z)⟩ − ⟨ϕ(z)⟩2

L1 and L2 Δϕ m ϕ(z) detrended with 25 km SG filter

TEC TECU TEC(z) detrended with 25 km SG filter; smoothed with 1 km SG filter

and L2 frequencies. A list of the parameters and additional details
on the calculations are displayed in Table 1. The size of the sliding
windows and the number of detrending iterations (zero or one)
for S4, σϕ, and Δϕ were optimized to improve correlations with the
ionosonde foEs and fbEs data.

IRI-2016 (Bilitza et al., 2017) is used to estimate the background
E-region ion density required for foμEs and fbμEs calculations.
Following the procedure described by Haldoupis, (2019), the
background E-region ion density at the sporadic-E altitude is
estimated by IRI and is subtracted from the foEs (fbEs) to obtain
the metallic-ion density, which can be converted to a frequency
foμEs (fbμEs). While ionosondes provide the virtual height of
the sporadic-E layer, h’Es, the actual height can be estimated
by integrating the group index of refraction over altitude to
find the actual height corresponding to the measured virtual
height [see further description in Gooch et al. (2020)]. The actual
height is calculated from the IRI electron density profile (EDP),
then the background E-region ion density is set to the IRI
density at the calculated Es actual height. While this places a
strong reliance on IRI predictions for the metallic-ion intensity
parameters, we use IRI instead of ionosonde derived EDPs for
two reasons: first, blanketing sporadic-E can block the ionosonde
returns from the background E-region completely, such that the
Digisonde EDP inversion process relies on climatology. Second,
to extend this approach to locations without ionosondes in
application of the GNSS-RO techniques for global climatology, etc.,
a model will be required as no local EDP measurements will be
available.

The foμEs and fbμEs parameters are derived from metallic-
ion density perturbations to the background E-region ionosphere
(Haldoupis, 2019). Physically, this perturbation is vitally important
for quantifying the impacts of Es layers on GNSS-RO signals,
as the primary factor in the signal perturbation magnitude is
the vertical index of refraction (plasma density) gradient (Wu,
2006). The background E-region density gradient is too small
to cause significant diffraction in the GNSS-RO signals, while
vertically thin sporadic-E layers provide sufficiently large vertical
density gradients (see Figure 1). Therefore, the background E-
region contribution is insignificant when quantifying the strength
of sporadic-E layers for GNSS-RO signal perturbations, and the
background densities should be removed to provide themetallic-ion
based foμEs and fbμEs parameters. As discussed in Sections 3 and
4, while the physical reasoning behind this conversion makes sense

for GNSS-RO applications, the practical implementation is rather
difficult.

3 Results

3.1 Relationship between Es intensity
parameters

GNSS-RO signals are prone to significant phase perturbations
from Es layers, which cause diffraction patterns that are dependent
on the vertical thickness and total phase contribution (Zeng and
Sokolovskiy, 2010; Stambovsky et al., 2021; Emmons et al., 2022).
The total phase contribution depends on both the metallic-ion
density and the horizontal length of the layer through which the
signal crosses. Since the normal E-region varies relatively slowly
with altitude (in comparison with Es layers), the phase contribution
to the plane-wave GNSS-RO signal is nearly uniform over a small
altitude range and does not result in significant perturbations or
diffraction. In contrast, the relatively thin vertical thickness of
sporadic-E [∼1.5 km; Zeng and Sokolovskiy (2010)] acts like a
negative lens capable of producing significant perturbations to the
RO signals. Therefore, as outlined in Haldoupis (2019), GNSS-
RO measurements are sensitive to the metallic-ion density in
Es, not to the total ion density that includes the background
E-region.

In terms of Es intensity parameters, this metallic-ion density
can be estimated from foEs and fbEs through conversion to foμEs
and fbμEs, which removes this background E-region contribution.
Physically, this argument suggests that the GNSS-RO fEs intensity
estimates should only be compared to ionosonde derived foμEs
and fbμEs. However, in practice, our reliance on models or low-
confidence EDP estimates from ionosondes (because of the presence
of sporadic-E) makes it difficult to obtain accurate background E-
region densities.This point will be discussed inmore detail later, but
first we focus on the relationships between these different intensity
parameters.

Figure 2 shows the relationships between the different Es
intensity parameters. A lower limit of 1 MHzwas placed on the foμEs
and fbμEs values as the perturbation to GNSS-RO signals would
be minor for these weak layers. The different intensity parameters
generally show a strong correlation in terms of Spearman’s ρ used
throughout this study for potentially nonlinear trends. As expected,
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FIGURE 2
Comparisons of the ionosonde derived Es intensity parameters. The foEs and fbEs are obtained directly from ionosonde measurements while foμEs
and fbμEs are the metallic-ion parameters derived following (Haldoupis, 2019). The unfilled markers correspond to daytime measurements while the
filled markers designate nighttime measurements.

the foμEs and fbμEs values are lower than the foEs and fbEs values,
with a collection of data points near the 1:1 line corresponding to
weak background E-region densities measured at night. Here, night
corresponds to a solar zenith angle greater than or equal to 90°,
which is roughly 40% of the Es measurements used in this analysis.
Calculated linear slopes of 0.8 and 0.6 are found for the foEs to foμEs
and fbEs to fbμEs conversions, respectively.

For ionosonde measurements with both foEs and fbEs
measured, the relationship shows that most fbEs values are close in
magnitude to the foEs values. However, there are several ionograms
that show strong foEs with weak fbEs.This results in a linear fit with
a slope of 0.8 to convert foEs to fbEs.

In an attempt to determine whether fbEs could be used as
a proxy for foμEs, the two parameters were compared. From
the results, we see that the relationship is relatively weak with
a linear fit that results in a slope of 0.6 and an R2 of 0.4. This
indicates that fbEs should not be used as an easy-to-obtain proxy for
foμEs.

The nontrivial relationships between the different Es intensity
parameters make it difficult to choose a single parameter for

comparison with GNSS-RO observations. While the metallic-
ion parameters are physically more appropriate, the additional
uncertainty introduced by model estimates of the background E-
region may weaken the overall relationships with RO derived
parameters. Therefore, we decided to include all four intensity
parameters in our model development to determine which of the
parameters is themost practical to use when comparing with GNSS-
RO observations.

3.2 GNSS-RO parameters vs. ionosonde
intensity parameters

Ionosonde intensity parameters are displayed against the GNSS-
RO scintillation and perturbation parameters in Figures 3–6.
Thresholds are placed on the GNSS-RO parameters to remove
outliers for quality control, and the values for each parameter are
displayed in Table 2.These phase-based thresholds were determined
from visual inspection of the results, but a future evaluation of
the values using simulated profiles may provide an improved
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FIGURE 3
Ionosonde derived foEs as a function of GNSS-RO scintillation and perturbation parameters. Note the relatively strong correlation with σϕ.

approach with a physical basis. For amplitude scintillation, strong
signal focusing can result in S4 saturation with indices around 1.5
(Singleton, 1970), which is below the 2.0 threshold implemented
here.

For foEs (Figure 3), L1 and L2σϕ show relatively strong
correlations with ρ > 0.6. Linear fits also present larger slopes
that reach an foEs of 6 MHz for maximum values of L1σϕ,
which is not reached for any other parameter. This supports
the results of Emmons et al. (2022), which suggested that σϕ

is a better parameter than S4 for characterizing stronger Es
layers.

The results and trends for fbEs are similar to foEs but with
stronger correlations (Figure 4). This stronger correlation may be
due to the more uniform nature of blanketing Es layers compared to
the patchy/cloudy layers (Reddy andMukunda Rao, 1968). Previous
GNSS-RO models of sporadic-E intensity have focused on fbEs
instead of foEs for exactly this reason (Arras and Wickert, 2018;
Gooch et al., 2020). However, there are fewer fbEs measurements,
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FIGURE 4
Same as Figure 3 but for fbEs. Similar to foEs, there is a relatively strong correlation with σϕ.

and not all sporadic-E layers are blanketing, which places a
limitation on models using fbEs.

Unlike foEs, the foμEs estimates show the strongest correlations
with S4 (Figure 5). However, the correlations are weaker and there
are many low foμEs values for large values of the RO parameter.This
is most obvious for TEC, which shows a moderate correlation with
foEs, but a weak correlation to foμEs along with a nearly flat linear
fit (slope near zero). The collection of low foμEs points is likely due
to uncertainties in the background E-region densities introduced by
IRI in the foEs to foμEs conversion. These weaker correlations and

linear fits highlight the practical challenges of using the metallic-
ion parameters. While these metallic-ion parameters are certainly
more appropriate for GNSS-RO measurements, the uncertainties
introduced by using a model to estimate the background E-region
can add unwanted errors to the dataset.

The fbμEs estimates show moderate correlations with S4 and
σϕ (Figure 6). However, the correlations are weaker than for fbEs,
likely due to the uncertainty added by the IRI estimates, as discussed
for foμEs. All of the GNSS-RO scintillation and perturbation
parameter correlations with ionosonde derived intensity parameters
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FIGURE 5
Same as Figure 3 but for foμEs. Note the moderate correlation with S4 and weak correlation with TEC.

are statistically significant with p-values ≤0.01. Only the TEC
correlation with foμEs provides a p-value of 0.01, while all others
are less than 0.01.

3.3 Model development and feature
importance

To select an appropriate model for predicting Es intensities
(fEs) using GNSS-RO perturbation and scintillation parameters,

the Lazy Predict regression package implemented in Python
(https://pypi.org/project/lazypredict/; accessed July 2023) was used
to test a variety of models on this particular dataset. From
Lazy Predict (results not shown), the top performing models for
all intensity parameters were Epsilon Support Vector Regression
(SVR) and Random Forest, as implemented through scikit-learn
(Pedregosa et al., 2011). After applying and optimizing both the
SVR and Random Forest models, the SVR model using a linear
kernel showed the best overall performance in terms of R2 and
Mean Absolute Error (MAE), so this linear-SVR model was
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FIGURE 6
Same as Figure 3 but for fbμEs. Note the moderate correlations with S4 and σϕ.

implemented as our primary Es intensity model. The performance
improvement using a linear kernel over nonlinear kernels is
somewhat surprising given previous studies that found optimal fits
to nonlinear forms, such as the Yu et al. (2020) S4 to foEs formula:
(foEs− 1.2)2 = 13.62× S4,max.

In addition to the SVR model, a multiple linear regression
model (MLR) is developed to provide a simplified approach for
relatively easy implementation. Further, the two newer models
are compared to previous GNSS-RO based fEs models from the

literature. Specifically, the TEC technique described in Gooch et al.
(2020) and the S2 technique of Arras and Wickert (2018) were used
as the baseline fEs models. It should be noted that the two baseline
models were developed usingfbEs, whichmay skew the results when
comparing against foEs/foμEs/fbμEs.

A train–test split was implemented using data before 1 January
2015 for training and data after for testing. This results in a roughly
70%–30% split for training–testing. The total number of data points
for each ionosonde intensity parameter is displayed in Table 3.

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2023.1327979
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Emmons et al. 10.3389/fspas.2023.1327979

TABLE 2 Thresholds placed on GNSS-RO perturbation and scintillation
parameters and Es actual heights to remove outliers for quality control.

Parameter Threshold

L1 and L2 S4 2.0 V2/V2

L1 and L2 σϕ 0.5 m

L1 and L2 Δϕ 0.8 m

TEC 7 TECU

Actual Height 80 km ≤ Altitude ≤135 km

TABLE 3 The number of observations used for training and testing, split by
ionosonde intensity parameter.

foEs fbEs foμEs fbμEs

Train 408 139 290 133

Test 185 56 135 55

Only the training data set is used for model development and
tuning.

For model development, a Permutation Feature Importance
(PFI) was calculated for each of the model features (GNSS-RO
perturbation and scintillation parameters) and ionosonde intensity
parameters. PFI shows the decrease in a metric from randomly
shuffling the feature of interest. Here, we use a composite metric

TABLE 4 The SVR ϵ and C parameters optimized for each ionosonde intensity
parameter.

foEs fbEs foμEs fbμEs

ϵ 0.4 0.2 0.4 0.2

C 4.3 5.9 5.1 5.1

based on an equal weighting of MAE and R2. The features with
the largest decrease are generally the most important features in
terms ofmodel performance. As displayed in Figure 7, all ionosonde
intensity models except fbEs show the L1 S4 as the most important
feature, which supports the heavy reliance on amplitude scintillation
in previous GNSS-RO-derived Es intensity estimates [e.g., Arras
and Wickert (2018); Yu et al. (2020)]. For fbEs, TEC is the most
important parameter, which matches the results of Gooch et al.
(2020).

The relative feature importance varies dramatically between the
different ionosonde intensity parameters. For example, TEC is the
most important for fbEs and is a close second to the L1 S4 for foEs,
but it is the least important feature for foμEs and fbμEs. Generally,
L2σϕ is important to foEs and fbEs while L2 S4 is important for
the metallic-ion (μ) models. Emmons et al. (2022) found σϕ to
provide valuable information to interpreting GNSS-RO scintillation
observations due to the S4 saturation that can occur for stronger
layers (Stambovsky et al., 2021). This matches the PFI results for
foEs and fbEs, but the phase perturbation Δϕ is more important
than σϕ for the metallic-ion parameters foμEs/fbμEs likely due to

FIGURE 7
Permutation Feature Importance (PFI) for the GNSS-RO scintillation and perturbation parameters in a linear SVR model. The bars correspond to the
mean decrease in the MAE–R2 composite metric from randomly shuffling the feature of interest with 1,000 iterations, and the error bars correspond to
the standard deviation.
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TABLE 5 GNSS-ROMLR intensity models for each ionosonde intensity
parameter. The units and parameter calculation details are displayed in
Table 1.

Intensity

Parameter MLR Model

foEs fEs = 1.54 × L1S4 + 0.08 × TEC + 4.22 × L2σϕ + 0.15 × L2S4 + 1.75

fbEs fEs = 0.14 × TEC + 0.47 × L1S4 + 1.57 × L2σϕ + 7.02 × L1σϕ + 1.56

foμEs fEs = 1.76 × L1S4 + 0.37 × L2S4 + 5.88 × L1Δϕ − 3.47 × L2Δϕ + 1.62

fbμEs fEs = 1.25 × L1S4 + 0.15 × L2S4 − 1.23 × L2Δϕ + 3.24 × L2σϕ + 1.43

the uncertainties introduced by IRI estimates of the background
E-region density.

Interestingly, the relative importance of the different features do
not match the relative strength of the linear fit R2 and Spearman
ρ values displayed in Figures 3–6. For example, the strongest linear
fit values for the GNSS-RO parameters to foEs (Figure 3) are from
σϕ, while L1 S4 and TEC are the most important features in the
SVR model. This is likely due to differences between simple linear

regression and SVR, which places different weights and penalties on
the data (Smola and Schölkopf, 2004).

For the final SVR and MLR models, we use the top four most
important features for each ionosonde intensity parameter to build
the final model. Future studies can focus on reducing the number
of input variables while maintaining performance, but here we use
four parameters for each model for simplicity and consistency. The
SVR ϵ and regularization (C) parameters were also tuned to optimize
performance using the MAE–R2 composite metric [a description of
these SVR parameters can be found in Smola and Schölkopf (2004)].
The parameters were tuned using a 5-fold cross-validation search
over a full grid of parameters, resulting in the values displayed in
Table 4.

For reference, the MLR slopes and intercepts are displayed in
Table 5 for each ionosonde intensity parameter. While four GNSS-
RO perturbation and intensity parameters were used for each
model, a couple of parameters have negative slopes, indicating
that the number of input parameters can be fine-tuned in future
studies to optimize and simplify the models. It must also be noted
that the various GNSS-RO parameters are not independent, and
the complex mapping from Es characteristics to RO diffraction
patterns is not fully understood. This mapping was explored
in detail in Emmons et al. (2022), showing a linear relationship

FIGURE 8
GNSS-RO fEs estimates versus ionosonde foEs observations. Slope and intercept uncertainties are from the standard errors. Note the improved
performance for the MLR and SVR models relative to the baseline S2 and TEC models. The unfilled markers correspond to daytime measurements
while the filled markers designate nighttime measurements.
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FIGURE 9
GNSS-RO fEs estimates versus ionosonde fbEs observations. The unfilled markers correspond to daytime measurements while the filled markers
designate nighttime measurements. Note the relatively large slope for the TEC-based technique.

between L1–S4 and σϕ for the majority of mid-latitude occultations,
suggesting that a linear approach may be appropriate for most Es
measurements. The MLR approach implemented here assumes a
simple linear relationship between the RO parameters and the Es
intensity, allowing contributions from both phase and amplitude
perturbations. While future model optimization may be able to
produce similar results using fewer features (input variables), here
we use the same features as the SVR model following the feature
importance results displayed in Figure 7.

To quantify the statistical significance of the newMLRmodel, an
F-test was performed on the training dataset testing against the null
hypothesis that all model parameters are zero.The F-test produced a
minimum F-statistic of 22 for the fbμEs model with an associated
p-value of < 0.001. All other models produced larger F-statistics
and lower p-values, indicating a very high significance in the results
which allows us to reject the null hypothesis and conclude that the
model results are not due to randomness.

3.4 Model performance

GNSS-RO fEs estimates are displayed against the ionosonde
intensity parameters in Figures 8–11. Linear fits and uncertainties
are calculated using a bootstrapping approach from 10,000 samples

with replacement (Gareth et al., 2013). The overall improvement
in the MLR and SVR models is immediately obvious relative to
the baseline S2 and TEC approaches. Furthermore, the strong
similarities between the MLR and linear-SVR approaches are
apparent, with slight differences due to the weighting schemes and
penalties for the two models.

Predictions from the foEs models are displayed in Figure 8. The
TEC technique generally underestimates, resulting in a negative R2

value and an MAE of 0.9 MHz. Negative R2 values indicate that the
model predictions have a larger sum of squared residuals than a
model that simply predicts the average of the observed data, which
corresponds to R2 = 0. In other words, the average of the squared
residuals is larger than the variance in the observed data, which can
indicate a bias in the model as observed here. The S2 approach has
a positive but weak R2 with a low slope and a narrow spread of
estimates, resulting in an MAE of 0.7 MHz.

Both the MLR and SVR approaches perform similarly, with
moderate R2 values and a low MAE of 0.5 MHz. It must be noted
that this MAE is within the range of ARTIST-5 foEs error bounds
[(−0.80,0.35) MHz; Stankov et al. (2023)], indicating that some
of the error may be the result of uncertainties from ARTIST-5
predictions. However, as observed in Figure 8, RO-based techniques
systematically underestimate the strong Es layer intensities, as
demonstrated by the linear fit slopes of fEsRO ≈ 0.5 foEsDigi for
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FIGURE 10
GNSS-RO fEs estimates versus ionosonde-based foμEs observations. The unfilled markers correspond to daytime measurements while the filled
markers designate nighttime measurements. Note the nearly flat slope for the TEC-based technique and the weaker performance for the MLR and SVR
models relative to Figure 8.

the MLR and SVR models, resulting in foEs errors that cannot
be explained by the uncertainties of ARTIST-5. However, this
result is not surprising given the models’ reliance on S4 which
is known to saturate for stronger Es layers (Stambovsky et al.,
2021; Emmons et al., 2022). In addition, both models perform
better for daytime measurements with slight overpredictions of
weak nighttime intensities. The increased daytime performance
is consistent with a recent study by Sobhkhiz-Miandehi et al.
(2023), which found a stronger agreement between ionosonde
and RO measurements during the day with low solar zenith
angles.

Similar behavior is observed for the fbEs estimates (Figure 9),
with a general improvement in the fEs estimates by the MLR and
SVR models. Interestingly, all of the models perform slightly worse
forfbEs than foEs, except for theTEC approach,which shows a slight
improvement.This general decrease in performance forfbEsmodels
may be due to the limited number of data points compared to foEs.
However, the decrease in MLR and SVR performance is slight, with
MAEs increasing from 0.5 to 0.6 MHz. As with foEs, both the MLR
and SVR models perform better for daytime measurements.

The metallic-ion based foμEs results are displayed in Figure 10,
which show similar performance for thefbEs estimates for allmodels

except for TEC. TEC fEs estimates show a drastic decrease in
performance with a nearly flat slope of fEsRO ≈ 0.2 foEsDigi. This
poor performance of the TEC model is likely an artifact of the
foEs to foμEs conversion that relies on IRI, which introduces an
additional uncertainty into the estimates. The large collection of
data points with low foμEs and a large spread of TEC values on
the left side of the TEC figure is likely caused by overestimates of
the background E-region densities, resulting in a cluster of small
foμEs values. While this behavior is also observed in the other foμEs
models, they are less severe resulting in slopes between 0.4 and 0.5
instead of the TEC slope of 0.2. Unlike foEs and fbEs, the MLR and
SVR models for foμEs perform better for nighttime measurements,
due to overestimates of the daytime background E-region densities
used in the foEs to foμEs conversion.

The fbμEs estimates also show a bias towards lower fbμEs
values due to overestimates of the background E-region densities
(Figure 11). However, this bias is most obvious in the S2 model,
while the TEC model performs significantly better than the TEC
foμEs model. The MLR and SVR models have the lowest MAE
values of 0.4 MHz of all ionosonde intensity parameters, but the R2

values and slopes are slightly lower than the foEs models. This low
MAE is likely the result of lower intensities with a peak fbμEs of
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FIGURE 11
GNSS-RO fEs estimates versus ionosonde-based fbμEs observations. The unfilled markers correspond to daytime measurements while the filled
markers designate nighttime measurements. Note the low MAE for the MLR and SVR models.

approximately 4 MHz, compared to the peak foEsmagnitudes above
6 MHz.

4 Discussion

Several interesting results have emerged from this study. First,
it appears that while the physical reasoning of the metallic-
ion foμEs and fbμEs parameters is appropriate to quantify the
EDP enhancement induced by Es (Haldoupis, 2019), the practical
implementation is challenging due to the reliance on E-region
electron density predictions from models such as IRI. While it may
seem more appropriate to use ionosonde-based electron density
estimates for the conversion, this is also practically limited by
the presence of sporadic-E which results in low confidence scores
for the ARTIST ionogram inversion process (Galkin et al., 2013).
Model errors can introduce additional uncertainty in foμEs and
fbμEs, which appears to explain the elevated MAE and reduced R2

in Figure 10 compared to Figure 8. While nighttime background
E-region contributions to foEs and fbEs are negligible (see the
points near the 1:1 line in Figure 2), many of the daytime density
predictions appear to be overestimated, significantly affecting lower
intensity layers (see the collection of foμEs points at the lower limit

of 1 MHz in Figure 2) which results in poorer model performance
for foμEs compared to foEs. Perhaps using alternative E-region
models such as the rocket-based Faraday-International Reference
Ionosphere [FIRI; (Friedrich and Torkar, 2001)] could improve
the metallic-ion-based model performance. However, given the
results of this study, it seems that comparing GNSS-RO estimates
against ionosonde direct measurements of foEs and fbEs is the most
practical approach at the moment to limit the overall uncertainties
in the datasets.

A second interesting result is the strong correlations of the
different ionosonde intensity parameters with respect to the phase
scintillation parameter σϕ (Figures 3–6). Many previous studies
have used phase-based perturbations (Chu et al., 2014; Niu et al.,
2019; Gooch et al., 2020) and amplitude scintillation (Wu et al.,
2005; Arras and Wickert, 2018; Yu et al., 2019) to characterize
sporadic-E, but few studies focus on σϕ (Wu et al., 2005; Wu, 2006;
Emmons et al., 2022). While the newly developed MLR and SVR
models rely more heavily on S4 (and TEC for fbEs), L2σϕ was shown
to be important for foEs andfbEsmodels.This relatively unexplored
parameter for Es should be examined inmore detail in future studies.

Finally, while it is no surprise that the newly developed multiple
linear regression (MLR) and support vector regression (SVR)
models improved intensity estimates for each ionosonde parameter,
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the relatively low fEsRO to fEsDigi slopes of 0.5 show that these
new models still struggle to predict intensities for stronger layers
(Figures 8–11). The difficulty in predicting larger fEs values is due
to the strong dependence of the models on S4, which is known to
saturate for strong layers (Stambovsky et al., 2021; Emmons et al.,
2022). Future modeling efforts focusing on stronger Es layers will
likely findmore benefit from phase-based σϕ rather than amplitude-
based S4.

Perhaps the largest obstacle in the quest to develop accurate
Es intensity estimates from GNSS-RO observations is the variable
nature of the spatial extent and orientation of sporadic-E. Given the
cylindrical horizontal shape of the Es layers with wide distributions
in both horizontal extent (Cathey, 1969; Maeda and Heki, 2015)
and vertical thickness (Zeng and Sokolovskiy, 2010), the GNSS-RO
response for a given fEs can show drastic variations for different
lengths and thicknesses [e.g., see discussion and simulations in
Emmons et al. (2022)]. The geometry of the RO path through the
Es layer is also unknown, as the horizontal orientation (i.e., north-
south or east-west) of the Es layer cannot be determined solely from
a single GNSS-RO observation. This orientation uncertainty can
potentially be resolved by usingmultiple RO observations of a single
Es layer by combining line-of-sight (LOS) angles with amplitude and
phase perturbations. The larger perturbations would correspond to
longer signal paths through theEs layer, which can be used to provide
orientation and temporal dynamics similar to the ground-based
TEC observations fromMaeda and Heki (2015).

In addition, small-scale structures and turbulence caused by
Kelvin-Helmholtz instabilities (Bernhardt, 2002; Hysell et al., 2016)
can create significant changes in GNSS-RO observations [also
discussed in Emmons et al. (2022)]. Finally, a recent comparison of
ionosonde with RO observations found the best agreement during
the day of local summer and also noted that certain ionosonde sites
systematically showed stronger agreement with RO Es observations
(Sobhkhiz-Miandehi et al., 2023). This site-to-site and temporal
variation is the result of site-dependent ionosonde hardware,
background ionosphere fluctuations, and perhaps a geographic and
temporal dependence of Es spatial characteristics and small-scale
structures, which should be examined in more detail in future
studies.

These various factors result in an inherent uncertainty
to the fEs intensity estimates from GNSS-RO observations,
which may be difficult to resolve without the help of additional
sensors or multiple GNSS-RO observations with sufficient spatial
resolution. Luckily, the current global RO spatial and temporal
measurement density allows for high resolution analyses, as recently
demonstrated for sporadic-E (Arras et al., 2022; Hodos et al., 2022),
the lower ionosphere (Wu et al., 2022), and the F-region ionosphere
(Swarnalingam et al., 2023; Wu et al., 2023).

5 Conclusion

Two new models of sporadic-E intensity from GNSS-RO
observations were developed and compared with ionosonde
observations. The new models were developed using L1 and
L2 GNSS-RO measurements through sporadic-E layers within
50 km and 30 min of ionosonde observations, providing concurrent
measurements of GNSS-RO phase and amplitude perturbations

along with ionosonde intensity parameters foEs and fbEs. Metallic-
ion-based foμEs andfbμEs intensity parameters were also calculated
using IRI-2016 to remove the background E-region ion density from
the ionosonde foEs andfbEs observations, providing estimates of the
metallic-ion density perturbations to the slowly varying background
ionosphere. The key results are summarized below:

• Multiple linear regression (MLR) and support vector regression
(SVR) models demonstrate a drastic increase in performance
over the baseline TEC and S2 approaches. This increase in
performance is due to the inclusion of both L1 and L2 phase
and amplitude perturbation and scintillation indices, instead of
only relying on phase (TEC) or amplitude (S2).
• While the newmodels showed better performance overall, they
struggled to predict the strong Es layer intensities, likely due to
a heavy reliance on S4 which is known to saturate.
• Comparisons of the various ionosonde intensity parameters
(foEs, fbEs, foμEs, and fbμEs) with GNSS-RO perturbation
and scintillation parameters showed a strong correlation with
phase scintillation σϕ. This σϕ parameter has not been widely
implemented in GNSS-RO monitoring of sporadic-E, and here
we recommend a closer inspection of the usefulness in future
studies.
• Finally, while the metallic-ion-based foμEs and fbμEs
parameters are the most physically ideal parameters to
compare against GNSS-RO observations, the reliance on
modeled background E-region densities makes the practical
implementation difficult. The uncertainty introduced by the
ionospheric model (here we used IRI-2016) can outweigh the
original uncertainties from direct foEs andfbEsmeasurements.
Given the large number of foEs observations relative to fbEs,
we recommend comparing GNSS-RO with ionosonde-derived
foEs for future development.

Implementation of either theMLR or SVRmodels outlined here
can help improve GNSS-RO-based intensity estimates for global
climatologies, morphologies, and radio operations.
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