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1 Introduction

Atomic hydrogen (H) near the exobase (above ∼500 km) is the primary source of neutral
and charged particles for the two largest systems of near-Earth space–the geocorona and
plasmasphere.

The H atoms near the exobase have long been considered to be in thermal equilibrium
with the dense ambient atomic oxygen thermosphere. However, in their analysis of the
GUVI satellite observations of dayside Lyman-α emission at low solar activity, Qin and
Waldrop (2016) concluded that the exobase hydrogen atoms are extremely hot (∼20,000 K),
which is more than 20 times hotter than the oxygen thermosphere. This result contradicts
the fundamental assumptions of existing geocoronal theories. Qin and Waldrop listed
several possible sources of the hot H atoms and postulated that the high temperature is a
consequence of incomplete collisional thermalization due to the low thermospheric oxygen
density at solar minimum.

Here, we question the Qin and Waldrop conclusions on the basis of comparison with
results from numerous different independent observations of temperature and density
of atomic hydrogen and of hydrogen ion and electron densities. We show that those
observations provide comprehensive evidence in favour of validity of classic cold hydrogen
concept.

2 Comparison to observations by independent
techniques

Obviously, themost solid evidence pro or contra hot hydrogen concept could be provided
by independent measurements of the hydrogen atoms temperature near the exobase. Such
observationswere conducted for typicalmid-latitudes duringmagnetically quiet periods and
medium-to-high solar activity conditions byMierkiewicz et al. (2012).The authors retrieved
the atomic hydrogen temperatures near the exobase from the Balmer-α spectra data within
2 years for all the seasons.Their hydrogen temperature estimates (range from710 K to 975 K)
are two to three times smaller than one of Qin and Waldrop (∼2200 K) and are close to the
temperature of the ambient oxygen provided for the same location, dates, and altitudes by the
well-tested NRLMSISE-00 model (Picone et al., 2002). This closeness evidences against the
existence of a notable amount of much hotter H atoms near the exobase during medium-
to-high solar activity conditions with a caveat that Mierkiewicz et al. temperatures were
obtained for dawn and dusk while Qin and Waldrop estimates are for near-noon time. It
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should be noted that no significant change of the H atoms
temperature is expected from the noon towards dusk because (1)
the ambient oxygen thermosphere changes are small from the noon
towards the dusk (the temperature and density decrease by only
several tens percent) and (2) lifetime of the exospheric H atoms is
∼ 1 day as estimated by Hodges (1994) for the daytime hydrogen
temperatures of the same order of magnitude as the estimates of
Qin and Waldrop. These imply that, even if the hypothetical hotter
H atoms are originated during the daytime, they do not leave the
exosphere through the night and their chance to be cooled is not
larger than during the day.

Another sensitive indicator of the correctness or incorrectness
of the hot hydrogen concept is the H density at high altitudes in
the exosphere. It is seen from Figure 2 b, e of the Qin and Waldrop
paper that change of the classic cold hydrogen concept on the hot
hydrogen concept increases theHdensity at an altitude of 20,000 km
by a factor of ∼ 5 for medium-to-high solar activity. For such
conditions, H density at altitudes of ∼ 20,000 km was retrieved
from Lyman-α observations by the Dynamics Explorer 1 satellite
(Rairden et al., 1986) and TWINS satellite (Zoennchen et al., 2015)
and those estimates are close to ones obtained by Qin and
Waldrop using cold hydrogen approach. It should be noted that
both the analyses by Rairden et al. and Zoennchen et al. were
also conducted assuming the cold hydrogen concept, i.e., the
equality of the exobase hydrogen temperature to the temperature
of oxygen thermosphere. Since this equality is supported by the
above discussed H temperature observations of Mierkiewicz et al.,
the Dynamics Explorer 1 and TWINS H density estimates provides
further support for correctness of the classical cold hydrogen
concept.

For the solar minimum, for which Qin and Waldrop retrieved
the largest temperatures of the H atom (∼20,000 K), there are
no independent observations of the H temperature. Thus, despite
extreme sensitivity of the high-altitude exospheric H density to
change of cold hydrogen assumption to hot one (see Figure
2 b, e of Qin and Waldrop paper), comparison with other
observations employing cold hydrogen approach (Zoennchen et al.,
2011; Zoennchen et al., 2013) cannot be useful to refute or support
hot hydrogen concept.

Indirect support of validity of the classic cold hydrogen
concept for solar minimum comes from numerous comparisons
of the observed H+ ion and electron densities in the topside
ionosphere and plasmasphere with the results of simulations
using physical model of the ionosphere-plasmasphere system
(Kotov et al., 2015; Kotov et al., 2016; Kotov et al., 2018; Kotov et al.,
2019; Panasenko et al., 2021; Kotov et al., 2023). Those plasma
densities are quite sensitive to the H density near the exobase
(Kotov et al., 2023) but insensitive to the H temperature because
the O++H reaction responsible to the densities is near thermo
neutral (Fox and Sung, 2001). Comparison of the plasma density
observations conducted using independent techniques and facilities
for all seasons of two solar minima with the simulations shows
that the physical model which uses the near-exobase H density
corresponding to the classic cold hydrogen approach provides
excellent agreement with the observations. Applying the hot
hydrogen concept reduces the near-exobase H density by a factor of
a∼ 3 to 4 at solarminimum (Figure 2 b, e ofQin andWaldrop paper).
As follows from Kotov et al. (2023), with such small H density,

simulated H+ ion and electron density in the topside ionosphere
and plasmasphere would be at least twice smaller than the
observations.

3 Conclusion

The existence of large amounts of hot H atoms near the exobase
is not supported either by independent observations of H atom
temperature and density or by numerous observations of hydrogen
ion and electron densities conducted with different independent
techniques.

Conducted near the exobase, in the exosphere, ionosphere,
and plasmasphere for various levels of solar activity, seasons,
and geographical regions, these independent observations
provide comprehensive support for the classic cold hydrogen
concept.
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