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Magnetized plasmas and energetic particles are ubiquitous in our solar system (e.g., Roelof, 2015) and have been observed in planetary magnetospheres (e.g., Paranicas et al., 1996; Krupp et al., 2004; Allen et al., 2018; Allen et al., 2021; Kronberg et al., 2021; Sánchez-Cano et al., 2022; Werner et al., 2022), in the vicinity of planetary moons (e.g., Regoli et al., 2018; Long et al., 2022), asteroids (e.g., Fatemi and Poppe, 2018) and comets (e.g., Goetz et al., 2022), as part of the solar wind within the extended heliosphere (e.g., Roussos et al., 2020; Dialynas et al., 2022; Zirnstein et al., 2022), and even in the Very Local Interstellar Medium (e.g., Krimigis et al., 2019; Dialynas et al., 2021; Gurnett et al., 2021). Their measurement and characterization have greatly advanced our understanding of fundamental electromagnetic and charged particle processes, such as charged particle transport, acceleration, loss and reconnection in both planetary magnetospheres (e.g., Mitchell et al., 2009; Cowley et al., 2015; Yao et al., 2017; Azari et al., 2018; Roussos et al., 2019; Kane et al., 2020) and the heliosphere (e.g., Dialynas et al., 2020; Opher et al., 2021; Kleimann et al., 2022; Richardson et al., 2022; Kornbleuth et al., 2023).
Applications of space plasma measurements via instrument suites from past and ongoing missions sent to planetary magnetosphere [e.g., Voyager, Galileo, Cassini, Mars and Venus Express, Mars Atmosphere and Volatile Evolution (MAVEN), Juno, Messenger, the Lunar Reconnaissance Orbiter, Rosetta, Artemis, Chang’e 4, Chandrayaan-2, and BepiColombo], along with solar wind focused missions utilizing planetary flybys (e.g., Ulysses, Solar Orbiter, and Parker Solar Probe), have extended our capabilities to perform planetary science. This enables studying planetary or moon surfaces, interiors and subsurface oceans, atmospheric escape, and planetary rings (e.g., Iess et al., 2014; Stone et al., 2020; Allen et al., 2021; Hadid et al., 2021; Volwerk et al., 2021; Dimmock et al., 2022; Sulaiman et al., 2022).
Future missions, such as the Jupiter Icy Moons Explorer (launched: 14 April 2023) and Europa Clipper (launch target: October 2024), as well as plans to perform a comprehensive exploration of our solar system, starting from the Earth’s moon (e.g., Gateway space station and lander and rover missions enabled by the NASA Commercial Lunar Payload Services, part of the Artemis program) up to the utmost boundaries of our heliosphere (e.g., Interstellar Probe; Brandt et al., 2022; Brandt et al., 2023; McNutt et al., 2022; Dialynas et al., 2023), include a strong planetary science perspective in their science goals through the inclusion of space plasma physics payloads. Further, ESA’s Voyage-2050 senior committee recommendations, argued that among the agency’s primary future targets, namely, robotic exploration of Jupiter’s or Saturn’s moons, “The study of the connection of interior and the near-surface environments […] in the overall moon-planet system (including the planet’s magnetosphere)” should be addressed.
The primary aim of this Research Topic was to expand our understanding in some of the aforementioned science questions, and hosted five articles.
Moon-magnetosphere interactions can result in the formation of Alfvén wings, and can be classified as local interactions (considerably controlled by the moon’s properties; e.g., atmosphere, surface, etc.) and far-field interactions (mainly controlled by the magnetospheric plasma properties). Clark et al. focuses on the far-field interaction of Jupiter’s magnetospheric plasma with Io and provides a survey of energetic protons obtained by the Jupiter Energetic Particle Detector Instrument (JEDI) on-board Juno, associated with Io’s footprint tail. The analysis builds on previous interpretations claiming that the Juno spacecraft had likely transited Io’s main Alfvén wing during its 12th orbit (Clark et al.; Sulaiman et al., 2020), and provides further evidence that precipitating electrons into Jupiter’s ionosphere generate ion cyclotron waves, which are responsible for accelerating protons in Io’s footprint tail.
Moving closer in our solar system, and in preparation for the upcoming NASA Lunar Vertex mission, Waller et al. simulates the interaction between the solar wind and lunar magnetic anomalies associated with lunar swirl regions. By comparing a surface model of magnetic fields derived from Lunar Prospector in the vicinity of the Reiner Gamma swirl with ultraviolet wavelength datasets, they find that crustal magnetic fields, partially shielding the lunar regolith from particle weathering, are consistent with swirl reflectance. These simulations lay the ground work for the upcoming measurements of Lunar Vertex, which seeks to better understand the relationship between crustal fields and lunar swirl regions.
Future human lunar exploration will require consideration of radiation dosage from sources such as Galactic Cosmic Rays (GCR). To constrain the total flux of GCRs on the lunar surface, Zigong et al. investigates the ratio of primary to secondary albedo protons using a new, detailed calibration of the proton spectra from the Lunar Lander Neutron and Dosimetry Experiment onboard the Chang’E-4 Lander, and compared this dataset with observations from Solar and Heliospheric Observatory/Electron Proton Helium Instrument (SOHO/EPHIN) and the Cosmic Ray Telescope for the Effects of Radiation instrument on the Lunar Reconnaissance Orbiter. A key result is that albedo protons contribute considerably to the total GCR particle flux on the lunar surface, and as such must be considered for future astronaut radiation exposure.
Undoubtedly, our moon provides unique opportunities to study the deep space plasma environment. Starting from mid-2020s NASA will launch the first modules of the Lunar Orbital Platform (Gateway), a crewed platform that is a vital component of the agency’s Artemis program. In an extended analysis, Dandouras et al. explores the opportunities for fundamental and applied scientific research over a wide range of topics (e.g., space plasma physics, heliophysics, and space weather) that are provided by future payloads on Gateway. The study presents a model payload conceptual design that provides an efficient approach to obtain space plasma observations and address key multi-disciplinary science questions and objectives.
Obtaining detailed in situ charged particle measurements is crucial toward addressing a wide range of questions concerning space plasmas. Nicolaou et al. examines the ability of single electrostatic analyzers to resolve co-moving plasma species with different mass-per-charge ratios, by considering a two-species static plasma of heavy negative ions that is measured by a typical electrostatic analyzer such as the Cassini Plasma Spectrometer. The study takes a detailed modeling approach to study the response of such a top-hat analyzer to incoming plasma and concludes that the mass resolution improves with increasing spacecraft speed and decreasing plasma temperature.
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