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Introduction: Prior case studies have indicated that changes in solar wind
conditions have a significant impact on equatorial ionospheric electrodynamics.
However, there have been limited statistical studies on this topic, impairing
our understanding of the coupling between solar wind, magnetosphere, and
equatorial ionosphere electrodynamics.

Methods: In this study, we conducted a superposed epoch analysis of long-term
data from the South America equatorial electrojet (EEJ) spanning from 2001 to
2021 examining the responses of the equatorial ionospheric electric field to step-
like changes in solar wind velocity, density, dynamic pressure, and interplanetary
magnetic field (IMF) Bz.

Result:Our study shows that step-like changes in solarwind velocity, density, and
dynamic pressure can trigger changes in EEJ within ∼20–40 min. EEJ exhibits
the highest sensitivity to variations in solar wind velocity while being relatively
less sensitive to changes in dynamic pressure. Furthermore, the response of
EEJ shows greater responsiveness to northward IMF Bz compared to southward
IMF Bz.

Discussion: Our work provides statistical evidence of how changes in solar
wind can lead to changes in low-latitude ionospheric EEJ. We inferred that
the changes in solar wind conditions cause magnetospheric deformation and
changes in magnetic reconnection rates, leading to the fluctuations of the
ionospheric electric field and the resultant EEJ variations.

KEYWORDS

equatorial electrojet, prompt penetration electric field, solar wind, interplanetary
magnetic field, magnetosphere-ionosphere coupling

1 Introduction

The ionospheric electric fields and currents can vary greatly due to the transient
changes in solar wind conditions. When a substantial amount of solar wind energy and
momentum is injected into the magnetosphere, it can result in large-scale magnetospheric
convection through processes like magnetic reconnection and viscous interaction (Axford
and Hines, 1961; Dungey, 1961; Bruntz et al., 2012). This, in turn, triggers the redistribution
of polarization charges within the inner magnetosphere, leading to disturbances in
the magnetospheric electric field, which propagate to the high-latitude ionosphere
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along magnetic field lines, giving rise to prompt penetration electric
field (PPEF) to the low-latitude ionosphere (Sastri, 1988; Spiro et al.,
1988; Abdu et al., 1995; 1997). The pioneering work of Nishida
(1968) demonstrated that the geomagnetic field perturbations are
correlatedwith the reorientations of the interplanetary magnetic
field (IMF). Subsequently, the field of magnetosphere-ionosphere
coupling has extensively studied the penetration electric field (e.g.,
Kikuchi et al., 2000; Bhaskar and Vichare, 2013; Ebihara et al., 2014;
Xiong et al., 2016; Venkatesh et al., 2017; Huang, 2020; Nilam et al.,
2020). In general, a sudden southward or northward turning
of the IMF Bz leads to enhancement/weakening of the dawn-
to-dusk convection electric field, and it cannot be balanced
immediately by the inner magnetosphere shielding layer. This
produces eastward/westward PPEF into the dayside low-latitude
ionosphere (Rastogi and Patel, 1975; Kelley et al., 1979; Abdu et al.,
1995; Kikuchi et al., 2003; Basu et al., 2005; Tulasi Ram et al., 2012;
2016; Bhaskar and Vichare, 2013; Ohtani et al., 2013).

Apart from the effects of the southward/northward turning
of IMF Bz, previous studies have also revealed that solar wind
dynamic pressure and solar wind density can modify the low
latitude ionospheric electrodynamics. For instance, Yuan and Deng
(2007) showed that under stable southward IMF Bz conditions on
17 April 1999, an enhancement in solar wind dynamic pressure
increased the electric field in the equatorial ionosphere. Huang et al.
(2008) indicated that due to the magnetosphere compression by
an interplanetary shock, both high-latitude ionospheric convection
and equatorial ionospheric electric field simultaneously intensified.
Furthermore, a statistical study performed by Nilam et al. (2020)
demonstrated that the ionospheric electric field over the equator
undergoes eastward/westward disturbances in response to the
transient increase/decrease in solar wind density. Wei et al. (2012)
investigated the solar wind density effect on PPEF, suggesting that
the increment in PPEF arises from the interaction between the solar
wind and magnetopause. They also indicated that the mechanism
behind PPEF induced by the transient changes in Pdyn mainly due
to the magnetopause compression may differ from the mechanism
driving PPEF primarily associated with IMF Bz associated with
magnetic reconnection.

While previous research has made significant progress in
exploring the features and mechanisms of equatorial ionospheric
electrodynamics in response to transient changes in solar wind
conditions, some outstanding questions remain unresolved. For
example, the response time scale of the equatorial ionospheric
electrodynamics to solar wind or IMF changes typically does
not exceed 1 h (Senior and Blanc, 1984; Kikuchi et al., 2000;
Peymirat et al., 2000; Maruyama et al., 2007), but occasionally lasts
for several hours (Huang et al., 2005). It is still unknown the
statistical patterns of the ionospheric response time characteristics
and the penetration efficiency between solar wind electric fields
and equatorial ionospheric electric fields. In addition, it is
yet to be unknown that the individual impacts of solar wind
velocity and density from solar wind dynamic pressure, given
the fact that: (1) enhanced solar wind velocity may compress
the dayside magnetosphere and produce an electric potential in
the ionosphere due to the merging of the solar and geomagnetic
fields in the magnetopause (Shue et al., 2002); (2) the enhanced
solar wind density may compress both the dayside and nightside
magnetosphere (Zhou and Tsurutani, 2001).

The equatorial electrojet (EEJ) (Chapman, 1951) is an
enhanced eastward current over the magnetic equator in the
ionosphere E region. As a manifestation of equatorial ionospheric
electrodynamics, it has been extensively utilized in studies related
to PPEF (e.g., Forbes, 1981; Anderson et al., 2002; Fejer et al., 2007;
Nilam et al., 2020). In this paper, we statistically investigated the EEJ
responses to the transient changes in solar wind velocity, density,
dynamic pressure, and IMF Bz, using 21-year observations from the
ground-based magnetometers. Statistical morphology allows for a
more detailed representation of the magnitude of EEJ response,
and the time required for it to react to solar wind variations.
This can better our understanding of the effects of transient solar
wind changes on equatorial ionospheric electrodynamics and
the subsequent configuration of low-latitude ionospheric plasma
structure.

2 Data and methods

2.1 EEJ from magnetometers at 79°W

We retrieved the 21-year EEJ strength data at 79°W using
the geomagnetic horizontal components H recorded at Jicamarca
(11.9°S, 76.8°W, 0.6°Nmag. lat) and Piura (5.2°S, 80.6°W, 6.9°Nmag.
lat). To reveal ionospheric current disturbances, the average H at
local midnight is used as a baseline to remove the main magnetic
field of the geomagnetic field (Lühr, 2003). We then subtracted
the baseline from the data to determine the EEJ strengths. These
strengths were calculated as the difference between the H value
recorded at the equatorial station and the off-equatorial station
(Rastogi and Klobuchar, 1990; Anderson, 2002).

2.2 Identification of transient events: Sharp
increase/decrease in solar wind data

The OMNI solar wind data (velocity, density, dynamic pressure,
and IMF Bz) at the Earth’s bow shock nose are collected from
the Goddard Space Flight Center of NASA. To identify transient
events, we selected the events of transient increase/decrease in solar
wind velocity, density, dynamic pressure, and IMF Bz using the
solar wind data spanning from 2001 to 2021. Subsequently, we
compiled the corresponding EEJ data and conducted superposed
epoch analyses to elucidate the corresponding EEJ reactions to the
transient events. Our analysis was primarily focused on the dayside
EEJ responses (i.e., the intervals between 6 and 18 LT at 79°W). This
focus on daytime responses was chosen as nighttime EEJ responses
to transient changes in solar wind tend to be less pronounced due to
the lower ionospheric conductivity on the nightside. These criteria
were meticulously designed to ensure an adequate number of valid
samples while minimizing noise interference. Finally, we collected
a total of 113 (40) events of solar wind velocity increase (decrease),
a total of 47 (51) events of solar wind density increase (decrease),
a total of 83 (58) events of solar wind dynamic pressure increase
(decrease), a total of 31 (29) events of southward (northward) IMF
Bz increase for statistics. In the subsequent equations, we use x to
denote the average value of x, ∑x to denote the total value of x, and
∆x to denote the variation of x. The criteria are as follows.
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2.2.1 Solar wind velocity
We chose transient increases/decreases of solar wind velocity

with the criteria: (1) a sudden increase/decrease in solar wind
velocity with an amplitude exceeding 70 km/s throughout the event
[i.e., |∑∆V| > 70km/s] and an average change rate of velocity
greater than 5 km/s perminute [i.e., |∑∆V/tevent| > 5km/(s ∙min)].
(2) Total velocity change in the 5 min preceding the event
not exceeding 20 km/s in the 5 min before the events [i.e.,
|∑∆V5 minpre| < 20km/s]. (3) An average EEJ change exceeding
2 nT within the first 10 min of the event [i.e., |∆EEJ10 min| > 2nT].

2.2.2 Solar wind density
The criteria for the transient increases/decreases of solar

wind density are as follows: (1) a sudden increase/decrease in
solar wind density with an amplitude exceeding 8 particles/cm3

throughout the event [i.e., |∑∆N| > 8particles/cm3] and
an average change exceeding 2 particles/(cm3 ∙ min) [i.e.,
|∑∆N/tevnt| > 2particles/(cm3 ∙min )]. (2) Total density changes
not exceeding 5 particles/cm3 in the 5-min period before the event
[i.e., |∑∆N5minpre| < 5 particles/cm3]. (3) Standard deviations of
density during the 30 min before and after the event less than
3 particles/cm3. (4) Weakening the effects of other solar wind
parameters except density to make sure the results mainly depend
on solar wind density. The changes in the solar wind velocity are
smaller than 50 km/s during the 10-min period from the onset of
density change [i.e., ∑ |∆V 10 min| < 50km/s], the changes in the
IMF By and Bz are smaller than 10 nT during the first 10-min period
from the onset of density change [i.e., |∑∆By10 min| < 10nT;
|∑∆Bz10 min| < 10nT]. (5) An average change in EEJ exceeding
3 nT within the first 10 min of the event [i.e., |∆EEJ10 min| > 3nT].

2.2.3 Solar wind dynamic pressure
We chose transient increases/decreases in solar wind dynamic

pressure with the criteria: (1) a sudden increase/decrease in
solar wind dynamic pressure with an amplitude exceeding 4 nPa
throughout the event [i.e., |∑∆Pdyn| > 4nPa] and an average change
exceeding 1 nPa per minute [i.e., |∑∆Pdyn/tevent| > 1nPa/min].
(2) Total dynamic pressure changes not exceeding 3 nPa in the
5 min before the event [i.e., |∑∆Pdyn5minpre| < 3nPa]. (3) Standard
deviations of solar wind dynamic pressure during the 30 min before
and after the event less than 2 nPa. (4) The changes in the IMF
By and Bz are smaller than 10 nT during the first 10 min from
the onset of dynamic pressure change [i.e., |∑By10 min| < 10nT;
|∑∆Bz10 min| < 10nT]. (5) An average change in EEJ exceeding 1 nT
within the first 10 min of the event [i.e., |∆EEJ10 min| > 1nT].

2.2.4 IMF Bz
In the superposed epoch analyses, we subtracted the baseline

values from the original data to normalize the results, representing
the southward or northward trend of IMF Bz.

The criteria for transient increases in southward/northward
IMF Bz are: (1) a sudden southward/northward IMF Bz increase
with an amplitude exceeding 15 nT throughout the event [i.e.,
|∑∆Bz| > 15nT] and an average change exceeding 3 nT per minute
(i.e., |∑∆Bz/tevent| > 3nT/min). (2) Total change in IMF Bz not
exceeding 10 nT in the 20-min period before the event [i.e.,
|∑∆Bz 20 min pre| < 10nT].

3 Results

3.1 EEJ responses to the step-like changes
in solar wind dynamic pressure

The EEJ reacts rapidly and positively to transient changes in
solar wind dynamic pressure and associated parameters. The solar
wind dynamic pressure, denoted as Pdyn, is determined by both
solar wind velocity V and density N and can be expressed as
Pdyn = ∑mNV2, where m is the mass of a single particle (Dendy,
1995). To illustrate the EEJ responses due to variations in solar wind
dynamic pressure and associated parameters, we chose three typical
events of sharp solar wind velocity, density, and dynamic pressure
enhancements as depicted in Figure 1. In the first event (column1), a
sudden increase solely in solar wind velocity occurred during an 11-
min period on 06 May 2003, at 1328UT (0812LT), with a magnitude
of 85 km/s, while other solar wind parameters including N, IMF
By, and Bz were quite stable during this interval. Accordingly, the
EEJ exhibited a sharp increase of ∼50 nT, peaked in ∼16 min, and
returned to its original state at ∼1408UT (0852LT) (Figure 1A5).
In this event, solar wind velocity displayed a sudden and strong
increase along with a weak southward turning of IMF Bz with a
magnitude of 5 nT. IMF Bz plays a dominant role in magnetosphere-
ionosphere coupling (Bhaskar and Vichare, 2013). We cannot rule
out the possibility that the variations in EEJ in this event may be
influenced by IMF Bz. According to subsequent statistical analysis,
the change in IMF Bz in this event is too small to be considered
the primary cause of the sudden variation in EEJ, and the main
reason for the EEJ’s sudden increase in this event is primarily due
to the abrupt increase in solar wind velocity. The second column
of Figure 1 shows an event in which only the solar wind density
increased rapidly, with an amplitude of 10 particles/cm3 within
4 min at 1551UT (1035LT) on 02August 2012. Correspondingly, the
EEJ exhibited a simultaneous pulse-like enhancement of 67 nT as the
solar wind density, peaked in 11 min, and returned to its original
state in 37 min. The third column of Figure 1 demonstrates an event
on 14 February 2011 characterized by sharp increases in solar wind
density (black line), velocity (blue line), and dynamic pressure.
The interplanetary shock with dynamic pressure enhancement by
5 nPa within 1 min at 1556UT (1040LT) and triggered a 56 nT
growth pulse of EEJ in 20 min. In all three cases, the EEJ exhibited
enhancements to the enhancements in solar wind parameters. The
EEJ expression is EEJ = σcE, where σc is the cowling conductivity,
and E is the dawn-to-dusk electric field in the ionosphere (Untiedt,
1967), EEJ depends on both cowling conductivity and the dawn-to-
dusk electric field. The increased EEJ responses observed in all three
events suggest the presence of eastward electric fields at low latitudes
on the dayside.

As opposed to the enhancements in solar wind parameters,
Figure 2 shows three events of sharply decreased solar wind velocity,
density, and dynamic pressure as well as their effects on EEJ. In
these cases, the EEJ responses were also positively correlated with
the changes, which were decreases in the cases. These findings
suggest the presence of westward electric fields on the dayside in
response to decreases in solar wind velocity, density, and dynamic
pressure. In summary, these observations indicate that the EEJ
exhibits high responsiveness to sudden changes in the solar wind
dynamic pressure and associated parameters.
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FIGURE 1
Three cases of sharply increased in solar wind (a1) velocity V, (b2) density N, (c1) dynamic pressure Pdyn, and the corresponding increases in equatorial
electrojet (EEJ) on the dayside (79°W) as well as the corresponding changes of interplanetary magnetic field (IMF) By and Bz. The vertical black dashed
lines indicate the beginning time of the enhancement (zero epoch time).

Compared to individual case studies, conducting a statistical
study on how the equatorial electric current responds to changes
in solar wind parameters can eliminate randomness and reveal
the underlying general principles of the phenomenon. Nilam et al.
(2020) conducted a superposed epoch analysis of EEJ response
to solar wind density in the India region, which resulted in a
positive correlation between the EEJ and the variation in solar
wind density. We also conducted a superposed epoch analysis to
further investigate the EEJ responses to solar wind disturbances
in South America and obtained the same result and extended it
from the solar wind density to all the solar wind dynamic pressure
associated parameters. Figures 3, 4 present the results of the analysis
for transient increases and decreases in the solar wind parameters,
respectively. In each figure, the individual events are shown as thin
gray curves, while the thick red or black curves represent the average
values of all events. The shaded areas in these panels represent
the upper and lower quartiles. In Figure 3, the EEJ increased as
the solar wind dynamic pressure parameters increased. For the
113 velocity increase events with a mean change of 85 km/s, the
average increase in the EEJ is 8 nT. For the 47 density increase
events with a mean change of 8 particles/cm3, the average increase
in the EEJ is 6 nT, while for the 83 dynamic pressure increase events
with a mean change of 3 nPa, the average increase in the EEJ is

6 nT. The statistical results showed that responses of the EEJ to
the transient step-like increases in solar wind dynamic pressure
parameters were also pulse-like in shape, with delays of ∼5 min and
peaks at ∼11 min. To further illuminate our findings, Panel (a5) of
Figure 3 offers a bivariate histogram. This graphical representation
illustrates the distribution of event samples across two-dimensional
bins of EEJ strength and epoch time. The coloration of each bin
serves as a visual cue, indicating the number of events contained
within. Conversely, in Figure 4, the EEJ displayed rapid decreases
when the solar wind dynamic pressure and associated parameters
experienced a sudden drop. Overall, both cases and statistical results
indicate that EEJ responses are positively correlated with changes in
solar wind velocity, density, and dynamic pressure.

3.2 EEJ responses due to the transient
changes in IMFBz

IMF Bz also has appreciable effects on the low-latitude
ionospheric electrodynamics. Figures 5, 6 show that EEJ tends to
increase/decrease when IMF Bz has a sharply southward/northward
enhancement. In the first column of Figure 6, on 06 December 2014,
IMF Bz underwent a sudden southward turning with a magnitude
of 22 nT within 8 min, and EEJ exhibited a sudden increase of 69 nT
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FIGURE 2
Similar to Figure 1 except for the typical cases of a sharp decrease in the solar wind velocity, density, and dynamic pressure.

within 14 min. In contrast, in the second column, on 23 May 2002,
IMF Bz exhibited a northward turning with an amplitude of 32 nT
within 12 min, leading to a synchronous decrease of 109 nT in EEJ
within19 min. For the superposed epoch analysis of IMF Bz, there
are totally 31 southward IMF Bz turning increase events and 29
northward IMF Bz turning increase events, with average amplitudes
of 23 nT for both. The average responses are 57 nT and 32 nT, as
shown in Figure 6. Compared with solar wind dynamic pressure
parameters, IMF Bz has a greater influence on EEJ, due to the
dominant role of magnetic reconnection in equatorial electric field
fluctuations (Rastogi and Patel, 1975; Kelley et al., 1979; Abdu et al.,
1995; Kikuchi et al., 2003; Basu et al., 2005; Tulasi Ram et al., 2012;
2016; Bhaskar and Vichare, 2013; Ohtani et al., 2013). On the other
hand, we observed a significant asymmetry in the response of the
EEJ to increase in southward IMF Bz and northward IMF Bz. The
EEJ’s response to northward IMF Bz growth is nearly twice as strong
as its response to southward IMF Bz growth.

3.3 Local time dependence of EEJ
responses to changes in solar wind
parameters

The changes in EEJ are local time dependent (Bhaskar and
Vichare, 2013). The factors influencing the variation of EEJ with

local time are numerous. For example, the post-noon eastward
ΔEEJ may be indirectly influenced by the upward electric field
linked to the SAPS electric field within the SAPS channel, while
the pre-noon ΔEEJ could be a direct result of the SAPS-associated
polarization electric field penetration (Zhang et al., 2022). To
further investigate the local time dependences in EEJ response
to solar wind dynamic pressure parameters or IMF Bz changes,
Figure 7 shows four distinct categories of increases: solar wind
(a) velocity, (b) density, (c) dynamic pressure, (d) northward
IMF Bz. Our methodology hinges on capturing the maximum
change in EEJ within a 30-min window following the event
onset, serving as a representation of the EEJ’s response intensity.
Each point represents an event, with the coloration indicating
the magnitude of the corresponding solar wind parameters. The
horizontal axis represents the local time of the event onset, and
the vertical axis represents the response intensity of EEJ in the
event.

The EEJ responses to solar wind variations aremost pronounced
at local noon. Bhaskar and Vichare (2013) achieved a similar result
before, they eliminated the local time dependence by eliminating
the conductivity effect, which indicated the dependence is related
to daytime conductivity. When solar radiation is enhanced, the
ionization rate in the atmosphere increases, electron density and
ionospheric conductivities increase. At noon, the conductivity is
maximumandEEJ changes aremost pronounced, while near sunrise
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FIGURE 3
Superposed epoch analysis of the sharp increases in solar wind (a1) velocity V, (b1) density N, and (c1) dynamic pressure Pdyn and the corresponding
changes in EEJ on the dayside (79°W) as well as the corresponding changes of IMF By and Bz. The gray lines represent single cases. The solid black and
red lines represent the statistical averages of all cases, and the shaded areas represent the upper and lower quartiles. The vertical black dashed lines
indicate the beginning time of the enhancement (zero epoch time).

and sunset, the conductivity is small and EEJ changes caused by the
disturbance are small. We have not found any explicit relationship
between the intensities of solar wind conditions and EEJ responses
in our study.

4 Discussion

The EEJ, located between ±2° latitude at an altitude of
∼100–120 km above the ground, serves as a proxy for the equatorial
electric field. It mainly arises from the dynamo in the ionosphere.
At the height of ∼100–130 km in the E layer, the Pedersen
conductivity and Hall conductivity are greatly enhanced, turning
the E layer into a conductive layer. The neutral winds and tidal
driving force propel charged particles across the geomagnetic
field, thereby generating currents and electric fields, which is the
neutral wind dynamo process (Baker and Martyn, 1953). Due to
the nearly horizontal magnetic field lines over the equator, the
Hall effect produces a downward Hall current that polarizes the
E region of the ionosphere, giving rise to an upward polarized
electric field. This enhances the horizontal current and leads to
the formation of the EEJ along the east-west direction (Richmond,
1989).

4.1 Effects of the solar wind dynamic
pressure on EEJ

EEJ undergoes an increase/decrease with a∼5-min delay as solar
wind velocity, density, and dynamic pressure increase/decrease. The
impacts of these three parameters on EEJ are consistent. The EEJ
responses to stepwise changes in the three parameters V, N, and
Pdyn, are always impulsive with delays of ∼5 min, and they return
to their original state within ∼20–40 min. To compare the strength
of the EEJ responses to different solar wind dynamic pressure
parameters, we analyzed the amplitude difference of EEJ responses.
Over the span of 21 years of data, the average solar wind velocity
measures ∼430 km/s, with an average velocity variation of ∼80 km/s
(∼18%) during the selected events. This leads to an average EEJ
response of∼7 nT.The average solar wind density is∼6 particles/cm3

and the density change during the chosen events amounts to
∼9 particles/cm3 (∼150%), resulting in an average EEJ response
of ∼8 nT. The average dynamic pressure is estimated at ∼2 nPa,
while the mean change in dynamic pressure during the chosen
events is ∼4 nPa (∼200%), resulting in an average EEJ response of
∼10 nT.

The EEJ responds to changes in solar wind dynamic pressure
possibly due to magnetopause deformation. Magnetopause is the
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FIGURE 4
Similar to Figure 3 except for the cases of a sharp decrease of the solar wind dynamic pressure parameters.

boundary between solar wind pressure and the geomagnetic field
pressure. When the solar wind dynamic pressure changes, the
magnetopause contracts or expands accordingly. This process
causes plasma flow towards the Earth’s magnetosphere through
viscous interaction on the dayside, increasing plasma velocity
near the magnetopause and magnetosphere flanks (Axford and
Hines, 1961). As the plasma flows toward the interior of the
magnetosphere, the velocity decreases, creating a flow shear near the
magnetospheric flanks called “Transit Cell Convection” (Fujita et al.,
2003). This shear enhances the region 1 field-aligned current
(Kubota et al., 2015), leading to an imbalance between the region
1 field-aligned current and the region 2 field-aligned current. This
imbalance can induce PPEF and increase EEJ. As the plasma
flow gradually adapts to the new state, the response decays over
∼30–40 min (Huang et al., 2008). EEJ responses always have a 5-
min delay because the solar wind data used is from the bow shock
nose, which takes time to propagate into the magnetosphere and
affects EEJ. Changes in conductivity may also affect EEJ responses.
Li et al. (2021) observed that TEC fluctuations at low latitudes
may be due to the impact of the interplanetary shock on the
magnetopause, generating cavity mode oscillation in the cavity
between the magnetosphere and plasmasphere, causing plasma
oscillations (Wright, 1994). The resultant electron density variation
due to the impact of interplanetary shock on the magnetopause can
change the conductivity and thus EEJ.

TheEEJ ismost sensitive to changes in velocity and least sensitive
to changes in dynamic pressure. Specifically, the different responses
of EEJ to solar wind velocity, density, and dynamic pressure may
be due to the individual effects of solar wind velocity and density
on magnetospheric compression. Since Pdyn =mNV2, the dynamic
pressure is related to the square of the velocity and linearly related
to the density. An increased solar wind electric field would lead to a
higher magnetopause reconnection rate and smaller magnetopause
standoff distance, due to the higher solar wind velocity (Lee
and Lee, 2020). During the compression process, many empirical
magnetopausemodels show that the relationship between solarwind
dynamic pressure Pdyn and the magnetopause standoff distance
Rsub is Rsub ∼ P

−1/K
dyn (Beard, 1960; Shue et al., 1998; Lin et al., 2010;

Liu et al., 2015), where K is a constant. However, Samsonov et al.
(2020) showed a more accurate expression of Rsub using solar wind
velocity and density: Rsub ∼ N−1/XV−2/Y, where X ≠ Y and both X
and Y may depend on the sign of IMF Bz. Samsonov et al. (2020)
indicated that the changes in Rsub for a velocity increase were greater
than those for a density increase for the same Pdyn, indicating a
greater magnetopause deformation. A greater compression of the
magnetopause will cause stronger EEJ perturbations compared with
the deformation caused by changes in solar wind density.

In addition, solar wind density can also affect EEJ through other
mechanisms. Nilam and Tulasi Ram (2022) found that a decrease in
solar wind density reduced EEJ, which was related to the location
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FIGURE 5
Examples of sharp (a4) southward and (b4) northward increase in IMF z component Bz and the related changes in EEJ at local daytime (79°W) as well as
the corresponding changes of solar wind velocity V, density N, and IMF By. The vertical black dashed lines indicate the beginning time of the events
(zero epoch time).

of magnetic reconnection. Magnetic reconnection plays a crucial
role in controlling PPEF and magnetosphere-ionosphere coupling.
Specifically, the reconnection rate at the magnetopause and the
energy transfer to the magnetosphere are determined by the IMF Bz
in the magnetosheath region (Kataoka et al., 2005). With a sudden
decrease in solar wind density, the magnetopause where the dayside
magnetic reconnection occurs is expanded, then themagnetosheath
IMF Bz reduces and causes a reduction of the dayside reconnection
rate at the magnetopause. Then the magnetic reconnection affects
the EEJ by influencing the high-latitude convective electric field.

4.2 Effect of the IMF Bz on EEJ

Our results revealed that EEJ tends to increase/decrease when
there is sharp southward/northward enhancement of IMF Bz.

Specifically, when there were transient southward increases in IMF
Bz with an average amplitude of 23 nT, the EEJ experienced an
average increase of 32 nT. Conversely, when there were transient
northward increases in IMF Bz with an average amplitude of
23 nT, the EEJ experienced an average decrease of 57 nT. These
results are consistent with previous findings that electric field
perturbations are related to the north-south turning of IMF Bz
(Huang et al., 2007), and show that the northward IMF Bz increases
have stronger influences on EEJ than southward IMF Bz increases.
When IMF Bz has a southward trend, the geomagnetic field and
IMF are in opposite directions, then amagnetic reconnection occurs
(Dungey, 1961). The solar wind drives large-scale magnetospheric
convection through reconnection. The imbalance between region
1 field-aligned currents generated in the low-latitude boundary
layer of the magnetosphere and the region 2 field-aligned currents
generated in the inner boundary of the plasma sheet (Iijima and
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FIGURE 6
Superposed epoch analysis of the sharp (a4) southward and (b4) northward increase in the IMF Bz and the related changes in the equatorial electrojet
(EEJ) at local daytime (79°W) as well as the corresponding changes in solar wind velocity V, density N and IMF By. The shaded areas represent the upper
and lower quartiles. The vertical black dashed lines indicate the beginning time of the events (zero epoch time).

Potemra, 1978) leads to the PPEF from high latitude to low
latitudes, which is eastward on the dayside and westward on
the nightside (Richmond et al., 2003), leading to the enhancement
of dayside EEJ. Therefore, EEJ is enhanced when IMF Bz has
a southward turning. Conversely, if IMF Bz becomes more
northward, the magnetic reconnection rate decreases, weakening
the injection of field-aligned current into the ionosphere and
decreasing EEJ. Bhaskar andVichars (2013) found that the variations
of ionospheric signatures were mainly controlled by the magnitude
of southward IMF Bz, and the magnitude of northward IMF
Bz did not influence the ionospheric characteristics. They also
observed the asymmetry of the EEJ response to the southward
and northward IMF Bz variation and estimated that for southward
IMF Bz turnings,∆EEJ = 4.5×∆Eswy + 3.19, for northward turnings,
∆EEJ = 8.23×∆Eswy + 7.35, where Eswy is a component of solar
wind electric field along the y-axis (eastward) in GSM coordinate
system. The response intensity of EEJ during IMF Bz northward

is about twice as strong as during IMF Bz northward. This is
consistent with our results. The asymmetry is mainly related to
the stronger magnetospheric convection during the southward
IMF Bz.

In addition to the variations in EEJ caused by solar wind
changes investigated in this study, changes in the background
ionosphere can also impact the low-latitude ionospheric current
and electric field. For instance, during a solar eclipse, higher levels
of solar obscuration result in lower electron density and stronger
polarization electric field, leading to the appearance of gradient drift
wave at higher altitudes with larger amplitude (Sekar et al., 2014).
The Sun can not only influence the magnetosphere-ionosphere
coupling in the form of solar wind but also create changes in the
ionosphere through solar radiation. In this study, we primarily
focus on the rapid response of EEJ to changes in solar wind
conditions, with a time scale much shorter than the variations in
the background ionosphere. When processing the data, we used the
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FIGURE 7
The corresponding distributions of local time, intensity changes in EEJ, and solar wind parameters for the transient events of (A) solar wind velocity
increase, (B) solar wind density increase, (C) solar wind dynamic pressure increase, (D) northward IMF Bz increase. Each point represents an event, the
horizontal axis represents the local time, the vertical axis represents the amplitude of EEJ in this event, and different colors represent the different
amplitudes of the studied parameters’ changes, as the standards are shown in the color bar.

relative values of the geomagnetic horizontal components H, from
which the background ionosphere has been subtracted, to calculate
EEJ. This approach eliminated the influence of the background
ionosphere.

5 Conclusion

In this paper, we investigated the response of EEJ to variations in
solar wind velocity, density, dynamic pressure, and IMF Bz changes
using ground-based magnetometers spanning 21 years. Our results
demonstrate that the EEJ responds rapidly to changes in critical
solar wind factors such as velocity, density, dynamic pressure, and
IMF Bz. These variations can trigger rapid fluctuations in the EEJ
within 20–40 min. Among those dynamic solar wind pressure
parameters, it is evident that EEJ exhibits the highest sensitivity
to changes in solar wind velocity while being relatively less sensitive
to variations in dynamic pressure. Regarding IMF Bz, EEJ displays
greater sensitivity to northward IMF Bz than to southward IMF
Bz. The increases or decreases in EEJ reflect the variations in
the electric field from dawn to dusk due to changing solar wind
conditions. The generation of the EEJ response is attributed to the
PPEF, induced by the deformation of the magnetospheric boundary
and magnetic reconnection. Furthermore, our analysis highlights
the significant impact of IMF Bz on EEJ. It is noteworthy that a

sharp southward enhancement of IMF Bz often leads to an increase
in EEJ, with an average magnitude of 32 nT during instances of
southward IMF Bz increase. Conversely, when IMF Bz sharply
strengthens northward, EEJ, on average, decreases by 57 nT. we have
summarized the possible mechanisms driving these EEJ responses.
Changes in solar wind dynamic pressure induce deformation of
the magnetospheric boundary, playing a crucial role in modulating
EEJ. Specifically, variations in solar wind dynamic pressure lead
to the expansion or contraction of the magnetospheric boundary,
influencing the plasma flow toward the Earth’s magnetosphere.
This flow, in turn, affects the region 1 field-aligned currents,
ultimately causing disturbances in the EEJ. Additionally, magnetic
reconnection also serves as a significant factor influencing EEJ.
Changes in the direction of IMF Bz can affect EEJ by influencing
the location of magnetic reconnection. Fluctuations in the
magnetospheric boundary due to solar wind density fluctuations
can alter the daytime magnetic reconnection rate, thereby affecting
EEJ through its impact on high-latitude convection electric
fields.
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