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Introduction: RNA sequencing (RNA-seq) data from space biology experiments
promise to yield invaluable insights into the effects of spaceflight on terrestrial
biology. However, sample numbers from each study are low due to limited crew
availability, hardware, and space. To increase statistical power, spaceflight RNA-
seq datasets from different missions are often aggregated together. However,
this can introduce technical variation or “batch effects”, often due to differences
in sample handling, sample processing, and sequencing platforms. Several
computational methods have been developed to correct for technical batch
effects, thereby reducing their impact on true biological signals.

Methods: In this study, we combined 7 mouse liver RNA-seq datasets from
NASA GeneLab (part of the NASA Open Science Data Repository) to evaluate
several common batch effect correction methods (ComBat and ComBat-seq
from the sva R package, and Median Polish, Empirical Bayes, and ANOVA from
the MBatch R package). Principal component analysis (PCA) was used to identify
library preparation method and mission as the primary sources of batch effect
among the technical variables in the combined dataset. We next quantitatively
evaluated the ability of each of the indicated methods to correct for each
identified technical batch variable using the following criteria: BatchQC, PCA,
dispersion separability criterion, log fold change correlation, and differential
gene expression analysis. Each batch variable/correction method combination
was then assessed using a custom scoring approach to identify the optimal
correctionmethod for the combined dataset, by geometrically probing the space
of all allowable scoring functions to yield an aggregate volume-based scoring
measure.

Results and Discussion: Using the method described for the combined dataset
in this study, the library preparation variable/ComBat correction method pair
out ranked the other candidate pairs, suggesting that this combined dataset
should be corrected for library preparation using the ComBat correctionmethod
prior to downstream analysis. We describe the GeneLab multi-study analysis
and visualization portal which will allow users to access the publicly available
space biology ‘omics data, select multiple studies to combine for analysis, and
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examine the presence or absence of batch effects using multiple metrics. If the
user chooses to perform batch effect correction, the scoring approach described
here can be implemented to identify the optimal correction method to use for
their specific combined dataset prior to analysis.

KEYWORDS

RNA-seq, batch effect correction, NASA genelab, space biology, transcriptomics,
combat, combat-seq, MBatch

1 Introduction

Space biology research is essential for understanding
physiological responses to spaceflight, and offers key insights into
biological pathways that are impacted by the unique conditions
of low Earth orbit and beyond (Institute of Medicine, Board
on Health Sciences Policy and Committee on NASA’s Research
on Human Health Risks, 2008; Garrett-Bakelman et al., 2019;
da Silveira et al., 2020; Malkani et al., 2020). Resources aboard the
International Space Station have allowed for multi-omic space
biology studies involving complex model organisms, such as those
conducted within the Rodent Research project (Rizzo et al., 2012;
Jonscher et al., 2016; Chakravarty et al., 2017; Pecaut et al., 2017;
Rettig et al., 2017; Shen et al., 2017; Tascher et al., 2017; Ward et al.,
2018; Beheshti et al., 2019; Ronca et al., 2019; Choi et al., 2020).
However, such research is often constrained by high costs, limited
crew time and available space to conduct research. Thus, sample
numbers from such studies are often low, limiting the statistical
power of each individual experiment. To increase statistical power
of a study, researchers often combine individual datasets with similar
experimental conditions (Beheshti et al., 2019; da Silveira et al.,
2020; Malkani et al., 2020).

However, merging datasets can introduce unwanted data
variation due to technical differences between datasets, including
variation in sample handling, processing, and sequencing platforms
(Johnson et al., 2007; Lai Polo et al., 2020; Foox et al., 2021).
Artificially introduced variation, or “batch effects”, can affect
biologically relevant comparisons, such as spaceflight (FLT) vs
ground control (GC) samples. Therefore, prior to any downstream
analysis of a combined dataset, it is appropriate to first identify
potential sources of technical batch effects and then if necessary,
perform a statistical adjustment to correct the data values (Leek
and Storey, 2007; Leek et al., 2010; Čuklina et al., 2020). Several
statistical methods exist to correct for batch effects in genomics
and transcriptomics data (Johnson et al., 2007; Akbani et al., 2018;
Zhang et al., 2018; Zhang et al., 2020).

In the present work, we utilized publicly available
transcriptomics data sourced from NASA GeneLab to evaluate
the performance of five common batch effect correction methods
(ComBat and ComBat-seq from the sva R package, and Median
Polish, Empirical Bayes, and ANOVA from the MBatch R package)
on combined RNA sequencing (RNA-seq) datasets. As part of the
NASA Open Science Data Repository (https://osdr.nasa.gov/bio/
repo/), GeneLab is an open access database that hosts datasets
containing both raw and processed multi-omics data from
spaceflight and ground-based analogue experiments (Ray et al.,
2019; Berrios et al., 2021). In this study, we combined seven

RNA-seq datasets containing spaceflown and ground control
mouse liver samples. We selected only liver tissue datasets to
limit additional biological sources of variation, such as tissue
type. The seven datasets used spanned multiple different rodent
research missions, sequencing facilities, and RNA-seq library
preparation methods. We identified two primary sources of
technical variation among the combined samples, and evaluated
the performance of the five batch effect correction methods to
correct for these technical batch variables using several criteria:
BatchQC (Manimaran et al., 2016), principal component analysis
(PCA), dispersion separability criterion (DSC) (Oseni et al., 2021),
log fold change (LFC) correlation, and differential gene expression
(DGE) analysis.

We also present the development of a standardized scoring
approach to identify the optimal correction method for each
technical batch variable in a combined dataset. The standardized
scoring approach described herein iterates through the five batch
effect correction methods listed above and geometrically probes
the space of all allowable scoring functions to yield an aggregate
volume-based scoring measure.

Lastly, we describe the implementation of an open-access, user-
friendly multi-study analysis and visualization portal for GeneLab
RNA-seq data, which allows users to selectmultiple studies, examine
batch effects, choose whether to correct batch effects based on the
scoring method, and then performs batch effect correction prior to
downstream analysis.

2 Methods

2.1 GeneLab RNA-seq datasets

Unnormalized RNA sequencing counts tables for Open
Science Datasets 47(Galazka et al., 2015), 48(Globus et al., 2015),
137(Smith et al., 2017), 168(Galazka, 2020), 173(Costes et al., 2018),
242(Galazka et al., 2019a), and 245 (Galazka et al., 2019b) were
downloaded from the Open Science Data Repository (https://
osdr.nasa.gov/bio/repo/). These counts tables were merged on the
ENSEMBL ID column, non-overlapping genes were eliminated,
and only spaceflight and respective ground control samples were
used. The combined counts table was normalized using the DESeq2
(v1.30.1) (Love et al., 2014) median of ratios method prior to
analysis and batch effect correction. For the log fold change
correlation and DGE comparison evaluation criteria, FLT and GC
samples from datasets GLDS-48 and GLDS-245 were each split
into two sub-datasets. GLDS-48_C = samples derived via tissues
extracted from frozen carcasses, GLDS-48_I = samples derived via
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tissues extracted immediately after euthanasia on the ISS (FLT)
or on Earth (GC), GLDS-245_ISST = samples derived via tissues
extracted immediately after euthanasia on the ISS (FLT) or on
Earth (GC), GLDS-245_LAR= samples derived via tissues extracted
immediately after euthanasia post live animal return to Earth.

2.2 Batch effect correction

All batch effect correction was performed in R v4.0.4.
ComBat(Johnson et al., 2007) and ComBat-seq (Zhang et al., 2020)
were accessed through the sva R package v3.38.0 (Leek et al.,
2020), and MBatch Empirical Bayes, ANOVA, and Median
Polish were accessed through the MBatch R package v5.4.7
(Akbani et al., 2018). Each batch effect correction was performed
on the DESeq2-normalized combined counts table. Each correction
algorithm was provided with the combined counts table and a
metadata file specifying the batch assignment for each sample
(Supplementary Table S1). After correction with each MBatch
algorithm, negative counts were converted to zero for downstream
processing.

2.3 Evaluation metrics

2.3.1 BatchQC
BatchQC (Manimaran et al., 2016) was run on the uncorrected

and batch corrected counts tables, using the BatchQC R package
v1.18.0. We calculated the skew and kurtosis values for each sample
using scipy. stats (v1.7.3) skew and kurtosis implementations. A
BatchQC improvement score was calculated as follows:

For each sample: di f f = |0 – uncorrected| − |0 – corrected|

Within each batch type: batchdi f fs = avg(di f fs)

Across all batch types: score = avg(batchdi f fs)

Where uncorrected = the skew or kurtosis value from the
uncorrect data, and corrected = the skew or kurtosis value from the
corrected data.

2.3.2 Principal component analysis (PCA)
PCA was run on the uncorrected and batch corrected counts

tables, using the prcomp() function from the stats R package (v4.1.0)
(R Core Team, 2021). In order to quantify the relationships within-
and between-batches before versus after batch effect correction, we
calculate two PCA improvement scores as follows:

tech_score = avg(dist between samples from di f ferent technical batch)
bio_score = avg(dist between samples from di f ferent biological condition)

For quantifying how effective a batch effect correction was,
tech_score must be minimized and bio_score must be maximized.

2.3.3 Dispersion separability criterion (DSC)
We calculate the DSC metric on the pre- and post-corrected

combined dataset using the PCA_Regular_Structures function in
the R MBatch library (v1.7.6). DSC quantifies the amount of batch
effect in data from a specific variable by measuring the ratio of

dispersion between batches and within batches (Oseni et al., 2021).
A higher DSC value indicates more batch effect because it means
greater dispersion between the batches than within the batches.
We calculate DSC values for each variable, take the mean across
all biological variables and all technical variables, then calculate
the difference in overall DSC values post-correction versus pre-
correction. To assess the effectiveness of batch effect correction,
the post-correction versus pre-correction differences in technical
variables should be maximized while the differences in biological
variables should be minimized.

2.3.4 Log fold change correlation
We calculate log2 fold change (LFC) for all genes in the FLT

versus GC groups, then calculate the correlation of LFC pairwise
between all datasets. We set pairwise comparisons from the same
batch to 0, and calculate the average value across all pairwise
datasets from different batches. This value should be maximized in
an effective batch effect correction.

2.3.5 Differential gene expression (DGE) analysis
DGE analysis was performed between FLT and GC samples

using DESeq2, from the DESeq2 R package v1.30.1. Genes with
fewer than 10 counts across all samples were filtered before
running size normalization. We perform two types of evaluation
using this criterion: DGE within-dataset and DGE across-dataset
comparisons.

For the DGE within-dataset evaluation we calculate the number
of differentially expressed genes (DEGs) per dataset post-correction
that match the pre-correction DEGs, or that are in addition (extra)
to the pre-correctionDEGs.We represent thematch and extraDEGs
as a fraction of the original for each dataset and then take the
mean across all datasets. To quantify the effectiveness of a batch
effect correction, the number of DEGs that match between pre- and
post-correction should be maximized and the number of DEGs that
are extra in post-correction compared to pre-correction should be
minimized.

For the DGE across-dataset evaluation we assess whether
DEGs are better preserved between datasets from different batches
post-correction. In a pairwise manner, we calculate the percent
overlapping DEGs which are preserved between each dataset from
pre-to post-correction.We scale the values between 0–1, set pairwise
comparisons from the same batch to 0, and calculate the average
value across all pairwise datasets from different batches. This value
should be maximized in an effective batch effect correction.

The values from each evaluation metric for each batch
variable/correction method pair are used as input to the scoring
method (see next section).

2.4 Scoring method

We developed a standardized scoring approach to identify the
optimal correctionmethod for technical batch variables for a specific
dataset by geometrically probing the space of all allowable scoring
functions from the evaluation criteria to yield an aggregate volume-
based scoring measure.

The data may be interpreted as a point cloud in a multi-
dimensional vector space with the number of points being the
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FIGURE 1
Principal Component Analysis (PCA) of the combined dataset. PCA plots with shapes representing either spaceflown (FLT) or ground control (GC)
groups and samples colored by (A) library preparation method (LibPrep) or (B) by mission.

number of competing batch variable/correction method pair
candidates. The evaluation criteria are evaluated across all candidate
pairs. A linear scoring function in terms of the evaluation scores
may be viewed as a hyperplane in the underlying vector space. In the
case that all evaluation scores are to be maximized, then seeking the
one or more candidate pairs that are optimized by any given choice
of scoring function (weighted combination of evaluation criteria)
amounts to maximizing the hyperplane offset over the point cloud.
Additional details are available in the Supplementary Methods.

The scoring method was implemented using MATLAB version
9.10.0.1684407 with libraries convhulln (convex hull computation),
delaunayn (simplicial decomposition), and vert2lcon (constraint
generation) and lcon2vert (vertex enumeration) libraries from
the Analyze N-dimensional Convex Polyhedra package (version
1.9.0.2).

3 Results

3.1 Identification of primary sources of
batch effect in multi-study dataset

Seven RNA-seq datasets containing liver samples from
spaceflown (FLT) and respective ground control (GC) mice were
downloaded from the NASA Open Science Data Repository
(processed GeneLab data) and combined as described in the
Methods (OSD/GLDS-47, -48, -137, -168, -173, -242 and -245).
The total sample number was 112 after combining datasets (57 FLT
samples and 55 GC samples). These datasets differ from each other
in key ways, including biological variables such as differences in age,
strain, and sex, as well as technical variables, including differences
in mission, preservation methods, and RNA library preparation
methods that could be sources of batch effect (Table 1). Full
sample-level metadata are available in Supplementary Table S1.

After read depth normalization with DESeq2 (see Methods), we
performed principal component analysis (PCA) to identify potential
sources of batch effect among the technical variables. We found
that the library preparation method used was the primary source
of variation among samples, and the mission the samples were

TABLE 2 Batch effect correction tools and associated algorithms and batch
variables. Five batch effect correctionmethods, including tools and their
associated algorithms were used to correct for each of themain sources of
batch effect in the combined dataset.

Tool Algorithm Sources of batch effect corrected

Combat Empirical Bayes

Library Preparation Mission

ComBat-seq Negative Binomial

MBatch Empirical Bayes

MBatch ANOVA

MBatch Median Polish

derived fromwas an additional source of sample grouping (Figure 1,
Supplementary Figure S1).

Based on the PCA plots in Figure 1 and Supplementary Figure
S1, we concluded that library preparation method and mission
were primary sources of batch effect in this combined dataset,
which may be masking potential differences in gene expression
between FLT and GC samples. We therefore sought to identify the
most effective tool to correct for each source of batch effect while
preserving biological differences. Five commonly used batch effect
correction tools/algorithms (Johnson et al., 2007; Akbani et al.,
2018; Zhang et al., 2020) were selected to independently correct for
the two sources of batch effect (Table 2, Methods).

To assess the effectiveness of each correction method for
removing batch effect while preserving biological signal, the
following six criteria were evaluated before and after correction
(as detailed in Methods): BatchQC, PCA, Dispersion Separability
Criterion (DSC), FLT vs. GC log2 fold change (LFC) correlation
across datasets and differentially expressed genes (DEGs) within
and across datasets. For each of the evaluation criteria, we
calculated an improvement score (see Methods) to quantify how
well each correction method removed batch effects according to
the given technical source of batch effect. Lastly, a custom scoring
methodology was developed and implemented to collectively
compare all 10 batch variable/correction method combinations
based on all the evaluation criteria.
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FIGURE 2
PCA plots of corrected data. PCA plots of sample data (A) after correcting for the library preparation batch variable using ComBat, samples colored by
library preparation method (LibPrep); (B) after correcting for the library preparation batch variable using ComBat-seq, samples colored by library
preparation method (LibPrep); (C) after correcting for the mission batch variable using ComBat, samples colored by Mission; (D) after correcting for the
mission batch variable using ComBat-seq, samples colored by Mission. For each PCA plot, shapes represent either space flown (FLT) or ground control
(GC) groups.

3.2 Evaluation of batch effect correction
with BatchQC, PCA, and DSC

BatchQC (Manimaran et al., 2016) was used to evaluate the
skew and kurtosis of each sample before versus after correction (see
Methods). Skew and kurtosis are mathematical assessments of how
each data point deviates from the normal distribution (Okrah and
Corrada Bravo, 2015). Here, the assumption is that deviance from
normal may be caused by batch effects, so we expect samples from
different technical batches to have more similar skew and kurtosis
values after correction. For this evaluation, correcting for library
preparation with MBatch Median Polish and correcting for mission
with ComBat-seq, outperformed the other correction methods
as evident by skewness and kurtosis values for samples from
different respective batches becoming more similar post-correction
(Supplementary Figure S2).

PCA was used to evaluate how samples cluster before and
after correction. If technical variables are successfully corrected,
samples in different technical variable batches would cluster closer
together post-correction and allow for samples in different biological
conditions (FLT or GC in the case presented here) to cluster
further apart. For this evaluation, correcting for library preparation
with MBatch ANOVA and correcting for mission with MBatch
Median Polish, outperformed the other correction methods as
evident by the reduced distance between samples in different
respective technical variable batches and increased distance between
samples in different biological conditions post-correction (Figure 2,
Supplementary Figure S3).

DSC (Oseni et al., 2021) was used to quantify the amount of
batch effect within the data by calculating the ratio of dispersion
between groups versus within groups before and after correction.
Samples were grouped multiple ways, based on technical variables
or biological variables, and the DSC metric was calculated for each
type of grouping before batch correction and after batch correction
using either library preparation or mission as the batch variable (see
Methods). An effective batch correction method should result in a
reduced DSC value for technical variable groupings and an elevated
DSC value for biological variable groupings. For this evaluation,
correcting for library preparation with MBatch Empirical Bayes
and correcting for mission with MBatch ANOVA, outperformed
the other correction methods as evident by minimizing the DSC
value for technical variable groupings and maximizing the DSC
value for biological variable groupings post-correction (Figure 3,
Supplementary Figure S4).

3.3 Evaluation of batch effect correction
with LFC and DGE

All samples in the combined dataset were derived from livers
of mice that were flown in space (FLT) and their respective ground
controls (GC); we therefore expect the relative changes in gene
expression in FLT versus GC samples in each original dataset
to be similar. However, differences in technical variables among
the original GLDS datasets (Table 1) may mask the correlation
of relative FLT versus GC gene expression changes. Therefore the
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FIGURE 3
DSC scores of corrected data compared to uncorrected data. Barplots of sample data grouped by biological (blue) or technical (orange) variables for
uncorrected DSC values subtracted from corrected DSC values (A) after correcting for the library preparation (LibPrep) batch variable using ComBat;
(B) after correcting for the library preparation batch variable using ComBat-seq; (C) after correcting for the mission batch variable using ComBat; (D)
after correcting for the mission batch variable using ComBat-seq. A blue star indicates the biological condition of interest (FLT or GC) and the orange
star indicates the technical batch variable that was corrected for.

FLT versus GC gene expression changes were compared, pairwise,
between original datasets to assess dataset to dataset correlation
before and after batch correction. For this evaluation, correcting for
library preparation with ComBat and correcting for mission with
ComBat, outperformed the other correction methods as evident
by the greatest overall increase in FLT versus GC log2 fold change
(LFC) correlation for pairwise dataset comparisons post-correction
(Figure 4, Supplementary Figure S5).

We next evaluated differentially expressed genes (DEGs)
between FLT and GC groups (adjusted p-value <0.05 and |LFC| >
1) for all GLDS datasets before and after batch correction. Changes
in DEGs before and after correction were quantified within each
dataset and across datasets.

We expect the DEGs within each dataset to be preserved after
combining samples across datasets and correcting for technical
differences. The number of preserved and newly identified DEGs
within each dataset was calculated after correction and reported
in Table 3 and Supplementary Table S2. For this evaluation,
correcting for library preparation with MBatch Empirical Bayes
and correcting for mission with ComBat, outperformed the other
correction methods as evident by the most preserved DEGs within

each dataset, and least additional DEGs, post-correction (Table 3
and Supplementary Table S2).

For cross dataset comparison of DEGs, the number of
overlapping DEGs between pairwise GLDS datasets were quantified
before and after batch correction and the percent of overlapping
DEGs preserved after batch correction was calculated. For this
evaluation, correcting for library preparation with ComBat-
seq and correcting for mission with MBatch Median Polish,
outperformed the other correction methods as evident by the
greatest percent of overlapping DEGs preserved post-correction
(Figure 5, Supplementary Figure S6).

3.4 Identifying optimum correction via a
custom scoring categorization scheme

Thus far, improvement scores were calculated for each of the
evaluation criteria described above to quantify the performance
of each of the 10 batch variable/correction method pairs (2 batch
variables, library preparation and mission, each corrected with one
of five correction methods described in Table 2). To collectively
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FIGURE 4
FLT vs. GC LFC correlation between liver datasets before and after batch correction. Correlation plots comparing space flight (FLT) versus ground
control (GC) log2 fold change (LFC) in gene expression between original datasets (A) before batch correction; (B) after correcting for the library
preparation (LibPrep) batch variable using ComBat; (C) after correcting for the library preparation batch variable using ComBat-seq; (D) after correcting
for the mission batch variable using ComBat; (E) after correcting for the mission batch variable using ComBat-seq. FLT and GC samples from datasets
GLDS-48 and GLDS-245 were each split into two sub-datasets as described in Methods.

TABLE 3 Comparison of DEGs in FLT vs GC groups within each dataset before and after correction. The“Uncorrected” row shows the number of differentially
expressed genes (DEGs) in each dataset before correction. For each batch variable and correctionmethod combination, the number of DEGs that match the
original uncorrected DEGs are shown outside of the parentheses, while the number of DEGs that were identified only after correction are shownwithin
parentheses.

GLDS 47 GLDS 48_I GLDS 48_C GLDS 137 GLDS 168 GLDS 173 GLDS 242 GLDS 245_LAR GLDS 245_ISST

Uncorrected 14 63 197 3 1,401 520 321 39 539

LibPrep as Batch
ComBat-seq 5 (107) 13 (170) 135 (465) 1 (6) 145 (29) 92 (47) 160 (188) 20 (37) 354 (229)

ComBat 2 (56) 21 (155) 91 (158) 0 (7) 303 (35) 117 (62) 173 (206) 24 (43) 413 (201)

Mission as Batch
ComBat-seq 1 (114) 30 (268) 33 (77) 1 (30) 11 (4) 2 (12) 25 (84) 11 (24) 244 (98)

ComBat 3 (79) 11 (35) 35 (61) 0 (9) 26 (22) 5 (5) 29 (17) 17 (24) 277 (102)
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FIGURE 5
Comparison of preserved DEGs in FLT vs GC groups across datasets after correction. Plots showing the pairwise comparisons of the percent
overlapping DEGs preserved in FLT versus GC groups across datasets after (A) correcting for the library preparation (LibPrep) batch variable using
ComBat; (B) correcting for the library preparation batch variable using ComBat-seq; (C) correcting for the mission batch variable using ComBat; (D)
correcting for the mission batch variable using ComBat-seq. FLT and GC samples from datasets GLDS-48 and GLDS-245 were each split into two
sub-datasets as described in Methods.

FIGURE 6
A geometry-based categorization scheme for ranking candidates against performance measures. In the schematic, dimensions F1 and F2 each
represent one of the evaluation criteria. In reality, our study uses six evaluation criteria, but this figure represents only two for illustration purposes. Each
point on the plot represents a competing batch variable/correction method pair. Each pair’s performance is dependent on the criterion. (A) The lines
on the plot represent linear criteria tradeoff functions. There are an infinite number of these functions, but we show two for illustration purposes. (B)
The batch variable/correction method pair that maximizes (optimizes) a given tradeoff function is identified. In this illustration, the candidate pair that
maximizes the F1 criterion is circled in red and the candidate pair that maximizes the F2 criterion is circled in green. (C) The percent volume of criteria
tradeoffs optimized by each candidate pair is calculated geometrically and used to rank all candidate pairs; the underlying geometric approach also
yields a quantification of the contribution from each evaluation criterion (Methods, Supplementary Table S3).
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TABLE 4 Scoring categorization scheme results for all batch
variable/correctionmethod pairs. The table reports the final ranking of the
batch variable/correctionmethod pairs based on the percent volume
assigned to each after applying the scoring categorization scheme.

Method Correction variable % volume assigned

ComBat Library preparation 34.69

ComBat-seq Library preparation 19.31

ComBat Mission 18.58

MBatch Median Polish Mission 13.06

MBatch Empirical Bayes Library preparation 8.17

ComBat-seq Mission 3.41

MBatch ANOVA Library preparation 1.95

MBatch Empirical Bayes Mission 0.79

MBatch Median Polish Library preparation 0.00

MBatch ANOVA Mission 0.00

compare all 10 batch variable/correction method pairs, a geometry-
based categorization scheme for ranking the candidate pairs
using their evaluation criteria performance scores was developed
(Figure 6).

After implementing the scoring categorization scheme, each
batch variable/correction method pair was assigned a % volume
related to the percentage of criteria tradeoffs (scoring functions)
under which it is maximized. Using this method, the library

preparation variable/ComBat correctionmethod pair out ranked the
other nine candidate pairs (Table 4). These results indicate that the
best approach for minimizing batch effects, and thus maximizing
biological signal, in the combined dataset is to correct for the library
preparation technical variable using the ComBat batch correction
method.

3.5 GeneLab user portal for multi-study
data analysis with batch effect correction

Providing a means to allow users to combine samples from
various space-relevant GeneLab transcriptomics datasets hosted
on the NASA Open Science Data Repository (Ray et al., 2019;
Berrios et al., 2021) will undoubtedly enable more insights into
how the space environment alters gene expression. The current
GeneLab multi-study visualization portal allows users to combine
samples from different transcriptomics datasets then perform
differential gene expression analysis and visualize their results
(Figure 7). Subsequent versions of the multi-study portal will also
provide users the option to identify and correct for batch effects
thereby reducing the likelihood of introducing artificial variation
in the combined dataset. Implementation of the batch correction
methodology described here will enhance user confidence in
the results of their multi-study analyses. Figure 8 outlines a
schematic of how we plan to implement the batch effect correction
feature in the GeneLab multi-study data analysis and visualization
portal.

FIGURE 7
Representative capabilities of the GeneLab Multi-Study Visualization Portal. (A) The search dashboard presents options for filtering datasets by multiple
factors including assay type, organism, and tissue type. (B) After combining datasets, the platform automatically identifies all factors and characteristics
represented in the combined dataset and provides users the ability to further select specific samples from each dataset. The platform will then
automatically calculate the principal components of the combined data and using a series of drop-down menus, users can choose which factors or
characteristics to use for labeling samples in the PCA plots. (C) Differential gene expression analysis results are automatically computed and displayed
in a sortable table. (D) Gene set enrichment analysis is performed on significantly differentially expressed genes and represented in a variety of plots,
including pathway normalized enrichment score (NES) plots.
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FIGURE 8
Overview of the GeneLab user portal for multi-study data analysis with batch effect correction. This batch effect correction pipeline will be publicly
available to users in GeneLab’s upcoming multi-study analysis and visualization portal. Blue indicates user choices, while green indicates automated
actions. Users can select datasets and samples and if they wish, bypass the correction and go straight to multi-study analysis. Otherwise users can
evaluate potential batch effects using PCA. Users can manually select the variable or variables for correction, or the variable with the greatest first
principal component will be selected by default. The user can then select which batch correction method(s) to evaluate, or the default is to evaluate all
5. After the batch variable/correction method pairs are selected, the categorization scoring function is run, and the candidate pair with highest ranked
volume is selected automatically unless the user makes a manual selection. The data are then corrected and subsequently fed into the multi study
analysis.

4 Discussion

Here we present a standardized approach for evaluating the
effectiveness of computational batch effect correction in RNA-seq
data. The introduction of technical batch effects is a particular
concern for space biology research and analysis, as spaceflight
experiments are expensive and time-consuming, which leads to
small datasets that are often combined to increase statistical power
(Beheshti et al., 2019; da Silveira et al., 2020; Malkani et al., 2020).
Therefore, we demonstrate our standardized evaluation approach
on a use-case of seven combined GeneLab RNA-seq datasets from
theNASAOpen ScienceDataRepository (https://osdr.nasa.gov/bio/
repo/).

We show that our evaluation and scoring approach solves
several common issues. First, there are many different batch
correction methods available (Johnson et al., 2007; Akbani et al.,
2018; Leek et al., 2020; Zhang et al., 2020) and several options for
how to evaluate the performance of a selected correction method
on a given dataset. However, many of these evaluation metrics
are commonly evaluated visually, adding issues of subjectivity. Our
approach converts metrics such as BatchQC (Manimaran et al.,
2016) and PCA(R Core Team, 2021) that are commonly evaluated
visually into quantifiable metrics that can be used in a scoring
evaluation. Our approach also facilitates the incorporation of
additional quantifiable evaluation metrics including dispersion
separability criterion (DSC) (Oseni et al., 2021), log fold change
correlation, and differential gene expression across datasets. Second,
many computational batch effect correction methods have been
developed over the past decade, and it is difficult and time-
consuming to evaluate the performance of multiple correction
methods as well as multiple options of technical variables to assess
for batch effect. Our approach rapidly calculates the effectiveness
of each batch variable/correction method pair according to

several evaluation metrics, standardizing the output and removing
subjectivity.

We also present a user portal which will make our approach easy
to implement for users who wish to combine RNA-seq data from the
Open ScienceData Repository, evaluate the presence of batch effects,
and identify and implement the most effective correction method.
This user portal is a natural extension of the current GeneLabMulti-
Study Visualization portal and will enhance the accessibility and
reusability of space biology RNA-seq datasets in the Open Science
Data Repository.

Although we demonstrate our approach on a space biology
use-case, our approach is broadly applicable to scenarios in
which multiple RNA-seq datasets are combined or when a large
dataset must be processed in several batches, introducing technical
variation. Furthermore, here we evaluate five commonly used
computational methods for correcting batch effect but our approach
can be used to evaluate and compare future methods that have not
yet been developed, in order to benchmark the performance of new
methods against previous ones.

With the low cost of high-throughput sequencing and the
demonstrable influx of RNA-seq datasets in both space biology
and the larger life sciences and biomedical fields, standardizing our
approach to data sharing and data re-use is essential for reproducible
research. We believe that the approach we present here is a vital
addition to the open science and data sharing communities as
it facilitates re-use of small and precious datasets and provides
transparent, rigorous evaluation of computational batch correction
methods.
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