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Space weather phenomena, including solar flares and coronal mass ejections,
have significant influence on Earth. These events can cause satellite orbital
decay due to heat-induced atmospheric expansion, disruption of GPS navigation
and telecommunications systems, damage to satellites, and widespread power
blackouts. The potential of flares and associated events to damage technology
and disrupt human activities motivates prediction development. We use
Transformer networks to predict whether an active region (AR) will release a
flare of a specific class within the next 24 h. Two cases are considered: ≥C-
class and ≥M-class. For each prediction case, separatemodels are developed.We
train the Transformer to use time-series data to classify 24- or 48-h sequences
of data. The sequences consist of 18 physical parameters that characterize an
AR from the Space-weather HMI Active Region Patches data product. Flare
event information is obtained from theGeostationary Operational Environmental
Satellite flare catalog. Our model outperforms a prior study that similarly used
only 24 h of data for the ≥C-class case and performs slightly worse for the
≥M-class case. When compared to studies that used a larger time window or
additional data such as flare history, results are comparable. Using less data is
conducive to platforms with limited storage, on which we plan to eventually
deploy this algorithm.
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1 Introduction

Solar flares are often defined as intense, localized bursts of electromagnetic radiation
from the Sun occurring on the timescale of minutes to hours (Benz, 2017). Powerful flares
can cause satellite orbital decay due to heat-induced atmospheric expansion (Schwenn,
2006). Moreover, such flares are often associated with solar energetic particle events (SEPs)
and coronal mass ejections (CMEs) (Schwenn, 2006), which have the potential to induce
further severe consequences. For example, SEPs, which may reach the Earth soon after
the flare does, can harm astronauts, disrupt GPS navigation, and damage satellite systems
(Pulkkinen, 2007). CMEs, which can take from hours to days to reach the Earth, may cause
geomagnetically induced currents (Pulkkinen et al., 2003). These can corrode pipes, disrupt
telecommunications devices, and permanently damage transformers, potentially leading to
widespread and long-term power blackouts (Pulkkinen, 2007).

In light of such severe consequences, it has become the subject of much research to
predict these events. However, the physical processes underlying solar flares are not well
understood. It is suggested that the energy release is the result of magnetic reconnection,
where accumulated energy in the magnetic field is impulsively released when the field falls
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to a lower-energy state (Benz, 2017). Flares tend to occur in locations
at which the magnetic field is strongly sheared (Hagyard et al.,
1984), where magnetic flux emerging from below the sheared
field can destabilize the magnetic structures, causing impulsive
energy release (Choudhary et al., 1998). Photospheric magnetic
field shear and flux parameters are among those in the Space-
weather HMI Active Region Patches (SHARPs) data product
(Bobra et al., 2014), which is recorded by the Helioseismic and
Magnetic Imager (HMI) aboard the Solar Dynamics Observatory
(SDO) and consists of data collected since 2010. The SHARPs
data series contains multiple physical parameters characterizing the
photospheric vector magnetic field for automatically detected and
tracked active regions (ARs) over the duration of their lifetimes at a
cadence of 12 min (Bobra et al., 2014).

Various AI methods are used in heliophysics to tackle problems
ranging from transportation of the charged particles throughout the
heliosphere (Inceoglu et al., 2022a) to detecting magnetic activity
structures on the Sun (Jarolim et al., 2021; Inceoglu et al., 2022b)
and to predicting CMEs (Inceoglu et al., 2018; Raju and Das, 2023),
as well as predicting the occurrences of solar flares with a forecast
window of 24–48 h. In 2015, Bobra and Couvidat (2015) trained
a support vector machine (SVM) algorithm on SHARPs data to
classify whether an AR would emit a flare. In 2018, Nishizuka et al.
(2018) used vector magnetograms, along with 1,600 and 131 Å filter
images and soft X-ray emission light curves, to train a deep neural
network to predict whether an AR would release a flare of a specific
magnitude within 24 h. The authors later applied this algorithm to
develop an operational solar flare predictionmodel (Nishizuka et al.,
2021). Jonas et al. (2018) attempted a similar prediction task, but
using image data recorded by the Atmospheric Imaging Assembly
aboard the SDO satellite along with SHARPs data. The authors
used 1,600, 171, and 193 Å images describing the photosphere,
chromosphere, transition region, and corona. Florios et al. (2018)
also used image data, but instead calculated predictors fromSHARPs
line-of-sight (LoS) magnetograms to train multilayer perceptron,
SVM, and random forest algorithms. Liu et al. (2019) conducted
one of the first studies fully utilizing the time dependence of the
SHARPs datatset. The authors trained a long short-term memory
(LSTM) network on various SHARPs photospheric magnetic field
parameters and flare history parameters. A similar study was
conducted byWang et al. (2020), who only used photospheric vector
magnetic field parameters from the SHARPs data series to train
an LSTM. Similar to Florios et al. (2018), Li et al. (2020) used LoS
SHARPs magnetograms, but instead trained a deep convolutional
neural network (CNN). Ribeiro andGradvohl (2021) used ensemble
learning methods to combine the predictions of SVM, Random
Forest, and Light Gradient Boosting Machine algorithms that had
been trained on multiple datasets, including SHARPs. This study
did not use the input data as a time series, but retained some
temporal information by utilizing features calculated from the
time leading up to the flare. Transformers are another recently
developed type of neural network designed around self-attention
mechanisms that enable the extraction of relevant data from a
sequence (Bahdanau et al., 2014) without the need for recurrence
(Vaswani et al., 2017). Thus far, only Abduallah et al. (2023) has
applied this network to flare forecasting, developing an operational
model using a Transformer + CNN + LSTM network.

In this study, we use Transformer networks to predict whether
an AR will release a flare of a specific magnitude within 24 h after
measurement.The rest of this paper is organized as follows. Section 2
describes the data features, preprocessing steps, Transformer model
architecture, training process, and performance metrics. Section 3
describes threshold selection and analyzes experimental results.
Section 4 compares our results with those from prior studies and
discusses next steps and further applications.

2 Methods

2.1 Data and preprocessing

Our study utilizes the SHARPs data product, which consists
of data recorded by the Helioseismic and Magnetic Imager
aboard the Solar Dynamics Observatory (Bobra et al., 2014).
The HMI instrument measures the photospheric magnetic field
every 12 min for ARs that are tracked for their entire lifetimes
(Bobra et al., 2014). From these measurements, various parameters
are calculated that characterize the behavior of the magnetic field
in each AR at each time step. The 18 parameters used in this
study are described in Table 1, and are downloaded for ARs from
May 2010 through December 2022. To ensure data quality, data
are only downloaded if they meet the following conditions: 1) the
absolute value of the orbital velocity of the SDO satellite is less
than 3,500 m s−1 and 2) data are of high quality (the signal-to-noise
ratio is low and there are no problems with the observation, i.e., an
eclipse).

Flare event data are obtained from X-ray flux measurements
made by the Geostationary Operational Environmental Satellite
(GOES) operated by the National Oceanic and Atmospheric
Administration (NOAA). The GOES satellite detects solar flares
through observation of X-rays, yielding a flare catalog providing
information including event start/peak/end times, flare class, and
NOAA active region number (Garcia, 1994). Flares are classified by
the peak soft X-ray (SXR) flux observed by the GOES satellite, as
seen in Table 2.TheGOES data are then used to classify the SHARPs
data by GOES flare class and to extract the measurements occurring
before the peak time. SHARPs data for which no corresponding
NOAA number can be found in the GOES catalog are ignored.
The result is a time series of SHARPs parameter values leading
up to each flare and separated by flare class. The number of ARs
corresponding to each class are displayed in Table 2. It should be
noted that there are very few A-class events only because their
emission may not be intense enough to be detected over the X-ray
background (Wang et al., 2020).

Following the generation of SHARPs data leading up to each
flare, which are sorted by flare class, several preprocessing steps are
applied. Missing timesteps are filled through linear interpolation,
and NaN values at the beginning or end of the time series are filled
using backward/forward fill. This process avoids errors caused by
one or more parameters not being present at any time step. Any
sequences that contain less than 48 h of data are removed. The
resulting sequences (time-series) are then converted to first-degree
difference sequences, which consist of the changes from each data
point to the next.This process is highly computationally efficient and
does not compromise performance.
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TABLE 1 Summary of the 18 physical SHARPs parameters used in this study.

Keyword Description Calculation

USFLUX[1] Total unsigned flux ϕ = ∑|Bz|dA

MEANGAM[1] Mean angle of field
from radial

γ = 1
N
∑arctan ( Bh

Bz
)

MEANGBT[1] Horizontal gradient
of total field

|∇Btot| =
1
N
∑√( ∂B

∂x
)2 + ( ∂B

∂y
)2

MEANGBZ[1] Horizontal gradient
of vertical field

|∇Bz| =
1
N
∑√( ∂Bz

∂x
)
2
+ ( ∂Bz

∂y
)
2

MEANGBH[1] Horizontal gradient
of horizontal field

|∇Bh| =
1
N
∑√( ∂Bh

∂x
)
2
+ ( ∂Bh

∂y
)
2

MEANJZD[1] Vertical current
density

Jz ∝
1
N
∑(

∂By

∂x
− ∂Bx

∂y
)

TOTUSJZ[1] Total unsigned
vertical current

Jztotal = ∑|Jz|dA

MEANALP[1] Characteristic twist
parameter, α

αtotal ∝
∑ JzBz

∑B2
z

MEANJZH[1] Current helicity (Bz
contribution)

Hc ∝
1
N
∑BzJz

TOTUSJH[1] Total unsigned
current helicity

Hctotal ∝∑|BzJz|

ABSNJZH[1] Absolute value of the
net current helicity

Hcabs ∝ |∑BzJz|

SAVNCPP[1] Sum of the modulus
of the net current per
polarity

Jzsum ∝ |∑
B+z JzdA| + |∑B

−
z JzdA|

MEANPOT[1] Proxy for mean
photospheric excess
magnetic energy
density

ρ∝ 1
N
∑(BObs −BPot)2

TOTPOT[1] Proxy for total
photospheric
magnetic free energy
density

ρtot ∝∑(B
Obs −BPot)2dA

MEANSHR[1] Shear angle Γ = 1
N
∑arccos ( B

Obs⋅BPot

|BObs||BPot|
)

SHRGT45[1] Fractional area with
shear >45°

area with shear >45°/HARP
area

R_VALUE[2] Flux contribution
surrounding
polarity-inversion
lines[1]

Weighted unsigned flux density
summed over all instrument
pixels in a 160 × 160 pixel box
centered on the region[2]

AREA_ACR[1] De-projected area of
active pixels on
sphere in
micro-hemisphere

Area of the strong active pixels
determined from the
line-of-sight field

Each row displays the name/keyword of the parameter, its physical meaning, and how it is
calculated from magnetic field measurements.
[1] Bobra et al. (2014), with updates at http://jsoc.stanford.edu/
[2] Schrijver (2007).

After the data preparation process, input data are generated.The
following process generates the 24-h data window, but the general
process remains the same for the 48-h case. First, for each sequence
in each flare class, data recorded until at least 48 h before the flare
peak are defined as pre-window and data recorded within 48 h of
the flare peak are defined as intra-window. The resulting sequences
are then divided into positive and negative groups, depending on
the prediction case (≥C vs. ≥M). For instance, for the ≥C-class case,
the negative set consists of all A-class, B-class, pre-window C-, M-,
andX-class sequenceswhile the positive set consists of intra-window
C-,M-, andX-class sequences.This split is depicted in Figure 1. Note
that this figure only depicts the ≥C-class prediction case, as the flare
magnitude cutoff (negative vs. positive) would change for the ≥M-
class case. Next, for each sequence (positive or negative), different
24-h long sequences starting at random times are generated. These
are the sequences that are fed into the model. Generating random
data sequences at different times enables within-24-h prediction,
instead of selecting a fixed window. This data generation process
(random 24/48-h sequence extraction) is done separately for each
prediction case (flare class anddata duration), so no twomodels have
the same input data set.

After generating model input data, we shuffle the data and
randomly split it into training, validation, and testing data for the
machine learning model. In this study, 20% of the data are used
as testing data, while 80% are used as training data. Of the 80%
that is allotted to training, 20% are used for validation. This is
also done separately for each prediction case, yielding different data
sets for each model. After train/test splitting, input data sets (train,
test, validation) are normalized by scaling relative to the maximum
values for the corresponding parameter found in the training data.
In addition, we acknowledge that although methods such as k-
fold cross-validation would provide more statistical robustness to
the results, they are not feasible computationally. Even with 2 x
RTX4090 GPUs with a total of 128 GB of memory, computation
is limited because each of the training data sets is over 35 GB,
and the hyperparameter search space is unconventionally large (see
Section 2.2). Therefore, we do not include such methods.

Because 24-h sequences are generated at random times within
each data window, some sequences may overlap. When sequences
are then split randomly into training and testing data, some parts
of sequences may appear in both the training and testing data. We
acknowledge that thismay cause slight artificial gain in performance
of themodel on the testing set.This could be addressed by separation
of training/testing data by year. However, it has been shown that
separating training/testing data by year yields significantly different
results depending on the years selected (Wang et al., 2020), which
may be due to the solar cycle. For instance, Wang et al. (2020)
demonstrated that the True Skill Statistic (TSS) may change bymore
than 0.20 TSS units for the ≥M-class case, depending on which year
is selected for testing.

Due to the rarity of severe flare events, the training data set is
highly imbalanced, meaning that there are vastly fewer severe flares
(≥M or ≥C, depending on the prediction case) than non-severe
events. This is unsuitable for model training for flare prediction
purposes. If a model is trained on a data set containing a vast
majority of negative examples, it will simply learn to predict that
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TABLE 2 Flare classification system and number of corresponding active regions used in this study.

Class A B C M X

SXR Flux (W m−1) 10–8 − 10–7 10–7 − 10–6 10–6 − 10–5 10–5 − 10–4 >10−4

Number of ARs 7 4,873 4,742 521 41

The second row shows the soft X-ray flux (SXR) levels corresponding to each flare class, as measured by GOES (See Fletcher et al., 2011). In this study, two prediction cases are considered:
≥C-class and ≥M-class. The bottom row displays the number of active regions in each class for which data was retrieved from the SHARPs data product and matched with a specific flare event
from the GOES flare catalog using a NOAA identification number.

FIGURE 1
Data splitting methodology for the ≥C-class prediction case using 24 h of data. Each grey block represents a pre-flare sequence of SHARPs time-series
data. If the corresponding flare is an A- or B-class flare (the top grey block), all generated sequences are classified as negative (as represented by red
arrows, 24 h in length). For C-, M-, or X-class flares (the bottom row), sequences ending within 24 h of the flare peak time (t_flare) are labeled as positive
(depicted as green arrows in the figure). Since the sequences are 24 h long, any sequences starting within 48 h of the flare peak (after t_flare−48 h) are
labeled as positive. This results in any 24-h sequences in which a ≥C-class flare occurs within 24 h after measurement being classified as positive.

all examples are negative. While this may achieve high accuracy,
it does not have any predictive value. To overcome this issue,
we undersample the negative class by randomly removing enough
negative examples to yield a balanced training data set. The
validation set remains imbalanced, enabling model parameters to
still be optimized according to the imbalanced nature of flare
prediction. The undersampling process is also done separately for
each prediction case. Nishizuka et al. (2018), Liu et al. (2019), and
Wang et al. (2020) all use various cost functions to address the
imbalance (usually a form of cross-entropy) and do not use data
balancing techniques. While we do use a similar cost function,
we also use undersampling techniques, leading to more efficient
computation and data storage.

2.2 Network architecture and training

The Transformer network utilizes self-attention mechanisms
to process time series data without the need for recurrence
(Vaswani et al., 2017). It was originally designed for sequence
modeling and transduction, specifically natural language processing
tasks such as translation and English constituency parsing. Since
2017, it has been applied successfully to video action detection
(Girdhar et al., 2019), skin lesion analysis (He et al., 2022), anomaly
detection (Tuli et al., 2022), protein prediction (Nambiar et al.,
2023), earthquake location (Münchmeyer et al., 2021), and further

diverse applications. The multivariate time series data of the
photospheric magnetic field parameters may be suitable to the
application of the Transformer. Self-attention mechanisms enable
a model to extract the most important parts of a sequence
(Bahdanau et al., 2014). They can learn interdependencies among
variables to process sequences such as time series data for tasks
such as classification or translation. By eliminating recurrence
through the use of these mechanisms, Transformer models are
more parallelizable, achieving state-of-the-art performance with
significantly reduced processing times (Vaswani et al., 2017).

The architecture of our Transformermodel is shown in Figure 2.
The input sequence, which spans 24 h, is input into a Transformer
encoder (orange block in Figure 2). The first residual connection
splits off at this point. The input is then normalized and sent to
the multi-head attention (MHA) block. This primarily consists of
several scaled dot-product attention layers running simultaneously,
enabling the model to ‘attend to’ different parts of the sequence
(Vaswani et al., 2017) and to extract the parts that are more relevant
to classification. The resulting vector is then sent to a dropout layer,
which is used to prevent the neural network from overfitting by
dropping a specific proportion of units randomly (Srivastava et al.,
2014). The output of this layer is then added to the original input
that previously split off as a residual connection. The purpose of
this residual connection is to enable a channel of information
flow that is unaffected by the attention mechanism, resulting
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FIGURE 2
Our model architecture. The input sequence is first passed into N
transformer encoder blocks (depicted in orange), which each include
a multi-head attention block and a feed-forward block. Then, after a
pooling layer (blue), there is a multi-layer perceptron (MLP) with
dropout, depicted in green. The last yellow layer represents the final
output neuron, which is activated by the sigmoid function.

in easier model optimization (He et al., 2016). Another residual
connection splits off at this point, while themain information flow is
normalized and sent to a feed-forward network. We use three layers
of convolution kernels that are convolved with the normalized data
in one dimension. Dropout layers are also added between Conv1D
layers. The output of the feed forward part is then added to the
residual connection that previously split off. The result is the output
of the Transformer encoder. This output vector is then fed back into
another Transformer encoder. This is repeated for N transformer
encoder blocks (bottom right of Figure 2). The output vector of
the Nth encoder block is sent to an average pooling layer that
reduces its size andmakes the model more robust to noise and small

variations (Boureau et al., 2010). The output is then sent to a multi-
layer perceptron (MLP). The purpose of the MLP is to process the
output vector of the Transformer encoder for binary classification.
Our MLP consists of 3 densely connected layers followed by a
dropout layer. Finally, there is an output layer of size one with the
sigmoid activation function, which converts the single probability
value returned by the final neuron to a probability of belonging
to the positive class with a range of (0,1). The final class label is
later obtained by comparison to a chosen threshold; if the output
lies above that threshold, it is classified as positive (otherwise it is
classified as negative).

The Transformer model is trained using the Adam optimizer
(Kingma and Ba, 2015), with the learning rate as one of the
hyperparameters to be optimized and all other parameters set to
default. We use the Binary Cross-Entropy loss function (shown in
Eq. 1) as the cost to be optimized. In this equation, N is the number
of sequences andK is the number of classes.wk represents the weight
of class k (which gives more importance to positive examples). ynk
is the true class label, while ŷnk is the predicted probability of the
sequence belonging to the positive class.

J =
N

∑
n=1

K

∑
k=1

wkynk log(ŷnk) (1)

During training, the model is evaluated on three scores:
accuracy, area under the receiver operating characteristic curve
(ROC_AUC), and area under the precision-recall curve (PR_AUC).
Accuracy indicates the proportion of all samples that are classified
correctly. The ROC curve plots the true positive rate (recall) vs.
false positive rate for thresholds ranging from 0 to 1 (Marzban,
2004). When the area under the curve (AUC) is evaluated, it
provides an overall measure of model performance across various
classification thresholds, with larger ROC_AUC values indicating
better performance. We use this metric because it does not require
choosing a specific threshold (Marzban, 2004), enabling us to later
select a threshold to optimize performance. The precision-recall
curve plots precision and recall for the same threshold range (0–1) to
show the trade-off between precision and recall, and the area under
this curve indicates overall performance across thresholds. See
Section 3.1 for further discussion of precision and recall. Another
way of tackling this issue is to use a cost function, the so-called
Score-Oriented Loss (SOL) function (Marchetti et al., 2022), which
prioritizes a selected evaluation metric to optimize the DL (deep
learning) model to maximize it.

Model hyperparameter optimization is achieved using Bayesian
optimization, a method which enables selection of hyperparameters
based on results of prior combinations (Wu et al., 2019). The
hyperparameters, search spaces, and optimized values are shown
in Table 3. The objective of the Bayesian optimization method is
to maximize the ROC_AUC achieved on the validation set. The
maximumnumber of trials, or hyperparameter combinations tested,
is set to 10. The number of executions per trial is set to 1. These
parameters are limited due to the lack of computational power
available, as described previously. Limitations are exacerbated by
our extended optimization process, which includes hyperparameters
beyond those conventionally examined (See Table 3). The various
model configurations are tested with 100 epochs, but are set
to stop training when the ROC_AUC does not improve over 5
epochs. Once the best hyperparameters have been found through
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TABLE 3 Hyperparameter search space and optimal values.

Optimal values

Parameter Search space C-24 C-48 M-24 M-48

Number of Transformer Blocks [1, 2, 3, 4] 4 4 2 3

Optimizer Learning Rate [ .0001, .001, 0.01] 0.001 0.0001 0.0001 0.001

MHA Head Size [32, 64, 128, 256] 32 128 32 64

Number of Heads in MHA [2, 4, 8] 8 8 4 4

Dimensionality of Conv1D Output [2, 4, 8] 8 2 4 4

Transformer Dropout Rate [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.1 0.0 0.1 0.3

Units in 1st MLP Layer [256, 128, 64, 32] 128 128 32 64

MLP Dropout Rate [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.1 0.4 0.3 0.1

Each row lists the hyperparameter, the potential values that are sought to be optimized, and the values that produced the best results for each prediction task and data window duration.

Bayesian optimization, the model is re-trained using the selected
values and a batch size of 32, then saved. The methods described
in this section are implemented in Python with Tensorflow and
Keras.

2.3 Performance metrics

Once themodel has been trained on the training/validation data
sets, it is evaluated on the test set, which consists of previously
unseen sequences. First, a threshold is chosen to obtain predicted
class labels. Then, a confusion matrix is generated by calculating
the number of correctly and incorrectly predicted examples in each
class. Figure 3 illustrates a confusion matrix and lists values for
each of the four prediction cases. When an example sequence is
classified by the model, there are four possible outcomes relative to
the correct label: 1) True Positive (TP): the model correctly classifies
it as positive, 2) False Negative (FN): the model incorrectly classifies
it as negative, 3) False Positive (FP): the model incorrectly classifies
it as positive, and 4) True Negative (TN): the model correctly
classifies it as negative. The confusion matrix shows the number
of examples resulting in each of these outcomes. Any metrics not
reported in this paper can be calculated from the values given
in Figure 3.

Once the four values are calculated (TP, FN, FP, TN), model
performance can be assessed through the calculation of performance
metrics. These metrics are described in Table 4. Accuracy (ACC)
describes the total proportion of examples that the model correctly
classifies.Thismetric should not be used in imbalanced classification
tasks such as flare prediction because a model may reach high
accuracy by learning to classify all examples as belonging to
the majority class (He and Garcia, 2009). Despite achieving high
accuracy, such a model would have no predictive value. Instead
of accuracy, balanced accuracy (BACC) is used. This metric is
equivalent to accuracy calculated with weighted values determined
by the class imbalance, and is calculated by averaging the true
positive rate (recall) and the true negative rate (Brodersen et al.,

2010).The true positive rate (also known as recall) is the proportion
of positive examples that themodel correctly classifies. Likewise, the
true negative rate is the proportion of negative examples correctly
classified. In addition to ACC and BACC, we use precision (PRE)
and recall (REC) to provide information concerning the ability of
the model to correctly identify positive (severe) flares. Precision
indicates the accuracy of positive predictions. This metric is useful
in describing the reliability of severe flare predictions. Precision and
recall are especially relevant in cases like flare prediction where it
is important for any model deployed in an operational setting to
not ‘miss’ any severe events but also to not have too many false
alarms. To incorporate both of these ideas, Hanssen and Kuipers
(1965) developed the True Skill Statistic (TSS). This is calculated
by subtracting the false alarm rate from the recall value, balancing
PRE and REC. While a model that is trained to frequently predict
the positive case will have a high recall value, it will also often
have many false alarms, thereby reducing precision. Such a model
would produce a low TSS score, providing more useful information
regarding the predictive value of the model.This metric is especially
suitable to imbalanced prediction cases such as flare prediction
because it is unaffected by the class imbalance (Woodcock, 1976).
Lastly, theHeidke Skill Score (HSS) is used, ametric which describes
how the model performs relative to a random chance prediction
(Heidke, 1926). This provides useful information on the predictive
value of the model and has the benefit of using all four confusion
matrix values (Bloomfield et al., 2012), although it should be noted
that TSS also uses all four values.

3 Results

3.1 Performance metric scores

The output of the model for a single example is the probability
of belonging to the positive class, which ranges from 0 to 1. In
order to obtain a class label, it must be compared to a threshold
(abovewhich it is classified as positive).We select this threshold such
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FIGURE 3
Confusion matrices. The matrix on the left depicts a generic confusion matrix, where each cell shows the number of examples corresponding to that
outcome. TP is True Positive, FN is False Negative, FP is False Positive, and TN is True Negative. The results for each of the 4 models are shown on the
right. These values are then used to calculate model evaluation metrics (see Section 3.1)

TABLE 4 Definitions of various model evaluationmetrics.

Calculation Meaning

ACC[1] TP+TN
TP+FP+TN+FN

Proportion of examples
correctly classified

BACC[2] 1
2
( TP
TP+FN
+ TN

TN+FP
) Averaged true positive

rate and true negative
rate

PRE[1] TP
TP+FP

Accuracy of positive
(severe) predictions

REC[1] TP
TP+FN

Fraction of positive
examples correctly
identified

TSS[3] TP
TP+FN
− FP

TN+FP
Recall minus false alarm
rate

HSS[4] 2(TP×TN−FP×FN)
(TP+FN)(FN+TN)+(TP+FP)(FP+TN)

Fractional performance
relative to random
chance

Themetrics considered are accuracy (ACC), balanced accuracy (BACC), precision (PRE),
recall (REC), True Skill Statistic (TSS), and Heidke Skill Score (HSS). Each row displays the
metric abbreviation, how it is calculated from confusion matrix values, and what it means in
terms of model performance.
[1] He and Garcia (2009).
[2] Brodersen et al. (2010).
[3] Bloomfield et al. (2012).
[4] Heidke (1926).

that overall performance is maximized. We calculate each of the six
metrics for all thresholds in the range 0.05–0.95. Figure 4 displays
each metric as a function of threshold for all four models. The
general shapes of the performance curves do not vary dramatically
with different data window lengths (24 vs. 48 h). However, there
is a significant difference between the curve shapes for the two
class cases (≥M vs. ≥C). While the ≥C-class curves have an area
where performance is clearly optimized, the ≥M-class curves are
relatively flat on the left side of the graphs; the overall model
performance for all thresholds less than ∼0.5 is very similar. This

can be explained by the distribution of model output probabilities.
For the 24-h data window case for ≥M-class case, 82% of the model
output probabilities lie either under 0.1 or over 0.6 (for the ≥C-class
variation, this figure drops to 64%). This means that relatively few
flares produce output probabilities between 0.1 and 0.6, resulting in
flat skill score curves in the range.

3.1.1 Accuracy and balanced accuracy
The maximum scores of each metric for each prediction case

(flare class and data window) are displayed in Table 5. The table also
displays the thresholds at which thesemaxima occur. Note that these
scores are not our final model scores. For the ≥C-class case with 24 h
of data, a maximum accuracy of 0.811 is reached with a threshold of
0.76. For the 48-h case, a score of 0.816 is reached with a threshold of
0.72.When considering the≥M-class case, the 24-h and 48-hmodels
reach accuracy maxima of 0.968 and 0.965, respectively. Both of
the ≥M-class accuracy scores are achieved with a threshold of 0.95.
These accuracy values, while high, are not necessarily indicative of
model predictive value due to the imbalanced nature of the test set.
Even though the training set is balanced to avoid disproportionately
weighting negative examples in model training, the test set is kept
imbalanced as it must accurately reflect operational forecasting in
which there is no knowledge of final class labels. For instance, if a
model were to classify all flares as negative, it would achieve 70%
accuracy in the 24-h ≥ C-class case and 97% accuracy in the 24-h
≥ M-class case. Such a model would have no predictive value. This
is seen in Figure 4, where the ≥M-class accuracy scores are both
optimized when the threshold is 0.95. This is because with such a
high threshold, the model predicts nearly all flares to be negative,
thereby increasing the accuracy. We do not use accuracy to select
the optimal threshold due to this influence of the class imbalance.

Balanced accuracy shows a much more useful curve with a peak
that is not defined by the class imbalance. For the ≥C-class case, the
24- and 48-h models achieve maximum BACC values of 0.795 and
0.808 at thresholds 0.6 and 0.47, respectively. For the ≥M-class case,
the 24-hmodel reaches BACC= 0.834with a threshold of 0.47, while
the 48-hmodel reaches BACC=0.846with a threshold of 0.49.These
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FIGURE 4
Evaluation metrics across thresholds for all four prediction cases (≥C-class with a 24-h data window, ≥C-class with a 48-h data window, ≥M-class with
a 24-h data window, and ≥M-class with a 48-h data window). Six metrics were calculated for test set predictions for all thresholds between 0.05 and
0.95, inclusive. The threshold chosen, which is shown with a vertical red line, is where the maximum TSS score occurs. Threshold values yielding
maximum performance are shown in Table 6.

thresholds are eventually chosen to optimize overall performance, as
depicted by the vertical red lines in Figure 4.

3.1.2 Precision and recall
Across all models, maximum precision values are attained with

thresholds near 0.95. The PRE scores for the ≥C-class case are 0.901

for the 24-h case and 0.936 for the 48-h case. These high thresholds
and scores are the result of the inherent nature of precision. A high
thresholdwill result in themodel only classifying an event as positive
when its probability of being severe is extremely high, resulting in
extremely reliable positive predictions. This trend can be seen in
Figure 4, where precision scores increase almost monotonically.The
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TABLE 5 Maximum Skill Scores byMetric. For eachmetric and prediction case (flare class and data window), themaximum score achieved by eachmetric is
displayed, along with the threshold yielding that score. This is done separately for eachmetric and prediction case, and is not our final result.

(hr) ACC BACC PRE REC TSS HSS

≥C, 24
Value 0.811 0.795 0.901 0.995 0.591 0.548

Threshold 0.76 0.60 0.93 0.05 0.60 0.72

≥C, 48
Value 0.816 0.808 0.936 0.989 0.615 0.586

Threshold 0.72 0.47 0.95 0.05 0.47 0.63

≥M, 24
Value 0.968 0.834 0.262 0.992 0.667 0.243

Threshold 0.95 0.47 0.95 0.05 0.47 0.85

≥M, 48
Value 0.965 0.846 0.359 0.975 0.692 0.250

Threshold 0.95 0.49 0.94 0.05 0.49 0.90

highest precision scores for the ≥M-class case are 0.262 for the 24-h
variation, and 0.359 for the 48-h variation. While these scores occur
when the threshold is near 0.95 for the same reason as described in
the ≥C-class case, they are significantly lower. This is because there
are many more false positives compared to true positives, causing
severe predictions to become less reliable.

All four models (≥C with 24 h of data, ≥C with 48 h, ≥M with
24 h, and ≥M with 48 h) attain maximum recall scores when the
threshold is 0.05. For the ≥C-class case, scores of 0.995 and 0.989 are
reached for the 24-h and 48-h cases, respectively. For the ≥M-class
case, the scores are 0.992 and 0.975. While this pattern of extremely
high scores at the extremes of the threshold range is similar to
that observed in precision, it shows the opposite trend. While
precision increases with threshold, recall decreases monotonically.
The reason for this is that a low threshold will result inmany positive
predictions, thereby reducing the number of severe events that the
model does not identify, as expressed in a high recall value. Due
to the uniform optimization of precision and recall through near-
1 and near-0 thresholds, we do not use these metrics to select the
optimal threshold.

3.1.3 Heidke skill score and true skill statistic
The ≥ C-class models achieve maximumHSS scores of 0.548 for

the 24-h variation (threshold = 0.72) and 0.586 for the 48-h variation
(threshold = 0.63). When considering the ≥M-class case, the 24-h
model reaches HSS = 0.243 (threshold = 0.85) and the 48-h model
reaches HSS = 0.250 (threshold = 0.90). It is observed in Figure 4
that, like the precision curves, the HSS curves are far lower for the
≥M-class case than for the ≥C-class case. A large number of false
positives relative to true positives, as seen in Figure 3, may result in
this trend. HSS, which is affected by the class imbalance (Woodcock,
1976), is not used in threshold selection.

For the ≥C-class case, the 24- and 48-h models achieve
maximum TSS values of 0.591 and 0.615 at thresholds 0.6 and 0.47,
respectively. For the ≥M-class case, the 24-h model reaches TSS =
0.667 with a threshold of 0.47, while the 48-h model reaches TSS =
0.692 with a threshold of 0.49.

These optimal thresholds are identical to those of balanced
accuracy. TSS is unaffected by the class imbalance (Woodcock, 1976)
and is thus used to select the final classification thresholds. TSS
has been shown to provide the best metric for flare forecasting
performance comparison (Bloomfield et al., 2012). As TSS and
BACC are optimized at identical thresholds, the final values
chosen reflect the metrics that are unaffected by class imbalance
(BACC and TSS).

3.2 Common threshold selection

The selected thresholds are 0.6 for the 24-h ≥ C-class case, 0.47
for the 48-h ≥ C-class case and 24-h ≥M-class case, and 0.49 for the
48-h ≥M-class case. This yields the scores shown in Table 6. BACC,
REC, and TSS scores are higher for the ≥M-class case than for the
≥C-class case. These metrics all increase with a higher true positive
rate, indicating that themodels generallymissesmore≥C-class flares
than ≥ M-class flares. This means that, if a severe flare occurs, the
models are more likely to correctly distinguish it from weaker flares
if they are trained to recognize ≥M-class flares. For PRE and HSS,
the pattern is reversed: performance is significantly higher in the
≥C-class case. This may be explained by the large number of false
positives when predicting ≥M-class flares. If the ≥M-class models
aremore prone to predicting toomany examples as positive, it would
result inmore false positives.This would decrease precision andHSS
scores while boosting BACC, REC, and TSS scores (which is also
observed). This also explains why precision and HSS scores for the
≥M-class cases are significantly lower than all other scores.

The skill scores for both the ≥C-class and ≥M-class models
show an increase in nearly all metrics when using 48 h of data
instead of 24 h. This suggests that there are certain indicators
occurring more than 48 h before severe flares that help the model
distinguish such regions.The performance increase is slightly larger
for the ≥C-class case, suggesting that these indicators are more
important in this prediction task when compared to identifying
only more powerful flares (≥M). The performance increase is
also significantly greater in precision and HSS scores (7%–26%
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TABLE 6 Experimental Results: Skill Scores.

Class Data window (hrs) Threshold ACC BACC PRE REC TSS HSS

≥C
24 0.60 0.779 0.795 0.591 0.835 0.591 0.528

48 0.47 0.794 0.808 0.641 0.849 0.615 0.569

≥M
24 0.47 0.759 0.834 0.106 0.913 0.667 0.143

48 0.49 0.788 0.846 0.132 0.908 0.692 0.180

The ‘Class’ column shows which flare class the models are predicting. ‘Data window’ indicates the duration of the data window used to achieve within 24-h prediction. The ‘Threshold’ column
indicates the chosen threshold to convert decimal model output to binary class labels. The rest of the columns report experimental results for each of the four models, calculated from confusion
matrices (see Section 3.1).

increase instead of <5%). The reason for this can be seen in the
confusion matrices (Figure 3): increasing the data duration to 48 h
dramatically decreases the number of false positives. This means
that severe flare predictions become more reliable with larger time
windows.

4 Discussion

4.1 Performance comparison

Table 7 displays skill scores for various models developed in
prior studies. The most direct comparison can be made with the
LSTM model developed by Wang et al. (2020), as they did not use
any additional data such as flare history or satellite images. The
authors also use 24-h sequences of SHARPs time-series data, but
include 20 different SHARPs parameters, as opposed to 18 used in
this study. While we randomly select test data, they split the data
by year. The authors developed two models with different testing
years. Here we compare our results with their highest-performing
model. Metrics displayed here are calculated from confusion matrix
values. When using the same duration of data (24 h), our model
outperforms their LSTM in terms of BACC, REC, and TSS for
the ≥C-class case. In terms of accuracy, precision, and HSS, the
LSTM outperforms our models. This is consistent with the nature
of the metrics: our model has a higher true positive rate, which is
naturally accompanied by more false positives. When using TSS to
indicate overall performance (Bloomfield et al., 2012), our model
achieves better performance overall for the ≥C-class case when
using the same data duration. When using 48 h of data instead,
our Transformer achieves higher BACC, REC, TSS, and HSS scores.
For the ≥M-class case, our 24-h model achieves higher scores
only in recall. Using 48 h of data instead, our model compares
more favorably, scoring higher in BACC, REC, and TSS. For both
the ≥C- and ≥M-class prediction cases, the score increases again
demonstrate the positive impact of longer data windows on model
performance.

Liu et al. (2019) used 10-h sequences of 25 physical SHARPs
parameters in addition to flare history data to predict flares within
24 h with an LSTM with attention architecture. Flare history
parameters enable the model to access information concerning past
flares within that active region. This additional data proved to be an
important discriminating feature for models that included them, as

demonstrated in the feature assessment conducted by the authors.
They also used the full data set instead of undersampling the negative
class. For the≥C-class case, our 24-hmodel outperforms their LSTM
only in terms of precision and recall. In this case, theirmodel is better
overall when TSS is used as an indicator of overall quality. However,
when 48 h of data are used instead, our model demonstrates better
performance despite not using flare history data, scoring higher in
BACC, PRE, REC, TSS, andHSS. For the ≥M-class case, their model
outperforms our Transformers across all metrics, regardless of data
window duration.

The random forest (RF)model developed by Florios et al. (2018)
also used SHARPs data, but the authors calculated predictors from
near-real-time (NRT) LoSmagnetograms instead of using definitive
SHARPs parameters as model input. NRT data, which are available
earlier, can have small differences from definitive data due to lack
of certain data correction and calibration steps (Hoeksema et al.,
2014). Also unlike the previously compared studies, they do not
use data in a time-series format. Because the authors did not
provide confusion matrix values, we are only able to compare
accuracy, TSS, and HSS. In the ≥C-class case, their RF achieves
higher scores than our 24-h model, while our 48-h model scores
slightly higher in terms of TSS. For the ≥M-class case, their model
outperforms our Transformers for both data durations, with a 12%
TSS increase over the 24-h model and an 8% increase over the
48-h model.

Li et al. (2020) attempted the same prediction task with a
significantly different approach. The authors used a deep CNN
to classify SHARPS LoS magnetograms by whether the ARs
observed release a flare of a specific magnitude within 24 h. Like
Florios et al. (2018), they do not use a time-series format. The only
area where our Transformer models achieve higher performance
than the CNN is in terms of recall for both the 24-h and
48-h ≥M-class cases. For the ≥C-class case, their CNN achieves a
15% higher TSS score than our 24-h model and an 11% higher
score than our 48-h model. In the ≥M-class case, the CNN
scores 13% and 9% higher than our 24- and 48-h Transformers,
respectively.

4.2 Conclusion

We develop Transformer networks to predict whether an
AR will release a flare of a specific magnitude within 24 h. The
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TABLE 7 Comparison with Skill Scores Obtained in Prior Studies.

Model ACC BACC PRE REC TSS HSS

≥C

This study (24 h) Transformer 0.788 0.795 0.608 0.810 0.589 0.537

This study (48 h) Transformer 0.804 0.806 0.667 0.811 0.612 0.580

Wang et al. (2020) LSTM 0.858 0.779 0.672 0.643 0.559 0.568

Liu et al. (2019) LSTM 0.829 0.803 0.544 0.762 0.607 0.539

Florios et al. (2018) RF 0.84 — — — 0.60 0.59

Li et al. (2020) CNN 0.861 0.840 0.906 0.889 0.679 0.671

≥M

This study (24 h) Transformer 0.788 0.830 0.115 0.876 0.661 0.158

This study (48 h) Transformer 0.811 0.843 0.142 0.878 0.687 0.196

Wang et al. (2020) LSTM 0.945 0.840 0.276 0.730 0.681 0.378

Liu et al. (2019) LSTM 0.909 0.895 0.222 0.881 0.790 0.347

Florios et al. (2018) RF 0.93 — — — 0.74 0.49

Li et al. (2020) CNN 0.891 0.875 0.889 0.816 0.749 0.759

LSTM indicates the use of a long short-term memory network, RF indicates a random forest, and CNN indicates a convolutional neural network. Wang et al. (2020) developed two models, one
using ARs from 2015 for testing and one using ARs from 2015 to 2018. For this comparison, the 2015-testing model was used, which yielded higher overall performance (Wang et al., 2020).
Metrics are calculated from confusion matrix values provided. Florios et al. (2018) did not provide the necessary confusion matrices, so only the metrics reported are shown.

model is trained on time-series data consisting of 18 physical
parameters that characterize an AR from the Space-weather HMI
Active Region Patches (SHARPs) data product, obtained from
http://jsoc.stanford.edu/ for ARs fromMay 2010 throughDecember
2022. After the data are sorted by flare class using the GOES flare
catalog and preprocessed, example sequences are generated for
each of the four prediction cases: ≥C-class using 24 h of data,
≥C-class using 48 h of data, ≥M-class using 24 h of data, and ≥M-
class using 48 h of data. The data are then split randomly, with
80% being used for model training and 20% for testing. After
normalization and undersampling of the negative class to yield
a balanced data set, the data are prepared for model input. The
models used primarily consist of an attention-based Transformer
encoder followed by a multi-layer perceptron. Ideal model
hyperparameters are chosen through Bayesian optimization, and
the classification probability threshold is selected to yield maximum
overall performance. The primary conclusions from this study are
as follows:

1. The model architecture, which was designed for sequence
transduction tasks, is applied to developing a network for
time series classification for flare prediction. Model input
consists of only 24 or 48 h of time-series SHARPs data, in
contrast to the larger time windows, additional parameters,
or image data used in prior studies. Data size is further
reduced in the undersampling process used to balance the
data set.

2. An analysis of model evaluation metrics concludes that of the
metrics assessed, the True Skill Statistic (TSS) provides the
most accurate information on a model’s predictive value. This is

used for probability classification threshold selection and model
comparison.

3. Model performance is optimized across all four Transformer
models when the threshold (the probability value above which
data sequences are classified as positive) is close to 0.5,
with slight variations depending on data window length and
flare class.

4. For the ≥C-class case, both of our Transformer models
outperform a prior study that similarly used comparatively
limited data. For the ≥M-class case, our 48-h model performs
slightly better while the 24-h model performs slightly worse.
When our models are compared to studies that used additional
data such as flare history or different data (e.g., satellite
images), performance is comparable. For the ≥C-class case, using
48 h of input data for our Transformer network yields higher
performance than all prior studies compared that used physical
SHARPs parameters.

Our results suggest that Transformer networks are a very
promising method of flare forecasting, especially with limited
data. Model performance may be improved by using k-fold cross-
validation techniques, which were not included in this study due to
limited computational resources. In addition, we acknowledge that
the reliance on datameasurement and calculation accuracy is a weak
point across all such machine-learning space weather forecasting
methods. Future data including severe flare events may improve
model performance due to the rarity of such events in present
data sets. Our limited-data approach is conducive to platforms with
limited storage such as nanosatellites. In the future, we plan to deploy
Transformer networks on a CubeSat platform, where the model will
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utilize on-board satellite measurements of solar processes to
forecast solar flares, thereby providing early warning of severe
events.
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