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Drift phase resolved diffusive
radiation belt model: 1.
Theoretical framework

Solène Lejosne1* and Jay M. Albert2

1Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, United States, 2Air Force
Research Laboratory, Kirtland AFB, Albuquerque, NM, United States

Most physics-based models provide a coarse three-dimensional representation
of radiation belt dynamics at low time resolution, of the order of a few
drift periods. The description of the effect of trapped particle transport on
radiation belt intensity is based on the random phase approximation, and it
is in one dimension only: the third adiabatic invariant coordinate, akin to a
phase-averaged radial distance. This means that these radiation belt models
do not resolve the drift phase or, equivalently, the magnetic local time. Yet, in
situ measurements suggest that radiation belt intensity frequently depends on
magnetic local time, at least transiently, such as during active times. To include
processes generating azimuthal variations in trapped particle fluxes and to
quantify their relative importance in radiation belt energization, an improvement
in the spatiotemporal resolution of the radiation belt models is required. The
objective of this study is to pave the way for a new generation of diffusive
radiation belt models capable of retaining drift phase information. Specifically,
we highlight a two-dimensional equation for the effects of trapped particle
transport on radiation belt intensity. With a theoretical framework that goes
beyond the radial diffusion paradigm, the effects of trapped particle bulk motion,
as well as diffusion, are quantified in terms of Euler potentials, (α,β), quantities
akin to the radial and azimuthal directions. This work provides the theoretical
foundations underlying the drift phase resolved transport equation for radiation
belt dynamics. It also brings forward the concept of azimuthal diffusion as a
phase-mixing agent.

KEYWORDS

radiation belts, Fokker–Planck equation, adiabatic invariants, Euler potentials, radial
transport, radial diffusion, azimuthal diffusion

1 Introduction

Themotion of energetic particles trapped in planetary radiation belts is a superposition
of three quasi-periodic motions, each evolving on a very distinct spatiotemporal scale, with
an amplitude quantified by an adiabatic invariant (e.g., Northrop and Teller, 1960; Schulz
and Lanzerotti, 1974):

(1) A very fast and small motion of gyration around the magnetic field direction.
(2) A slower and bigger bounce motion between the planet’s hemispheres, along the

magnetic field direction.
(3) A slow and large drift motion around the planet in a direction perpendicular to the

magnetic field direction.
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Thescale separation between these three quasi-periodicmotions
spans several orders of magnitude in time and space.

Combining adiabatic invariant theory with Fokker–Planck
formalism yields the theoretical framework for a probabilistic
model of radiation belt dynamics (e.g., Roederer and Zhang,
2014). The Fokker–Planck formalism accounts for uncertainties in
electromagnetic field characterization. The adiabatic theory allows
for a three-dimensional phase-averaged representation of radiation
belt dynamics rather than a full six-dimensional description in phase
space.

The description of radiation belt dynamics as a three-
dimensional Fokker–Planck equation reduced to a diffusion
equation requires minimal computational resources. This quality
has enabled the development of many radiation belt computer
codes over the years: Salammbô (e.g., Beutier and Boscher, 1995;
Nénon et al., 2017), Diffusion in (I,L,B) Energetic Radiation Tracker
(DILBERT) (Albert et al., 2009), Versatile Electron Radiation Belt
(VERB) (Subbotin and Shprits, 2009), Storm-Time Evolution of
Electron Radiation Belt (STEERB) (Su et al., 2010), DREAM3D,
as part of the Dynamic Radiation Environment Assimilation
Model (DREAM) project (Tu et al., 2013), and British Antarctic
Survey Radiation Belt Model (BAS RBM) (Glauert et al., 2014;
Woodfield et al., 2014) are all examples of radiation belt codes
relying on the same theoretical basis. While first implemented
in the case of terrestrial radiation belts, the three-dimensional
Fokker–Planck equation has also been transposed to the radiation
belts of Jupiter and Saturn. The resulting codes are widely used
for scientific research (e.g., Varotsou et al., 2005; Woodfield et al.,
2018; Drozdov et al., 2020) and for space weather purposes (e.g.,
Glauert et al., 2018; Horne et al., 2021).

On the technical side, these computer codes consist of solving a
diffusion equation that provides an approximate description for the
time evolution of the radiation belts:

∂ f
∂t = ∑i,j

∂
∂Ji
(Di,j
∂ f
∂Jj
)+ Sources− Losses, (1)

where f(t, J1, J2, J3) is the phase-averaged phase space density,
Ji=1,2,3 are the action variables, which are proportional to the
adiabatic invariants by physical constants, and Di,j are the phase-
averaged diffusion coefficients. According to Eq. 1, radiation belts
are primarily driven by very small, uncorrelated perturbations to
the particle trajectories, at all spatiotemporal scales, from the gyro-
scale up to the drift scale. The “Sources” and “Losses” terms account
for other non-diffusive processes affecting the distribution function
(e.g., Schulz and Lanzerotti, 1974). It is worth emphasizing that all
quantities in Eq. 1 are drift-averaged, i.e., they are phase-averaged
over all three phases. It means that this theoretical formulation
cannot resolve the drift phase of trapped particles, or equivalently,
the magnetic local time (MLT) dimension: the resulting modeled
radiation belt intensity, f(t, J1, J2, J3), is independent of magnetic
local time.

From a theoretical standpoint, it is a reasonable first
approximation to consider that radiation belt intensity is
independent of magnetic local time: anyMLT-dependent structure
is expected to dissipate rapidly, on a timescale of a few drift
periods, because of themechanism of phasemixing (e.g., Schulz and
Lanzerotti, 1974; Ukhorskiy and Sitnov, 2013). Yet, in practice, in
situ measurements of trapped particle fluxes suggest that radiation

belt intensity frequently depends on the magnetic local time, at
least transiently. Both inner and outer terrestrial radiation belt
fluxes typically display drift-periodic oscillations. Depending on
the situation, these drift-periodic signatures can be interpreted as
drift echoes following MLT-localized injections, dropout echoes
following MLT-localized losses, or evidence of trapped particles’
drift resonancewithULFwaves (e.g., Sauvaud et al., 2013;Hao et al.,
2016; Patel et al., 2019; Lejosne and Mozer, 2020; Zhao et al., 2022).
Drift echoes have also been reported in Saturnian radiation belt
fluxes (e.g., Hao et al., 2020).

In all cases, processes generating drift-periodic signatures are
important due to their connection to radiation belt energization
(e.g., Hudson et al., 2020). Yet, three-dimensional radiation belt
models cannot account for the generation of drift-periodic
signatures. Instead, drift-periodic signatures are usually modeled
independently of other processes, by tracking the drift motion of
test particles (guiding centers) in prescribed electric and magnetic
fields, omitting local processes occurring along the gyration and
bounce motions (such as local acceleration by chorus waves for
instance) (e.g., Li et al., 1993; Hudson et al., 2017).

In that context, it is necessary to introduce a general equation
for radiation belt dynamics that includes MLT-localized effects,
and that can account for both local processes, at the gyro-
scale, and large-scale effects associated with the radial transport.
An equation that meets these requirements is detailed in the
following section. It relies on the work by Birmingham et al.
(1967), in which a two-dimensional drift-diffusion equation
was derived assuming conservation of the first two adiabatic
invariants. It is straightforward to generalize the proposed equation
to include diffusion in the first two adiabatic invariants. We
present a compact way to retrieve the equation proposed by
Birmingham et al. (1967), combining Fokker–Planck formalism
with relationships derived from the Hamiltonian theory. While
adjustments to the three-dimensional diffusion Eq. 1 have already
been proposed to resolve the drift phase in radiation belt models
(e.g., Bourdarie et al., 1997; Shprits et al., 2015) and ring current
models can resolve local time (e.g., Jordanova et al., 1997; 2022;
Fok et al., 2014), we propose an alternative from the first principles
and describe its underlying theoretical assumptions. Similar to
the theoretical framework for ring current models (e.g., Fok
and Moore, 1997; Yu et al., 2016), the work discussed thereafter
relies on the representation of the inner magnetosphere in terms
of Euler potentials (e.g., Stern, 1967). That is why the outline
of the remainder is as follows: in Section 2, we provide the
theoretical background necessary to derive the equation proposed
by Birmingham et al. (1967). In particular, we recall how to derive
the standard radial diffusion equation before deconstructing it.
We introduce the Euler potential coordinates and relate the Euler
coordinates to the third adiabatic invariant. In Section 3, we show
how the Fokker–Planck equation in terms of Euler potential
coordinates yields a two-dimensional drift-diffusion equation when
Hamiltonian relationships between the Euler coordinates are taken
into account.

Since this work focuses on improving the modeling of drift
effects on radiation belt intensity, we first assume conservation of
the first two adiabatic invariants. Thus, all considered quantities
are bounce-averaged. We also omit any significant source or loss
mechanism. A generalization of the resulting transport equation
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to include diffusion of the first two adiabatic invariants is
straightforward. It is provided at the end of Section 3.

2 Theoretical background

We briefly recall how to derive the standard radial diffusion
equation. This informs how to derive the same equation as the one
proposed by Birmingham et al. (1967) (Section 3).We also detail the
concept of Euler potentials and highlight their connection to the
third adiabatic invariant.

2.1 Derivation of the standard radiation
belt radial diffusion equation

In the following section, the third adiabatic invariant, J3, is
abbreviated to J out of convenience. The objective is to describe
the time evolution of a distribution function, f, that quantifies the
number of particles per unit of J (assuming conservation of the first
two adiabatic invariants). This quantity is proportional to the drift-
averaged phase space density by a physical constant (e.g., Roederer
and Zhang, 2014, their chapter 4). The usual assumption is that
many very small uncorrelated random changes of the variable, J,
occur between times t and t+∆t, with a very small total effect
(∆J/J≪ 1;∆t≪ f/(∂ f/∂t)). In this case, the time evolution of the
distribution function, f, is provided by a Fokker–Planck equation
(e.g., Roederer, 1970; Walt, 1994):

∂ f
∂t = −
∂
∂J (⟨∆J⟩ f) +

1
2
∂2
∂J2
(⟨(∆J)2⟩ f), (2)

where ⟨∆J⟩ = [∆J]/∆t is the rate of change for the expected
value of the third invariant variation, [∆J] = [J(t+∆t) − J(t)], and
⟨(∆J)2⟩ = [(∆J)2]/∆t is the rate of change for the expected value of
the third invariant squared variation. A rewriting of the right-hand
side of Eq. 2 provides a mathematically equivalent formulation:

∂ f
∂t =
∂
∂J(−⟨∆J⟩ f +

1
2
∂
∂J (⟨(∆J)

2⟩ f)), (3)

which can also be written as

∂ f
∂t =
∂
∂J((−⟨∆J⟩ +

1
2
∂⟨(∆J)2⟩
∂J ) f +

⟨(∆J)2⟩
2
∂ f
∂J ). (4)

To transform this equation into a radial diffusion equation,
we use the fact that the two coefficients ⟨∆J⟩ and ⟨(∆J)2⟩ are not
independent of each other:

⟨∆J⟩ = 12
∂⟨(∆J)2⟩
∂J

(5)

(e.g., Lichtenberg and Lieberman, 1992, their section 5.4a; Lejosne
and Kollmann, 2020, their section 2.3.2). This relationship (Eq. 5)
relies on the assumption of drift phase homogeneity, also known as
random drift phase approximation, meaning that each drift phase
location is equiprobable. In this context, the Fokker–Planck Eq. 2
reduces to a diffusion equation:

∂ f
∂t =
∂
∂J(D
∂ f
∂J ), (6)

where D = ⟨(∆J)2⟩/2 is the diffusion coefficient in J. The diffusion
equation is often rewritten in terms of L* ∝ 1/J:

∂ f
∂t = L

*2 ∂
∂L*
(DLL
L*2
∂ f
∂L*
), (7)

where DLL = ⟨(∆L
*)2⟩/2 is the radial diffusion coefficient.

2.2 Euler potentials

An appropriate coordinate to discuss radial diffusion is the L*

coordinate (Roederer, 1967), inversely proportional to the third
adiabatic invariant, J (Eq. 7). In the following section, we argue that
L* is not suited when the objective is to resolve the drift phase.
Instead, we introduce the best-suited coordinate, 𝕃 (“double-struck
L” or “L-Euler”). We discuss the relationship between 𝕃 and L* by
detailing the underlying role of the Euler potentials.

2.2.1 Third adiabatic invariant, deconstructed in
terms of Euler potentials

The radial diffusion equation, retrieved in Section 2.1 (Eq. 7),
describes the time evolution of the number of particles per unit of
third adiabatic invariant, J, or equivalently, L*.Thequantities J and L*

areMLT-averaged by design. Indeed, the third invariant of a trapped
population, J, is proportional to the magnetic flux encompassed by
the guiding drift shell:

J∝∬ΣB ∙ dS = ∮ΓA ∙ dl, (8)

where A is the magnetic vector potential (∇×A = B), and Σ is
the surface encompassed by the instantaneous drift contour, Γ, of
the trapped population. The instantaneous drift contour, Γ, can
be viewed as the intersection of the guiding drift shell with a
surface, such as the minimum B-surface (see also, Roederer, 1970,
p. 76–79). In other words, to quantify the third adiabatic invariant,
J, it is necessary to know the guiding drift shell, that is, the set
of guiding center locations at all magnetic local times, treating the
electromagnetic fields as stationary.

An important underlying requirement to sort trapped particle
fluxes using the third adiabatic invariant is the so-called frozen field
condition, where in the presence of magnetic field time variations,
the cold (frozen) plasmaE ×B drifts to remain on the samemagnetic
field line (Birmingham and Jones, 1968). This assumption requires
the Earth’s surface to be a perfect conductor and no component of
the electric field to be parallel to the magnetic field direction. In
this context, the footpoints of a magnetic field line are rooted at
fixed locations at ionospheric altitudes, while the rest of the field
line can “move” (stretch, compress, distort) in the magnetosphere
in the presence of magnetic field time variations. Thus, the frozen
field condition enables a tempting, yet disputed, concept of field
line “flagging” and its corollary, field line “motion” (Fälthammar
and Mozer, 2007). It is indeed worth emphasizing that a field
line is an imaginary concept that aids to visualize the magnitude
and direction of a vector field, so there should be no way of
differentiating a field line from the other. We assume nonetheless
that we can label field lines based on the locations of their rooted
ionospheric footpoints. In this context, to determine a guiding
drift shell or an instantaneous drift contour, Γ, and to compute
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the third adiabatic invariant, we now have to know the set of
field lines that were scanned by the drifting guiding centers at
all magnetic local times. In other words, we need information
on the field line label at each magnetic local time. This can
be done by leveraging the Euler potentials, as discussed in the
following.

The Euler potentials (α,β) are a convenient tool for labeling field
lines.They are analogous to the stream function in an incompressible
flow in fluid mechanics. They offer a representation of the magnetic
field intrinsically dependent on its topology (e.g., Stern, 1967, 1970).
Their characterization relies on the fact that the magnetic field is a
solenoidal vector field, i.e., ∇ ∙B = 0. The Euler potentials are such
that

B = ∇α×∇β. (9)

Thus, the Euler potentials are constant along the magnetic
field lines. Since the vector potential can be viewed as A = α∇β, a
reformulation of Eq. 8 in terms of Euler potential yields

J∝∮Γαdβ. (10)

Although there is no uniformity in the definition of the Euler
potentials, a suitable set of Euler potentials in amagnetic dipole field
is

{{
{{
{

α = −
BER

3
E

r
sin2 θ

β = φ,
(11)

where BE = 30,000 nT is the magnetic equatorial field at the surface
of the Earth, RE = 6370km is one Earth radius, and (r,θ,φ) are
the radial distance, magnetic colatitude, and azimuthal (i.e., MLT)
location with respect to the center of the dipole magnetic moment,
respectively.

In the presence of a distorted magnetic field, the expressions
provided in Eq. 11 are not valid anymore. That said, it is possible
to leverage the facts that (a) the field line footpoints are rooted at
ionospheric altitudes, a region where the ambient magnetic field is
mainly dipolar, so the Euler potentials can be described by Eq. 11 at
ionospheric altitudes and (b) the Euler potentials are constant along
the magnetic field lines. With that in mind, we can define a set of
Euler potentials (α,β) such that at the footpoints (RE,θE, φE), and
thus all along the field lines:

{
{
{

α = −BER
2
Esin

2θE
β = φE,

(12)

where (θE, φE), respectively, indicate the magnetic colatitude
and longitude of the field line footpoint at r = RE, the Earth’s
surface.

If a distorted magnetic field were to change into a dipole field,
each field line would “move” in geospace, adopting a dipolar shape,
while its footpoints would stay rooted at fixed ionospheric latitudes.
Leveraging Eq. 11 in the newly transformed dipole field, a dipolar
field line with footpoints at (RE,θE, φE) would have its equatorial
apex (ro,θ = π/2,φo) such that α(ro,θ = π/2,φo) = α(RE,θE,φE) and
β(ro,θ = π/2,φo) = β(RE,θE,φE).Thus, the intersection of the dipolar
field line footpoint and the magnetic equator (θ = π/2) would be at

{{
{{
{

ro =
RE

sin2θE
φo = φE.

(13)

The physical interpretation of this thought experiment is similar
to the physical interpretation of the L* parameter. The L* coordinate
corresponds to the normalized equatorial radius of the circular
guiding contour on which trapped particles would drift after all
non-dipolar contributions to the magnetic field and all electric
field components have been turned off adiabatically. Here, we
introduce the parameter 𝕃 (“double-struck L” or “L-Euler”) such
that

𝕃 = 1
sin2θE
, (14)

where θE is the magnetic colatitude of the footpoint at r = RE
for the field line passing through the location considered. It
corresponds to the normalized equatorial radius of the field
line on which trapped particles would bounce if all non-dipolar
contributions to the magnetic field were turned off relatively
fast (a few bounce periods). As for the angle variable, β,
one can reasonably assume no significant longitudinal bending
of the field lines when the magnetic field is stretched or
compressed. Thus, in terms of Euler potentials, we have in general
that

{{
{{
{

α = −
BER

2
E
𝕃

β = φE ≅ φ.
(15)

Combining Eqs 10, 15, given that ∮Γαdβ = −2πBER
2
E/L

*, we
obtain

1
L*
= 1
2π∮Γ

dφ
𝕃 . (16)

The parameter L* is the harmonic mean of the 𝕃 coordinate
along the guiding contour, Γ, a relationship that can be utilized to
quantify L* (e.g., Lejosne, 2014). In the presence of quasi-trapped
particles, i.e., guiding centers drifting along on open drift contour,
the parameter L* cannot be defined. On the other hand, the 𝕃
coordinate can still be defined on open drift contour, as long as we
are dealing with a closed field line.

An illustration to the concepts discussed here is provided in
Figure 1.

2.2.2 Euler potentials as appropriate variables to
describe bounce-average drift motion of trapped
and quasi-trapped particles

The Euler potentials α and β are proportional to canonical
variables, that is,

{{
{{
{

α̇ = −∂H∂β

β̇ = ∂H∂α ,
(17)

where H is a Hamiltonian proportional to the total energy of the
guiding center (Northrop andTeller, 1960; Birmingham et al., 1967):

H = Tq +V, (18)

where T is the kinetic energy, q is the charge of the population
considered, and V is the electric potential.

One consequence of Eq. 17 is that the variations of the Euler
potentials are related:

∂
∂α (α̇) +

∂
∂β (β̇) = 0. (19)
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FIGURE 1
(A) A few magnetic field lines constitutive of a trapped particle drift shell, together with the locations of the field line footpoints, necessary to determine
the L* parameter—adapted from Roederer (1970). (B) A stretch magnetic field line (in red) is relaxed into its dipolar shape (in blue). The field line
footpoint remains rooted at the same ionospheric colatitude, θE, a parameter that determines the 𝕃 parameter, of use for field line labeling. The
parameter 𝕃 corresponds to the normalized equatorial radius of the dipolar field line (in blue)—adapted from Lejosne (2014).

This property will be leveraged to transform a two-dimensional
Fokker–Planck equation in terms of Euler potentials, (α,β), in a two-
dimensional drift-diffusion equation.

3 New derivation of Birmingham
et al.’s transport equation to describe
trapped particle transport effects on
radiation belt intensity

Here, we present a compact way to retrieve the equation
proposed by Birmingham et al. (1967). This equation represents the
time evolution of radiation belt intensity due to transport processes.
We describe the time evolution of a distribution function, F, that
quantifies the number of particles per unit of Euler potential surface
dαdβ. This function, F, is proportional to the phase space density
averaged over both gyration and bounce phases by a physical
constant. It relates to the drift-averaged distribution function, f,
introduced in Section 2.1, since the number of particles per unit of
third invariant, J, is fdJ = ∮β∈ΓFdα(β)dβ (with dJ = ∮β∈Γ dα(β)dβ).
We assume that many very small random changes of the Euler
coordinates occur between times t and t+∆t, with a very
small total effect. The resulting two-dimensional Fokker–Planck
equation is

∂F
∂t
= − ∂
∂α
(⟨∆α⟩F) − ∂

∂β
(⟨∆β⟩F)

+ 1
2
∂2

∂α2
(⟨(∆α)2⟩F) + 1

2
∂2

∂β2
(⟨(∆β)2⟩F)

+ 1
2
∂2

∂α∂β
(⟨∆α∆β⟩F) + 1

2
∂2

∂β∂α
(⟨∆β∆α⟩F), (20)

where the angle bracket sign, ⟨⟩, indicates the rate of change of the
expected value for the bracketed variable and ∆X = X(t+∆t) −X(t).

Just like in Section 2.1 (Eq. 3), we rewrite Eq. 20 as

∂F
∂t
= ∂
∂α
(−⟨∆α⟩F+ 1

2
∂
∂α
(⟨(∆α)2⟩F) + 1

2
∂
∂β
(⟨∆α∆β⟩F))

+ ∂
∂β
(−(⟨∆β⟩F) + 1

2
∂
∂β
(⟨(∆β)2⟩F) + 1

2
∂
∂α
(⟨∆β∆α⟩F)).

(21)

The terms between the large parentheses in Eq. 21 are

−⟨∆α⟩F+ 1
2
∂
∂α
(⟨(∆α)2⟩F) + 1

2
∂
∂β
(⟨∆α∆β⟩F)

= (−⟨∆α⟩ + 1
2

∂⟨(∆α)2⟩
∂α
+ 1
2
∂⟨∆α∆β⟩
∂β
)F+
⟨(∆α)2⟩

2
∂F
∂α
+
⟨∆α∆β⟩

2
∂F
∂β
(22)

and

−(⟨∆β⟩F) + 1
2
∂
∂β
(⟨(∆β)2⟩F) + 1

2
∂
∂α
(⟨∆β∆α⟩F)

= (−⟨∆β⟩ + 1
2

∂⟨(∆β)2⟩
∂β
+ 1
2
∂⟨∆β∆α⟩
∂α
)F+
⟨(∆β)2⟩

2
∂F
∂β
+
⟨∆β∆α⟩

2
∂F
∂α
.

(23)

Using the Hamiltonian relationships between the Euler
potentials (Eq. 17), we have shown in the Appendix that

{{{
{{{
{

−⟨∆α⟩ + 12
∂⟨(∆α)2⟩
∂α + 12

∂⟨∆α∆β⟩
∂β = −[α̇]

−⟨∆β⟩ + 12
∂⟨(∆β)2⟩
∂β + 12

∂⟨∆β∆α⟩
∂α = −[β̇] ,

(24)

provided that the time interval, ∆t, is very small in comparison with
the characteristic time for the time variation of the Hamiltonian
(∆t≪H/(∂H/∂t)). In practice, the time interval, ∆t, is of the order
of a few bounce periods, that is, very small in comparison with the
drift period.The squared brackets, [ ], indicate the expected value of
the bracketed variable.
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Combining Eqs 21–24, Eq. 20 becomes a drift-diffusion
equation:

∂F
∂t
= − ∂
∂α
([α̇]F) − ∂

∂β
([β̇]F)

+ ∂
∂α
(
⟨(∆α)2⟩

2
∂F
∂α
)+ ∂
∂α
(
⟨∆α∆β⟩

2
∂F
∂β
)

+ ∂
∂β
(
⟨∆β∆α⟩

2
∂F
∂α
)+ ∂
∂β
(
⟨(∆β)2⟩

2
∂F
∂β
). (25)

Given Eq. 19, this simplifies to

∂F
∂t
= −[α̇] ∂F
∂α
− [β̇]∂F
∂β

+ ∂
∂α
(Dαα
∂F
∂α
)+ ∂
∂α
(Dαβ
∂F
∂β
)

+ ∂
∂β
(Dβα
∂F
∂α
)+ ∂
∂β
(Dββ
∂F
∂β
), (26)

where Dαα = ⟨(∆α)2⟩/2, Dββ = ⟨(∆β)2⟩/2, Dαβ = ⟨∆α∆β⟩/2, and
Dβα = ⟨∆β∆α⟩/2 are the diffusion coefficients, and [α̇] and [β̇]
are the mean bounce-averaged time rates of change of α and
β, respectively. This transport equation coincides with the one
provided by Birmingham et al. (1967), their equation (4.11). A
change of variables (using Eq. 15) yields:

∂F
∂t
= −[�̇�] ∂F
∂𝕃
− [φ̇] ∂F
∂φ

+𝕃2 ∂
∂𝕃
(
D𝕃𝕃
𝕃2
∂F
∂𝕃
)+𝕃2 ∂
∂𝕃
(
D𝕃φ
𝕃2
∂F
∂φ
)

+ ∂
∂φ
(Dφ𝕃
∂F
∂𝕃
)+ ∂
∂φ
(Dφφ
∂F
∂φ
). (27)

The term depending on D𝕃𝕃 mistakenly resembles the one
present in the standard radial diffusion equation (Eq. 7): D𝕃𝕃 and
DLL are different. The distribution function, f, the coefficient for
the standard radiation diffusion equation (Eq. 7), DLL, and more
generally, the quantities used for the three-dimensional equation
for radiation belt dynamics (Eq. 1) are drift-averaged, i.e., they are
independent of the drift phase. Here, the drift phase is resolved:
the distribution function and coefficients are bounce-averaged
quantities that depend on the drift phase. Thus, they must be
evaluated at each location (α,β), or similarly (𝕃,φ), and at each
time, t.

The transport parameters of Eq. 27 are all statistically averaged
quantities.The coefficients [�̇�] and [φ̇] (or equivalently [α̇] and [β̇])
indicate ensemble averages of time derivatives for the quantities
considered. The ensemble averages are computed at each location
and at each time, t, over an ensemble of field fluctuations.
The diffusion coefficients are proportional to the time rates of
change of the covariances for the quantities considered. Specifically,
when considering two variables X and Y (where (X,Y) could
be any combination of (α,β) or (𝕃,φ)), the diffusion coefficient
is

DXY =
[(X(t+∆t) −X(t))(Y(t+∆t) −Y(t))]

2∆t . (28)

That is, it is half the time rate of change of the ensemble average
for the product of the time variations of X and Y during a time
interval, ∆t. A worked example will be provided in the second part

of this work. It will detail how to compute all transport parameters
of Eq. 27 in a particular model of field fluctuations.

According to Eq. 26, variations in the distribution function are
due to the bulk motion of the plasma in the presence of density
gradients and to diffusive effects in both the localized radial (𝕃) and
azimuthal (φ) directions. Local effects acting at smaller scales can
be readily reinstated by adding relevant coefficients modeling local
diffusion, source, and loss mechanisms:

∂F
∂t
= −[�̇�] ∂F
∂𝕃
− [φ̇] ∂F
∂φ

+𝕃2 ∂
∂𝕃
(
D𝕃𝕃
𝕃2
∂F
∂𝕃
)+𝕃2 ∂
∂𝕃
(
D𝕃φ
𝕃2
∂F
∂φ
)

+ ∂
∂φ
(Dφ𝕃
∂F
∂𝕃
)+ ∂
∂φ
(Dφφ
∂F
∂φ
)

+ ∑
1≤i,j≤2

∂
∂Ji
(Di,j
∂F
∂Jj
)+ Sources− Losses, (29)

where all quantities are bounce-averaged quantities that depend on
the drift phase.

4 Conclusion

The objective of this work is to contribute toward improving
the spatiotemporal resolution of physics-based diffusive radiation
belt models. The resulting transport Eq. 27 can resolve the drift
phase, and the outputs are bounce-averaged rather than drift-
averaged.This is of use when the objective is to model fast radiation
belt dynamics, such as times of fast radiation belt acceleration or
losses occurring during the main phase of geomagnetic storms
(e.g., Ripoll et al., 2020; Lejosne et al., 2022). It can also be used
to increase the energy range modeled, by including ring current
energies.

Although Eq. 27 contains some localized (in 𝕃, MLT) diffusion
coefficients, its scope is beyond the long-established radial diffusion
paradigm used to summarize transport effects on radiation belt
intensity. The inclusion of the effects of bulk motion and the
diffusion in the azimuthal coordinate enable the modeling of
MLT-localized structures, drift-periodic flux oscillations, and their
subsequent attenuation due to phase-mixing processes.

Current works leveraging in situ measurements to quantify
radial diffusion coefficients require information on average over
all magnetic local times of a drift shell. Yet, a spacecraft can
only scan the electromagnetic environment along its orbit, limiting
the accuracy with which the outputs can be determined (e.g.,
Sandhu et al., 2021). Because the coefficients introduced in this work
depend on magnetic local time, these may be easier to quantify
experimentally. Furthermore, describing the effect of drift motion
on radiation belt intensity in terms of Euler potentials, or similarly
with (𝕃,φ), is computationally more advantageous than working
with the action-angle variables (J3, φ3): the latter requires tracing
the instantaneous drift contour at every time step, while the former
only requires local field line tracing. In addition, the definition
of the Euler potentials only requires closed field lines, while the
definition of the action-angle variables is more restrictive, requiring
a closed instantaneous drift contour.Thus, working in terms of Euler
potentials allows for the inclusion of quasi-trapped particles from
the drift loss cone.
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The second part of this work will deal with characterizing the
coefficients introduced in Eq. 27 (i.e., [�̇�], [φ̇],D𝕃𝕃,D𝕃φ,Dφ𝕃,Dφφ)
in the special case of electric potential fluctuations in a magnetic
dipole field. It will show how to implement the theoretical
framework presented in this work.
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Appendix

Here, we detail how to obtain Eq. 24, leveraging the fact that
the Euler potentials (α,β) are proportional to canonical variables
(Eq. 17).
We assume some small variations in α and β during t and t+∆t. In
which case, a Taylor approximation of the time variations of α and
β, to the second order, yields

{{
{{
{

α(t+∆t) = α(t) + α̇(t)∆t+ α̈(t)2 ∆t
2

β(t+∆t) = β(t) + β̇(t)∆t+ β̈(t)2 ∆t
2.

(A1)

Rewriting α̇ and β̇ in terms of Hamiltonian (Eq. 17), the second time
derivatives are

{{{
{{{
{

α̈ = − ddt(
∂H
∂β ) =

∂
∂α(
∂H
∂β )

2
− ∂∂β(
∂H
∂α
∂H
∂β +
∂H
∂t )

β̈ = d
dt(
∂H
∂α ) =

∂
∂β(
∂H
∂α )

2
− ∂∂α(
∂H
∂α
∂H
∂β −
∂H
∂t )

(A2)

(see also Lichtenberg and Lieberman, 1992; their equation (5.4.10),
p. 322).
Combining equations Eqs A1, A2, 17, we have

{{{
{{{
{

∆α = −∂H∂β ∆t+
(∆t)2
2 (
∂
∂α(
∂H
∂β )

2
− ∂∂β(
∂H
∂α
∂H
∂β +
∂H
∂t ))

∆β = ∂H∂α ∆t+
(∆t)2
2 (
∂
∂β(
∂H
∂α )

2
− ∂∂α(
∂H
∂α
∂H
∂β −
∂H
∂t )).

(A3)

To the second order in ∆t, we also have

{{{{{{{
{{{{{{{
{

(∆α)2 = (∂H∂β )
2
(∆t)2

(∆β)2 = (∂H∂α )
2
(∆t)2

∆α∆β = −∂H∂α
∂H
∂β (∆t)

2.

(A4)

Thus,

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

1
2
∂
∂α
(∆α)2 = 1

2
∂
∂α
(∂H
∂β
)
2
(∆t)2

1
2
∂
∂β
(∆β)2 = 1

2
∂
∂β
(∂H
∂α
)
2
(∆t)2

1
2
∂
∂α
(∆β∆α) = −1

2
∂
∂α
(∂H
∂α
∂H
∂β
)(∆t)2

1
2
∂
∂β
(∆α∆β) = −1

2
∂
∂β
(∂H
∂α
∂H
∂β
)(∆t)2.

(A5)

Combining Eqs A3–A5 in terms of expected values for the
variations, we have

−[∆α] + 12
∂[(∆α)2]
∂α +

1
2
∂[∆α∆β]
∂β = [

∂
∂β(H+

∆t
2
∂H
∂t )]∆t,

(A6)

−[∆β] + 12
∂[(∆β)2]
∂β +

1
2
∂[∆β∆α]
∂α = −[ ∂∂α(H+

∆t
2
∂H
∂t )]∆t.

(A7)

Assuming that the time interval, ∆t, is very small in comparison
with the characteristic time for the time variation of the
Hamiltonian:

∆t≪H/(∂H/∂t), (A8)

with ⟨∆α⟩ = [∆α]/∆t and ⟨∆β⟩ = [∆β]/∆t, the rates of
change of the expected values for the variations, we
obtain

{{{
{{{
{

−⟨∆α⟩ + 12
∂⟨(∆α)2⟩
∂α + 12

∂⟨∆α∆β⟩
∂β = [∂H∂β ] = −[α̇]

−⟨∆β⟩ + 12
∂⟨(∆β)2⟩
∂β + 12

∂⟨∆β∆α⟩
∂α = −[∂H∂α ] = −[β̇] .

(A9)

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2023.1200485
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Lejosne and Albert 10.3389/fspas.2023.1200485

Glossary

(α,β) Euler potentials

A magnetic vector potential

B magnetic field

BE magnetic equatorial field at the Earth’s surface

DXY diffusion coefficient with respect to the X and Y coordinates

f,F distribution functions

Γ drift contour

H Hamiltonian proportional to the total energy of the guiding center

Ji=1..3 action variable, proportional to the adiabatic invariant coordinates

J stands for J3, the adiabatic invariant associated with the drift motion

L* “L-star” or “L-Roederer” inversely proportional to the third adiabatic invariant, J

𝕃 “double-struck L” or “L-Euler”, inversely proportional to the Euler potential α

MLT magnetic local time

q electric charge of a particle

r radial distance to the center of the dipole magnetic moment

RE Earth’s equatorial radius

φ,φE azimuthal location (i.e., magnetic local time, in radians), azimuthal location of the footpoint at r = RE for the field line passing through the location considered

Σ surface encompassed by the drift contour, Γ

θ,θE magnetic colatitude, magnetic colatitude of the footpoint at r = RE for the field line passing through the location considered

t,∆t time, small time interval

T kinetic energy

V electric potential

[] square brackets = expected value (average value of an ensemble of fluctuations) of the bracketed quantity

〈〉 angle brackets = average change per unit time of the bracketed quantity (= []/∆t)

∝ proportionality symbol.
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