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The saturation mechanism of
thermal instability
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The literature on thermal instability (TI) reveals that even for a simple
homogeneous plasma, the nonlinear outcome ranges from a gentle
reconfiguration of the initial state to an explosive one, depending on whether
the condensations that form evolve in an isobaric or nonisobaric manner. After
summarizing the recent developments on the linear and nonlinear theory
of TI, here we derive several general identities from the evolution equation
for entropy that reveal the mechanism by which TI saturates; whenever the
boundary of the instability region (the Balbus contour) is crossed, a dynamical
change is triggered that causes the comoving time derivative of the pressure
to change the sign. This event implies that the gas pressure force reverses
direction, slowing the continued growth of condensation. For isobaric evolution,
this “pressure reversal” occurs nearly simultaneously for every fluid element in
condensation and a steady state is quickly reached. For nonisobaric evolution,
the condensation is no longer in mechanical equilibrium and the contracting gas
rebounds with greater force during the expansion phase that accompanies the
gas reaching the equilibrium curve. The cloud then pulsates because the return
to mechanical equilibrium becomes wave mediated. We show that both the
contraction rebound event and subsequent pulsation behavior follow analytically
from an analysis of the new identities. Our analysis also leads to the identification
of an isochoric TI zone and makes it clear that unless this zone intersects the
equilibrium curve, isochoric modes can only become unstable if the plasma is in
a state of thermal non-equilibrium.

KEYWORDS

thermal instability, plasma instabilities, non-adiabatic flows, multiphase gas dynamics,
radiation hydrodynamics

1 Introduction

Thermal instability (TI) is a linear instability of the equations of non-adiabatic gas
dynamics that was first identified by Parker (1953). He discussed an application to the solar
atmosphere, namely the brightness fluctuations in solar flares and prominences, and there
has recently been a resurgence of interest by the solar physics community in understanding
the role of TI in prominence formation and the coronal rain phenomenon (e.g., Soler et al.,
2012; Antolin, 2020; Claes and Keppens, 2021; Antolin and Froment, 2022; Soler and
Ballester, 2022). TI became a topic of importance to the wider astrophysics community with
the classic work by Field (1965). In recent years, various review articles on galactic outflows,
the circumgalactic medium (CGM) and active galactic nuclei (AGN) have made it clear that
‘multiphase gas dynamics’ has become recognizable as an astrophysical subfield of its own

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2023.1198135
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2023.1198135&domain=pdf&date_stamp=2023-10-14
mailto:waters@lanl.gov
mailto:waters@lanl.gov
https://doi.org/10.3389/fspas.2023.1198135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198135/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198135/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Waters and Proga 10.3389/fspas.2023.1198135

(e.g., Tumlinson et al., 2017; Zhang, 2018; Laha et al., 2020;
Veilleux et al., 2020; Choudhury, 2023; Faucher-Giguere and Oh,
2023).

However, the use of the term ‘multiphase’ warrants clarification
in any given context. In the original two-phase (Field et al.,
1969) and three-phase (McKee and Ostriker, 1977) models of the
interstellar medium (ISM), each phase is true to the sense of the
word, representing a cold atomic or molecular phase interacting
with a warm partially ionized phase. This is the meaning of the
term also in observations of molecular outflows from AGN, as well
as in galactic winds and other studies related to the ISM/CGM.
Outside central cluster galaxies in the intracluster medium, the gas
temperatures are nearly virialized and ‘multiphase gas’ refers to
a multi-temperature plasma, one in which both ‘phases’ are near
collisional ionization equilibrium (CIE) conditions, with the lower
temperature plasma undergoing stronger bremsstrahlung cooling
and coronal line emission than the fully ionized plasma. This is
likewise the sense of the term on subparsec scale regions of AGN,
albeit the plasma ismuch closer to photoionization equilibrium than
to CIE due to the presence of an intense ionizing radiation field (e.g.,
Krolik et al., 1981; Lepp et al., 1985).

In almost all cases where these astrophysical environments are
modeled using hydrodynamical simulations that include radiative
heating/cooling and multiphase gas appears, its production is
attributable to TI reaching the nonlinear regime. The dynamics
associated with this regime first involves the saturation of TI,
whereby the gas pressure force halts the exponential growth
of condensation modes traversing a TI zone—the location in
density/temperature parameter space satisfying the generalized
stability criteria first derived by Balbus (1986). As we review in
Section 2, in addition to the entropy mode, there can be two
isochoric condensation modes that are associated with a different
TI zone than the entropy mode. There is also the possibility that
acousticmodes can become overstable within this isochoric TI zone,
but it remains to be demonstrated that this can actually lead to
multiphase gas production in global simulations. In this article, we
focus on understanding the process by which individual entropy
modes saturate in a homogeneous plasma, although the equations
used for this purpose apply to inhomogeneous flows and the other
modes as well. These equations and our analysis of the saturation
process is given in Section 3, wherewe also discuss several topics that
might benefit from a similar analysis. In Section 4, we summarize
our results and address a couple of controversial claims in the
literature.

2 Summary of (non)linear theory
results

In the early literature on TI, emphasis is placed on isobaric
and isochoric instability criteria rather than on the linear modes
obeying these criteria. Upon considering the full parameter space
of TI, it becomes important to draw a distinction between the
stability criteria, individual modes, and timescales dictating the type
of nonlinear evolution. This understanding aids the presentation
of our new results. Here we attempt to clarify these concepts by
summarizing our results from Waters and Proga (2019b; hereafter
WP19). In that work, we revisited the original analysis of the

governing cubic dispersion relationship presented by Field (1965)
to identify the nonisobaric regime of TI, and we also showed that
at sufficiently long wavelengths, there can be both the fast and slow
isochoric condensation modes.

In WP19, we neglected to point out an inconsistency between
two approaches for deriving the stability criterion of these isochoric
modes under circumstances where the background flow is out of
thermal equilibrium (i.e., for L ≠ 0 and where L is the net sum of
radiative heating and cooling processes). Reworking Field’s analysis
after taking L ≠ 0, we found that his original criterion for isochoric
instability is recovered, while as shown by Balbus (1986), a different
criterion follows from a direct perturbation analysis of the entropy
equation. By contrast, the dispersion relationship analysis recovers
Balbus’ criterion in the case of the entropy mode. As discussed in
Section 2.4, this discrepancy has implications for plasmas in states
of thermal non-equilibrium (TNE), as Balbus’ criterion implies the
existence of an isochoric TI zone that would otherwise have gone
undetected by linear theory.

2.1 Condensation modes

Upon linearizing the equations of non-adiabatic gas dynamics
with perturbations of the form exp(ω t+ ik ⋅ x), where ω = ωR + iωI
is the complex-valued frequency of a mode with wavenumber
k = |k|, two speeds emerge: the phase velocity vp = ωI/k that
gives the propagation speed of the mode and the ‘condensation
velocity’ vc = ωR/k that characterizes the speed of the advective flow
that grows or damps the amplitude of the density perturbation.
Condensation modes are non-propagating (vp = 0) linear modes
with vc ≠ 0, whereas adiabatic acoustic modes are non-condensating
(vc = 0)with vp ≠ 0.This statement holds so long as all non-adiabatic
source terms aside from a heat flux due to thermal conduction can
be written as a volumetric term L = L(ρ,T).

As discussed in detail in Section 2.3, the classifier ‘isochoric’
refers to the type of derivative of L/T that governs the stability
of the isochoric modes; it does not, however, imply evolution that
differs from the entropy mode during the linear growth phase. In a
homogeneous gas (or when the local approximation holds), all three
modes grow or damp according to the analytic solution:

ρ (x, t) = ρ0 +Aρ0e
ωRt cos (k ⋅ x)

v (x, t) = v0 −Avce
ωRt sin (k ⋅ x)

p (x, t) = p0 −Aρ0v
2
ce

ωRt cos (k ⋅ x) ,

(1)

where ρ0, v0, and p0 are the density, velocity, and pressure,
respectively, of the uniform background flow; A is the perturbation
amplitude; and vc is the solution to the cubic dispersion relation,
which can be expressed as

vc = −
Nρ

k tcool

Rλ + (vc/cs,0)
2

1+ (vc/cs,0)
2 . (2)

Here, cs,0 = √γp0/ρ0 and tcool is the characteristic cooling time
defined as

tcool ≡
E0

Λ0
, (3)
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where E0 = cvT0 is the gas internal energy and Λ0 is the cooling
rate (in units of erg s−1 g−1) evaluated in the background flow. The
quantity Rλ is the ratio

Rλ ≡
Np

γNρ
, (4)

where Np and Nρ are dimensionless measures of how the net cooling
rate varies with temperature:1

Np =
T0

Λ0
[T(

∂L/T
∂T
)

p
]

T=T0

+(
λF

λ
)

2
, (5)

Nρ =
T0

Λ0
(∂L

∂T
)

ρ
|
T=T0

+(
λF

λ
)

2
. (6)

The subscript on Rλ emphasizes the wavelength dependence of this
ratio; in Eq. 5 and Eq. 6, λF is the Field length defined as

λF = 2π√
κ0 T0

ρ0Λ0
, (7)

where κ0 is the (isotropic) thermal conductivity evaluated in the
background flow.

Condensation modes can be classified by the solution branch
that they occupy when solving Eq. 2. Equivalently, they can be
classified by their stability criteria. The stability of the entropy mode
is always governed by the sign of Np. In particular, when thermal
conduction is negligible (requiring either λF→ 0 or λ≫ λF in Eq. 5
and Eq. 6), the stability of the entropy mode depends only on the
sign of the isobaric temperature derivative of L/T, i.e., they are
unstable if the inequality

(
∂L/T
∂T
)

p
< 0, (8)

known as Balbus’ instability criterion (after Balbus, 1986), is
satisfied. Likewise, the stability of the fast/slow isochoric modes is
determined by the sign of Nρ; the instability criterion for them is

(∂L
∂T
)

ρ
< 0, (9)

when neglecting thermal conduction. Note the temperature
derivative is not of L/T in the isochoric case; this is the discrepancy
mentioned above that we will examine further in Section 2.4.

Typically, only one of the condensation modes, namely, the
entropy mode or the fast isochoric mode, will exist in the plasma
for any given value of R ≡ Rλ(λF = 0), the other two modes being
acoustic.Themain exception is the long-wavelength regime for a gas
with R < 0; there is a critical wavelength λcrit such that for λ > λcrit,
the acoustic modes transition into the fast and slow isochoric
condensation modes, so all three modes can exist simultaneously.
This critical wavelength is, to a good approximation,

λcrit =
2π
|Nρ|
√−B

R
λcool, (10)

1 The subscripted ‘T = T0’ here corrects a notational error in Eq. 6 of WP19;
this bracketed term is equal to (∂L/∂T)p −L/T evaluated at T = T0.

whereB = 27(R− 1/3)2/4− 1 and λcool is the so-called cooling length
that is defined as

λcool = cs,0 tcool. (11)

For λ < λcrit, only the entropy mode exists; when the isochoric
modes appear at λ > λcrit, they are stable when the entropy mode
is unstable (i.e., when Np < 0) and vice versa. The R > 0 regime
is very different, as the fast isochoric mode takes the place of
the entropy mode as the main condensation mode accompanying
acoustic modes, and these acoustic modes are also unstable (or to
use proper terminology, they are overstable), their stability being
governed by the isochoric criterion provided R < 1. Note by Eq. 4
that instability when R > 0 requires Np < 0 and Nρ < 0—both the
isobaric and isochoric instability criteria are satisfied. For R > 1,
the only condensation mode that can exist is the fast isochoric
one; the overstability of acoustic modes is no longer determined
by the sign of Nρ but rather by the sign of the isentropic derivative
(∂L/∂T)s, where s is the specific entropy.

2.2 Isobaric versus nonisobaric regimes

A number of properties can be inferred from Eq. 1 and
Eq. 2, making it clear under what circumstances a transition away
from isobaric growth rates implies nonisobaric evolution in the
nonlinear regime, regardless of which stability criterion is satisfied.
Notice that the quantity A vc e

ωR t is the maximum magnitude
of the instantaneous velocity at which plasma is supplied to the
slightly cooler gas by the slightly warmer gas to grow the density
perturbation with time. At the end of the linear regime when
A eωR t ∼ 1, vc is the maximum velocity reached. It is therefore
the characteristic velocity of advective flows upon entering the
saturation phase of nonlinear growth. Stated differently, not only
is the quantity vc the solution to the dispersion relation of the
linearized equations of gas dynamics but also its value reveals what
type of dynamics to expect in the nonlinear regime of TI.

Our reference point is therefore the isobaric value of vc that
can be derived by taking the limit |vc|≪ cs,0 in Eq. 2, namely,
vc = −Np/(γtcoolk). Since vc ≡ ωR/k, this corresponds to the growth
rate ωR = −Np/(γtcool) derived by Field (1965) for the short-
wavelength limit (when neglecting thermal conduction) that defines
the isobaric regime. Unstable growth requires ωR > 0, giving Np < 0
as the instability criterion. This derivation of the maximum growth
rate and Balbus’ instability criterion from taking the limit |vc|≪ cs,0
thus reveals the dynamics associated with isobaric evolution; at the
end of the linear regime, only tiny pressure gradients are necessary
to give rise to flows with |vc|≪ cs,0 that regulate the growth and
saturation of entropy modes.

Thus, the nonisobaric regime can be defined as the wavelengths
for which solutions to Eq. 2 do not satisfy |vc|≪ cs,0. As mentioned
above, the entropy mode is the only condensation mode that
can exist for wavelengths λ < λcrit and R < 0. It occupies the
solution branch of Eq. 2 with the property that vc rises smoothly
from 0 in the short-wavelength (k→∞) limit to |vc| = cs,0√−R
in the long-wavelength (k→ 0) limit. Hence, as the wavelength
increases, the entropy modes undergo a transition from isobaric to
nonisobaric dynamics unless |R|≪ 1. The two isochoric
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condensationmode branches only appear for λ > λcrit and asymptote
to |vc| = cs,0√−R and |vc| = (k tcool)−1Nρ in the k→ 0 limit. We
named the mode with vc ∝ k−1 the fast isochoric mode due to
this divergent property. Because k can always be chosen small
enough to make |vc| > cs,0, this mode is associated with an explosive
saturation regime at sufficiently long wavelengths, the expected
outcome being a self-fragmentation of the cloud after the saturation
phase. With |vc|/cs,0 = √−R for both the entropy mode and slow
isochoric mode in the k = 0 limit, the advective flows of long enough
wavelength modes will become supersonic during saturation
provided R ≲ −1. In WP19, we speculated that this could also lead
to self-fragmentation, referring to either instance of saturation
leading to self-fragmentation as ‘splattering’. This has since been
demonstrated by Gronke and Oh (2020), although they did not
specify if the unstable condensationmodes in their simulations were
fast isochoric ones or entropymodes, and they incorrectly attributed
the self-fragmentation seen to the now discredited (see WP19;
Das et al., 2021; Farber and Gronke, 2022) ‘shattering’ hypothesis
of McCourt et al. (2018) that is discussed below.

2.3 Nonisobaric versus isochoric evolution

The nonisobaric behavior at wavelengths giving |vc| ≳ 0.1cs,0,
but before reaching the splattering regime at |vc| ∼ cs,0, has been
confirmed by other researchers and is the following. The response
to the halting of the compression phase once the cooling gas reaches
its equilibrium temperature is for the core of the condensation
to ‘bounce’ and enter an expansion phase. Jennings and Li
(2021) coined the term ‘contraction rebound’ to conceptualize this
saturation dynamics. Further compressive/expansive motions recur
as damped oscillations, causing the cloud to ‘pulsate’—the descriptor
used byGronke andOh (2020). If this rich dynamics is studied using
a single entropy mode for the initial conditions, the frequency of the
pulsations is the linear theory growth rate, ωR (see WP19).

In the literature on nonlinear TI, there are a number of
conflicting claims about the differences between the short- and long-
wavelength regimes and their relationships to isobaric and isochoric
instability (e.g., Meerson, 1996; Burkert and Lin, 2000; Vázquez-
Semadeni et al., 2003; McCourt et al., 2018; Mandelker et al., 2021).
The most controversial claim came from McCourt et al. (2018), who
presented simulations that appear to show an isochorically cooling
background flow containing unstable perturbations spontaneously
shatter during the nonlinear saturation phase of TI. Their study
was aimed at establishing λcool evaluated in the cold phase gas after
TI saturates as the more relevant length scale characterizing cloud
sizes when compared with the already established value, namely,
λcool evaluated in the background flow out of which the clouds had
condensed (e.g., Perry and Dyson, 1985; Burkert and Lin, 2000).
We showed in WP19 that λcool in the cold phase gas will generically
be smaller than the Field length of the background flow, making
McCourt et al. (2018)’s hypothetical ‘cloudlets’ subject to immediate
evaporation (see Begelman and McKee, 1990). Additionally, we
interpreted their simulations as being a demonstration not of
‘shattering’ but rather of ‘isobaric takeover’, a process described
succinctly by Burkert and Lin (2000): “the fluctuations that can first
reach non-linearity would dominate the growth of all perturbations
with longer wavelengths and homogenize disturbances with smaller

wavelengths. Thus, they determine the characteristic size and mass
of the cold dense clumps that would emerge from the cooling
of an initially nearly homogeneous cloud.” In other words, since
McCourt et al. (2018) introduced a spectrum of perturbations into
their initial conditions (a pre-existing cloud with a density contrast
χ = 10), the short-wavelength condensation modes with the highest
growth rates saturated while the ones with the longest wavelengths
were still in the linear regime, making it appear as though the cloud
as a whole underwent fragmentation. We return to this point in
Section 4.1.

To quote again from Burkert and Lin (2000), when discussing
the nonisobaric regime, they state: “Because of its long sound-
crossing timescale, the perturbation cannot be compressed
significantly while cooling; it cools almost isochorically (Parker,
1953).”We view this wording as confusing on account of the fact that
as alreadymentioned, all condensationmodes undergo compression
according to Eq. 1 during the linear growth phase, regardless of the
sound-crossing timescale. To clarify matters, we note that there
are two common usages of the word isochoric in the literature on
TI: i) a reference to the isochoric instability criterion or to the two
condensation modes obeying this criterion and ii) a reference to
long timescales for any small-amplitude thermal fluctuations in the
background flow (which can be decomposed into a superposition of
sinusoidal condensation modes of various wavelengths) to lead to
changes in the density, i.e., for tρ ≡ |∂ lnρ/∂t|−1 ≫ tcool. Because tρ can
only be as large as the relevant dynamical time—the perturbation
sound crossing time, tcross, in local simulations—usage ii) entails
having tcool ≪ tcross.This in turn requires distinguishing between the
short- and long-wavelength condensation modes, but the concept
of ‘long wavelength’ only makes sense when the modes become
nonlinear so that they can excite and interact with sound waves
to ‘be informed’ of their lengths. Once this interaction occurs,
if tcool ≪ tcross, the sound waves cannot quickly communicate
the pressure changes accompanying the thermal fluctuations. As
we demonstrated in WP19, what happens instead of isochoric
evolution (the density remaining approximately constant in this
nonlinear interaction phase with sound waves) is the characteristic
nonisobaric behavior described above: oscillations commence
throughout the condensation. Thus, ‘isochoric evolution’ is not
a meaningful concept unless the oscillations fully dampen, this
mechanical equilibrium state being reached only if the condensation
is free of thermal disturbances.

In summary, in the linear phase of TI, the descriptors ‘isobaric’
and ‘isochoric’ only have meaning as classifiers of the instability
criteria. When discussing evolution in the nonlinear phase of
TI, ‘isobaric’, ‘nonisobaric’, and ‘isochoric’ are associated with
tcross ≲ tcool, tcross ≳ tcool, and tcross ≫ tcool, respectively. However, it
is clear that the regime tcross ≫ tcool represents ‘extreme nonisobaric
behavior’ that will not allow tρ ∼ tcross. For this reason, we feel that
in studies discussing the long-wavelength regime of TI, phrases such
as ‘the evolution should be nearly isochoric’ should be interpreted as
‘the evolution should be highly nonisobaric’.

2.4 TI zones

All of the possibilities for TI can be assessed graphically given
the function L. In general, this function can only be computed
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numerically using, for example, a photoionization code, and so it
is impossible to arrive at analytic expressions for the instability
thresholds—the zero contours of Np and Nρ. Recently, however, in
extending the theory of TI to radiation hydrodynamics (RHD), we
arrived at a simple function L that does have analytic expressions
for Np and Nρ, and the curves defining their zero contours (see
Proga et al., 2022). In the Appendix, we take the optically thin limit
of these equations to facilitate their use in hydro/MHD codes and
to make our results here easily reproducible. In Figure 1, we plot
the contour L = 0 on a pressure–density phase plane (referred to
as just the ‘phase diagram’ hereafter). In textbook presentations of
TI, typically only the regions where L > 0 and L < 0 are marked,
masking any connection to nonlinear dynamics. We will see below
how overplotting TI zones makes the phase diagram useful for
understanding nonisobaric evolution. In Section 3, we employ a
combined graphical and analytical analysis to uncover the saturation
process.

We can use the cooling function defined in Eq. A2 in
the Appendix to highlight the significance of the discrepancy
mentioned at the beginning of Section 2, namely the existence of
an isochoric TI zone according to Balbus’ criterion and the lack of
unstable parameter space for isochoric modes according to Field’s
criterion. Taking the temperature derivative at fixed density of
Eq. A2 gives

(∂L
∂T
)

ρ
= 1

2
c Affρ T −4.5 (aT4 + 7Er,s) + cACEr. (12)

Here, Er and Er,s are both constant values of the radiation energy
density (see the Appendix) and Aff and AC are positive constants.

We see that this derivative is always positive and thus cannot
satisfy Field’s instability criterion as given by Eq. 9. However, Balbus’
instability criterion for isochoric modes is [∂(L/T)/∂T]ρ < 0, which
expands to

(∂L
∂T
)

ρ
< L

T
. (13)

Substituting Eq. 12 into Eq. 13 yields an expression that can be
satisfied, demonstrating how allowing for L > 0 increases the
parameter space for TI. We define any circumstance where the
background flow has L ≠ 0 as it being in a state of thermal non-
equilibrium (TNE). There has been confusion in the literature
regarding the onset of TI in a TNE state, which we address directly
in Section 4.2.

At this point, it is useful to recognize that the contour
where (∂L/∂T)ρ = L/T is equivalent to the zero contour of the
dimensionless quantity

N′ρ =
T0

Λ0
[T(

∂L/T
∂T
)]

ρ
. (14)

The region on the phase diagram satisfying Eq. 13, or equivalently
N′ρ < 0, is what we refer to as the isochoric TI zone; the gray region
in Figure 1 is therefore where the fast/slow isochoric modes are
unstable and where the acoustic modes can be overstable. The TI
zone marking where entropy modes are unstable is likewise defined

FIGURE 1
Pressure–density phase diagram depicting the equilibrium curve (black line), TI zone (pink region), isochoric TI zone (gray region), and boundary of the
TI zone (the Balbus contour, red line). In the bottom panel, we plot an initial unstable equilibrium state (black dot) along with two sets of ‘tracks’ to
depict the two limiting ways in which condensation modes begin to evolve in the nonlinear phase of TI, with blue (red) symbols denoting gas being
cooled (heated): (i) nearly isobarically along horizontal tracks (diamonds); (ii) highly non-isobarically along tracks following the equilibrium curve (dots).
The saturation mechanism begins at the location where the tracks end; it is triggered when the tracks cross the Balbus contour into a region of stability.
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by the zero contour of the quantity:

N′p =
T0

Λ0
[T(

∂L/T
∂T
)]

p
. (15)

We avoided terming this the ‘isobaric TI zone’ because the long-
wavelength entropy modes that give rise to nonisobaric evolution
in the nonlinear regime of TI are still nevertheless governed by
the ‘isobaric’ instability criterion N′p < 0. Note that, upon neglecting
thermal conduction, Eq. 15 is identical to Eq. 5 (after evaluating it at
a given T0), whereas Eq. 14 is equivalent to Eq. 6 only for L = 0.

From Figure 1, notice that the gray region is a subset of the
red region, implying both N′p < 0 and N′ρ < 0 there; in terms of the
discussion from Section 2.1, along the equilibrium curve, this net
cooling function lacks parameter space where Rλ < 0 due to Np > 0
andNρ < 0. Again, the only way the isochoric TI zone will be entered
is if the gas undergoes coolingwithL > 0, i.e., if the background flow
is in a TNE state.

The bottom panel of Figure 1 illustrates our point about it being
necessary to replace the concept of ‘isochoric evolution’ with ‘highly
nonisobaric evolution’. The black dot marks an unstable position
on the equilibrium curve. If the background flow is assigned the
initial conditions at this location, then the linear growth phase of
TI takes place on this dot because any noticeable deviation away
from the initial conditions implies nonlinear amplitudes. The two
sets of ‘tracks’ shown therefore represent the paths that can be taken
by an unstable condensation mode once its amplitude becomes
nonlinear. The horizontal set corresponds to isobaric evolution. A
vertical set would correspond to isochoric evolution. What is shown
instead is what actually happens in the long-wavelength regime: a
condensation mode follows the equilibrium curve. This was first
revealed by numerical simulations (see WP19), but it is clear in
hindsight that this is what the nonlinear dynamics requires; when
tcool ≪ tcross, the gas will be driven to equilibrium as it evolves.2

The red solid line in Figure 1 is the boundary of the TI zone that
we refer to as the Balbus contour. We terminate the tracks once they
cross this contour to emphasize that this stage of evolution marks
the beginning of the saturation process, as we show in the following
section.

3 Saturation mechanism

The dynamics of how TI saturates is highly nonlinear, hence
most prior work has been based on constructing simplified
dynamical models (see Meerson, 1996) or analyzing the results
of numerical simulations. In WP19, we associated the temporal
event of the cooling gas ‘landing on the equilibrium curve’ with the
dynamical response henceforth referred to as ‘contraction rebound’,
to adopt the term introduced by Jennings and Li (2021). The
sequence of events leading up to contraction rebound is initiated
well before the cloud reaches the equilibrium curve. As we show in
Section 3.2, the trigger is a change in the sign ofN′p, i.e., when the gas
crosses the boundary of the TI zone and thus switches from being
unstable to stable.

2 To view an animation comparing isobaric and nonisobaric evolution, please
refer to the published article data here.

3.1 Equations governing nonlinear regime
of TI

Our starting point is the evolution equation for the specific
entropy (neglecting thermal conduction)

Ds
Dt
= −L

T
, (16)

where D/Dt = ∂/∂t+ v ⋅∇ is the advective derivative. It is convenient
to make this equation dimensionless. If we introduce the primed
variables s′ ≡ s/cv, t′ ≡ t/tcool, L′ ≡ L/Λ0, and T′ ≡ T/T0, this
equation becomes Ds′/Dt′ = −L′/T′ for tcool = cvT0/Λ0 as defined
in Eq. 3.3 To proceed without an excessive use of ‘primes’, all
equations from here are understood to be written in terms of these
primed variables.

As mentioned by Balbus (1986), applying a Lagrangian
perturbation operator to Eq. 16 is the key to understanding TI
anytime the flow is in a TNE state, having departed from the
equilibrium curve. This hints at it being useful to apply a second
advective derivative instead, to give

D2s
Dt2
= − D

Dt
L
T
. (17)

In the Appendix, we show that for net cooling functions of the form
L = L(ρ,T), Eq. 17 is equivalent to

D2s
Dt2
= N′p

D lnρ
Dt
−N′ρ

D lnp
Dt
, (18)

where N′p and N′ρ are just the quantities from Eq. 14 and Eq. 15
expressed in dimensionless variables:

N′p = T(
∂L/T
∂T
)

p
;

N′ρ = T(
∂L/T
∂T
)

ρ
.

(19)

Eq. 18 is therefore a dynamical relationship that connects the gas
density and pressure gradients with the quantities determining
the stability criteria and growth rates of the condensation modes.
Whereas in linear theory, Np and Nρ are considered constant
parameters describing the background flow, here N′p and N′ρ are
time dependent, and this equation can be applied to the modes
themselves to understand their nonlinear evolution. It becomes
immediately clear that once the Balbus contour is crossed (i.e., once
N′p changes the sign), D lnρ/Dt and D lnp/Dt must also change,
implying that the linear growth regime given by Eq. 1 has ended.

Less elegant versions of Eq. 18 are required for understanding
the saturation dynamics of TI in detail. In going from Eq. 17 to
Eq. 18, we have already assumed an ideal gas, making Eq. 18 not yet
fully simplified. The specific entropy is s = ln(p/ργ) up to an additive
constant. Hence, either the left-hand side of Eq. 18 can be written in
terms of D2p/Dt2 and D2ρ/Dt2, or either D lnp/Dt or D lnρ/Dt can
be eliminated in favor of Ds/Dt on the right-hand side. Retaining

3 Whereas in linear theory, the subscript ‘0’ denotes a quantity evaluated in
uniform background flow, here it denotes just a fiducial value, as Eq. 16 is a
dynamical equation for how the background flow varies.
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both forms of the second option is the key to understanding the full
saturation mechanism. By analogy with Eq. 4, we define the ratio

R′ ≡
N′p
γN′ρ
, (20)

leading to, after a bit of algebra,

D2s
Dt2
+

N′p
γ

Ds
Dt
= −N′ρ (1−R′)

D lnp
Dt
;

D2s
Dt2
+N′ρ

Ds
Dt
= −γN′ρ (1−R′)

D lnρ
Dt
.

(21)

By eliminating Ds/Dt and D2s/Dt2 using Eq. 16 and Eq. 17,
respectively, and then solving for D lnp/Dt and D lnρ/Dt, we
arrive at

D lnp
Dt
= 1

N′ρ (1−R′)
[ D

Dt
L
T
+

N′p
γ

L
T
];

D lnρ
Dt
= 1

γN′ρ (1−R′)
[ D
Dt

L
T
+N′ρ

L
T
] .

(22)

The first of these final expressions reveals that the sign changes of
D lnp/Dt are determined by the location on the phase diagram (the
value of N′p, N′ρ, R′, and L/T), as well as by D(L/T)/Dt, the rate of
change of the instantaneous entropy production rate as measured
by tracking a fluid element. The latter quantity accounts for the
kinematic motion of the fluid element that is determined by the
continuity and force equations.

The second expression is interpreted similarly, but it is distinct
in that N′p no longer appears in the expression in brackets. As

we show in Section 3.3, for the dynamics taking place once the
gas lands on the equilibrium curve, sign changes in D lnρ/Dt are
accompanied by sign changes inD lnp/Dt, and this is associatedwith
‘pulsations’—oscillations in the size of the cloud.

3.2 Crossing the Balbus contour

We now apply Eq. 22 to a single condensation mode in the
nonlinear phase of TI to infer the sequence of dynamical events
that must take place during saturation. We focus our analysis on the
blue horizontal tracks in Figure 1, corresponding to nearly isobaric
evolution within a TI zone (where N′ρ > 0, N′p < 0, and R′ < 0). It is
clear from Figure 1 that N′p = 0 will occur well before the cooling
gas reaches the equilibriumcurve (atwhich pointn ≈ 9× 1011 cm−3).
Evaluating the D lnp/Dt equation at N′p = 0 gives

D lnp
Dt
= 1

N′ρ (1−R
′)

D
Dt

L
T
. (23)

This equation states that provided R′ < 1, there can be only two
possibilities once the density has increased enough to place the cool
gas at the Balbus contour: i) the sign of D lnp/Dt is the same as that
of D(L/T)/Dt or ii) both D lnp/Dt and D(L/T)/Dt are zero. We will
henceforth refer to the event of D lnp/Dt passing through zero as a
‘pressure reversal’. The proviso that R′ < 1 is confirmed in Figure 2.

Possibility ii) would imply that a pressure reversal accompanies
a Balbus crossing and also coincides with the time that L/T reaches
its maximum value. Our claim is that possibility i) would imply that
all three events are not simultaneous but that a pressure reversal is

FIGURE 2
Variation of the parameter R′ defined in Eq. 20 during isobaric evolution. The red vertical lines demarcate the TI zone corresponding to the horizontal
tracks in Figure 1, with a black dot again marking the initial equilibrium state of the background flow. Once a short-wavelength condensation mode
reaches nonlinear amplitudes, it will sample the R′ values given by the black curve. This curve terminates on either end at stable (R′ > 0) points on the
equilibrium curve. A dashed horizontal line is drawn at R′ = 1; the property R′ < 1 for isobaric evolution is likely a generic one for astrophysical cooling
functions.
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nevertheless associated with the event of the gas reaching N′p = 0. If
the evolution were to exactly follow an isobar, then using the chain
rule,

D
Dt

L
T
= (

∂L/T
∂T
)

p

DT
Dt
. (24)

The Balbus contour is by definition where the first term in
parenthesis vanishes, so in this instance, there is only possibility ii)
above. Because perfect isobaric evolution is in violation of Eq. 1,
we conclude that these events cannot be simultaneous. However,
the causal link has been established and we expect the interval
between a Balbus crossing and a pressure reversal to be a measure
of (non)isobaricity.

To sort out the order in which the events occur, we can follow
similar reasoning and express Balbus’ instability criterion fromEq. 8
as

[(∂T
∂t
)
−1 ∂

∂t
L
T
]

p
< 0. (25)

This expression reveals that unstable cooling gas has ∂(L/T)/∂t > 0
at any fixed position within the overdense region of a condensation
mode. It therefore tells us that the sign of D(L/T)/Dt starts off
positive during the linear growth phase. By Eq. 1, D lnp/Dt < 0 in
the linear regime—physically, unstable cooling gas loses pressure
support because the temperature drops faster than the density
can rise. As the Balbus contour is approached, it is possible
mathematically for D lnp/Dt to reach 0 before D(L/T)/Dt does; by
Eq. 22, D lnp/Dt = 0 corresponds to

D
Dt

L
T
= −

N′p
γ

L
T
. (26)

Above the Balbus contourN′p < 0, givingD(L/T)/Dt > 0 as required.
However, this order of events implies that a pressure reversal was
not preceded by a sign change in D(L/T)/Dt or a change in stability
conditions. On this basis, we can discount this outcome except in
instances where the cooling gas passes through the isochoric TI zone
(see Section 3.4).

The remaining outcome is the following sequence of events:

1. The cooling rateL/T reaches its maximum value prior to crossing
the Balbus contour, i.e., D(L/T)/Dt = 0 in a region where N′p < 0.
After this time, D(L/T)/Dt < 0.

2. The cooling gas reaches the Balbus contour. Since D(L/T)/Dt < 0
now, D lnp/Dt < 0 according to Eq. 23 i.e., the sign of D lnp/Dt is
still that of the linear growth phase.

3. Prior to reaching the equilibrium curve where L = 0, a pressure
reversal takes place when Eq. 26 is satisfied. Because N′p > 0 now,
D(L/T)/Dt < 0 by Eq. 26, consistent with the first event.

We conclude that the true trigger for saturation is not crossing
the actual Balbus contour corresponding to N′p = 0 on the phase
diagram, but rather the ‘local Balbus contour’ seen by a comoving
fluid element, D(L/T)/Dt = 0. In practice, however, it is likely that
these first two events occur within one thermal time, making the
distinction unimportant.

3.3 Landing on the equilibrium curve

Figure 2 shows that R′ < 1 during the entire path traced by the
condensation mode as it isobarically approaches the equilibrium

curve. This is the expected result based on linear theory (see
Section 2.1). The sign changes in D lnp/Dt and D lnρ/Dt are
therefore controlled by the bracketed terms in Eq. 22.Wewill reserve
the phrase ‘pressure reversal’ to apply exclusively to the circumstance
that D lnp/Dt changes the sign due to crossing the Balbus contour.
Other options for the sign changes will be referred to as ‘zero
crossings’.

We have already mentioned that N′p does not appear in the
bracketed term of the D lnρ/Dt equation, and this means that
contraction continues during and after a pressure reversal. Because
D(L/T)/Dt < 0 outside the TI zone after the Balbus contour is
crossed, the first time that D lnρ/Dt can reach 0 is, according to
Eq. 22, when

D
Dt

L
T
= −N′ρ

L
T
. (27)

This event corresponds to the density reaching its maximum value,
thus marking the transition from contraction to expansion. In
other words, this marks the beginning of the contraction rebound
process.

In an isobaric case, it is likely for Eq. 27 to be satisfied only
once—this single contraction rebound event leading directly
to the cloud reaching a steady state on the equilibrium curve.
For nonisobaric evolution, the pulsations that occur after
contraction rebound, as observed in numerical simulations (see
WP19; Gronke and Oh, 2020), correspond to cycles between
subsequent zero crossings of D lnp/Dt and D lnρ/Dt, with each
zero crossing satisfying Eq. 26 and Eq. 27. Notice that this
will involve oscillations about the equilibrium curve L = 0. A
dedicated study of the D lnρ/Dt equation in Eq. 22 is necessary
to understand what parameters govern the pulsation damping
rate.

3.4 Passing through the isochoric TI zone

Notice from Figure 1 that for the net cooling function given in
the Appendix, it is possible to enter a regime of isochoric TI during
isobaric evolution at just slightly higher pressures than that of the
black dot. As mentioned in Section 3.2, this allows for a pressure
reversal to occur inside the isochoric TI zone at a location where
Eq. 26 can be satisfied. The only new constraint is found by setting
N′ρ = 0 in Eq. 22 to give

D lnρ
Dt
= − 1

N′p
D
Dt

L
T
. (28)

This relationship must hold at the boundary of the isochoric TI
zone, revealing that if density is to remain monotonically increasing
upon both entering and exiting this region (throughout which N′p <
0), D(L/T)/Dt must remain positive. Substituting Eq. 28 into the
D lnp/Dt equation in Eq. 22 additionally shows that a pressure
reversal will occur at this boundary if D lnρ/Dt = γ−1L/T there. The
alternative is forL/T to reach its maximum value at the boundary of
this zone, which would correspond to having D lnρ/Dt = 0, thereby
satisfying Eq. 27 also. This would imply that contraction rebound
precedes the pressure reversal because D lnp/Dt = −L/T by Eq. 22,
i.e., the sign of D lnp/Dt is still that of the linear growth phase. The
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viability of either of these sequences of events has to be verified
numerically.

3.5 Other applications of the new identities

Being a general identity of non-adiabatic gas dynamics, Eq. 18
may prove useful in a variety of settings.4 In particular, Eqs 18–28 are
unchanged in ideal MHD, hence so should be the overall saturation
mechanism. However, the thermal evolution can differ in detail
because in MHD, the paths traced on the phase diagram depend on
the field strength (Bottorff et al., 2000, WP19). The linear theory of
TI inMHDhas recently been revisited by Claes andKeppens (2019),
and it would be interesting to determine the plasma beta at which
unstable condensation modes no longer carry out the sequence of
events listed in Section 3.2.

Another obvious application is to the connection between TI
and convective instability in stratified atmospheres (see Balbus
and Soker, 1989; Binney et al., 2009; Balbus and Potter, 2016). To
show that Eq. 18 is a generalization of results derived in that
context, it is sufficient to examine one of the identities in Eq. 21
in a steady state. Taking D/Dt→ v ⋅∇ gives, for the D lnp/Dt
equation,

v ⋅∇ (v ⋅∇s) +
N′p
γ
v ⋅∇s = −N′ρ (1−R′)v ⋅∇ lnp. (29)

Noting that N′ρ(1−R′) = N′ρ −N′p/γ by Eq. 20, we now also
assume that the background state of the gas is in thermal
equilibrium with L = 0. This reduces the quantity N′ρ −N′p/γ to
T[(∂L/∂T)ρ − γ−1(∂L/∂T)p], which is simply related to the quantity
(∂L/∂T)s by the thermodynamic identity (e.g., see Balbus, 1995):

γ− 1
γ
(∂L

∂T
)

s
= (∂L

∂T
)

ρ
− 1

γ
(∂L

∂T
)

p
, (30)

bringing us to

v ⋅ [∇ (v ⋅∇s) + 1
γ
(∂L

∂T
)

p
∇s+

γ− 1
γ
(∂L

∂T
)

s
∇ lnp] = 0. (31)

If we now apply an Eulerian perturbation operator to this
equation, the result is a product rule giving, schematically,
δv ⋅ […] + v ⋅ δ[…] = 0. As a last step, we assume the background
atmosphere is static and spherically symmetric, leaving just the
bracket attached to δv, which simplifies to

(∂L
∂T
)

p

∂s
∂r
= −(γ− 1)(∂L

∂T
)

s

∂ lnp
∂r
. (32)

This equation is identical to Eq. 96 in Balbus and Potter (2016),
who obtained it through a more involved Lagrangian perturbation
analysis. As they explain, this relationship implies that TI will
be accompanied by convective instability in an unstable static
atmosphere.

In complicated flows, TI zone boundary crossings are likely
common if not inevitable events during thermal evolution. Pressure

4 Note this equation is more general than Eq. 16 because that equation neglects
all effects of thermal conduction due to a heat flux vector q, whereas Eq. 17,
Eq. 18, and Eq. 21 will still hold in regions where ∇ ⋅q = constant.

reversals could therefore also play a role in mediating fragmentation
caused by flow interactions. To provide an illustrative example, first
note that a pre-existing cloud put in ‘by hand’ as initial conditions
in non-adiabatic cloud–wind simulations and the fragments that
appear as the cloud’s surface layers are disrupted, all occupy the
same parameter space on a phase diagram as the cloud that is
formed from TI. Referring to the tracks in Figure 1, as this gas
changes its temperature upon interacting with the wind, the cold
phase gas may repeatedly enter and exit the TI zone. A less
disruptive example where crossing the Balbus contour may initiate
the underlying fragmentation process is the ‘tearing’ mechanism
identified by Jennings and Li (2021). By following individual fluid
elements and applying Eq. 22, it should be possible to decipher
the causal relationship between forces and the overall thermal
evolution.

Yet, another topic concerns the dynamic role of pulsations
in a regime of isochoric TI. Pulsations correspond to a change
in the sign of D lnρ/Dt, as discussed in Section 3.3. We have not
yet studied nonisobaric evolution in a regime of isochoric TI
using numerical simulations, and it is unclear if other groups
have either. It is not standard practice to calculate the value of
Rλ in Eq. 4 or R′ in Eq. 20 that characterizes any particular TI
regime. This is especially relevant for a recent work on cloud
coalescence instability; Gronke and Oh (2022) claim that this
instability is aided by overstable acoustic modes, but such modes
only exist when the isochoric or isentropic instability criterion is
satisfied. Because they do not indicate which instability regime they
consider, their claim of unstable acoustic modes being the agent
that increases the coalescence rate is questionable. In our work
on this instability (Waters and Proga, 2019a), we mentioned that
coalescence can potentially be very fast; its rate can reach the rate
set by the dynamical timescale provided the flow is continually
subject to thermal disturbances, for this (re)excites pulsations and
their accompanying advective flows that mediate the entire merger
process.

4 Summary and discussion of
controversial claims

In previous studies, we have shown that plotting the Balbus
contour (the boundary of the TI zone on a phase diagram) is an
essential diagnostic for understanding dynamical TI (Barai et al.,
2012; Dannen et al., 2020; Waters et al., 2021; Waters et al., 2022),
the counterpart to local TI when the background flow gradients are
non-zero and the only type of TI encountered in global accretion
flow or outflow simulations. Here, we have established that the
Balbus contour plays an important dynamical role for local TI also.
Specifically, Eq. 22 reveals the mechanism by which TI saturates:
whenever this contour is crossed, a sequence of events unfolds
that causes Dp/Dt to undergo a change in the sign. This marks
the end of the exponential growth phase, i.e., crossing the Balbus
contour causes the density, velocity, and pressure profiles to no
longer resemble the solution to the linearized equations given in
Eq. 1.

The saturation process is initiated in the gas undergoing cooling.
The pressure reversal implied by a change in the sign of Dp/Dt
indicates that the condensation can start gaining pressure support; at
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a fixed locationwithin the condensation,−∇p changes frompointing
inward to outward and thus begins to halt further contraction.
The confining gas, meanwhile, continues to occupy the TI zone
and undergoes runaway heating because the hotter gas is less
dense and therefore heats up at a lower rate than the rate at
which the condensation cools down. This, in turn, means that the
confinement pressure continues to rise during and after contraction
rebound. Once the hot phase gas rises above the Balbus contour and
undergoes a pressure reversal, its pressure switches from increasing
to decreasing with time, and the reduction in the confinement
pressure aids further expansion of the condensation until, in the
isobaric case, a steady state is reached.

In the nonisobaric case, i.e., for wavelengths large enough
for the condensation velocity to become a significant fraction of
the ambient sound speed, pulsations will set in after contraction
rebound. Pressure oscillations first arise through the nonlinear
interaction between the condensation and sound waves that become
excited when each fluid element undergoes a pressure reversal
(which occurs at different times for different locations in the cloud
core). To emphasize this last point, we reiterate that in an isobaric
case, mechanical equilibrium is closely maintained, whereas in a
nonisobaric case, it is temporarily lost. There is a build-up of strong
gas pressure forces, so that by the time TI saturates and most of
the gas is thermally stable (with the cold gas nearly in thermal
equilibrium again), themechanical state is still far from equilibrium.
Therefore, the next phase of the evolution is dominated by pressure
waves that eventually bring the system to mechanical equilibrium.
The significance of the gas crossing the Balbus contour is in it being
associated with the very first qualitative change in the gas behavior, a
precursor to a chain of events resulting in a very dynamic evolution
of the system to a new thermal and mechanical equilibrium.

4.1 Shattering versus splattering

In Section 2, we did not draw a distinction on ‘nonisobaric
evolution’ as it relates to TI and nonisobaric dynamics more
generally. The latter is simply the tendency for the gas with
tcool ≲ tcross to undergo oscillations in response to a thermal
disturbance, and the cloud coalescence simulations we presented
in Waters and Proga (2019a) provide an example of this. The
former refers to the nonisobaric dynamics accompanying the
saturation of TI, and as the wavelength of a condensation
mode increases, nonisobaric evolution involves increasingly strong
pulsations following contraction rebound. Extreme nonisobaric
behavior is characterized by ‘splattering’, a term we introduced to
indicate a contraction rebound so strong that the cloud undergoes
self-fragmentation.

The ‘shattering’ hypothesis by contrast, described by
McCourt et al. (2018) as there being a tendency for highly
nonisobaric clouds to undergo spontaneous self-fragmentation—as
opposed to breakup caused by a dynamical response to
contraction—has not held up to scrutiny (Gronke and Oh, 2020;
Das et al., 2021; Jennings and Li, 2021; Farber and Gronke, 2022).
As we have explained in WP19 and again here in more detail
(Section 2.3), McCourt et al.'s (2018) simulations, with the initial
conditions of having a spectrumof perturbations, can be understood
as a clear example of ‘isobaric takeover’, where short-wavelength

perturbations form many isobaric condensations within a much
larger pre-existing cloud. In other words, those simulations do not
follow self-fragmentation of one entity but rather the evolution
of a nonisobaric cloud serving as the background flow within
which the shortest wavelength condensation modes (that have the
fastest growth rates) can form clouds and interact. Burkert and Lin
(2000) described such an outcome, claiming that the end result is
indistinguishable from a fragmentation process. While we disagree
with this, especially on the grounds that isobaric takeover will lead
to coalescence (the opposite of fragmentation), even accepting the
claim does not invalidate our takeaway point that ‘splattering’ refers
to a definite mechanism leading to self-fragmentation (namely,
contraction rebound) while ‘shattering’ does not.

Despite our pointing out in WP19 that McCourt et al.'s
(2018) simulations are a demonstration of isobaric takeover, the
term ‘shattering’ is still regularly invoked when describing the
appearance of small-scale cloud fragments in wind–cloud or
shock–cloud interaction simulations that include radiative cooling
(e.g., Sparre et al., 2020; Banda-Barragán et al., 2021; Bustard and
Gronke, 2022; Jennings et al., 2023).The use of the termhere is likely
because the size of these fragments appears to be the cooling length
evaluated in the cold phase gas, denoted by min(λcool), which is the
isobaric length scale identified by McCourt et al. (2018). A cloud
fragment with a characteristic size dc has an associated crossing
time tcross = dc/cs and can be said to be isobaric if tcross ≲ tcool.
Equivalently, because λcool = cstcool is the length scale over which
sound waves can effectively communicate thermal disturbances,
isobaric cloud sizes satisfy dc ≲ λcool, meaning that opposite sides
of the cloud remain in sonic contact. The finding that interactions
with the wind cause fragments to reach this length scale is not
an unexpected outcome, hence this occurrence should not be
confused with the regions of the cloud not interacting with the
wind undergoing fragmentation, which is what ‘shattering’ would
entail. Moreover, it is crucial to note that in Jennings et al.'s (2023)
simulations, these isobaric fragments all evaporated in the runs with
thermal conduction, consistent with our result that min(λcool) is
generically smaller than the Field length (λF) evaluated in the warm
phase gas (see WP19). Thus, while min(λcool) is a characteristic size
scale for cloud fragments, it is not a physically relevant one unless
thermal conduction is highly suppressed.

While ‘splattering’ refers exclusively to a highly nonisobaric
regime of TI, the pulsation behavior it relates to could permit the
characteristic size of cloud fragments to significantly exceed the scale
min(λcool) in non-adiabatic wind–cloud interaction simulations.
These fragments are expected to become larger upon increasing
the wind temperature (while keeping the wind pressure the same),
based on the following reasoning. The descriptors ‘isobaric’ and
‘nonisobaric’ have thus far been used for both the size and behavior
of the cold phase gas, but they also apply to the confining warm
phase gas. A parcel of the warm phase gas is isobaric on scales
dw <max(λcool), where max(λcool) denotes evaluating the cooling
length at the warm phase temperature. This gas can easily remain
isobaric, depending on how much hotter it is compared to the cold
phase, and can therefore be effective in dampening the pulsations
of nonisobaric clouds when max(λcool) ≫ dc. In other words, two
equally sized clouds, with dc ≫min(λcool) (and with the same
pressure) embedded in different temperature environments, will not
exhibit the same nonisobaric behavior when subjected to the same
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thermal disturbance.5 The pulsation damping rate is expected to
be larger in a higher temperature environment, making that cloud
effectively less nonisobaric and therefore less prone to fragmentation
when interacting with a shearing flow. Even if this effect is
significant, the fragments would still evaporate when they include
isotropic thermal conduction because λF ∝ T11/4/p (under Spitzer
conductivity and fixed gas pressure p), while max(λcool) ∝ T5/2/p.
However, higher wind temperatures might allow larger fragments
to survive when thermal conduction is anisotropic.

4.2 Thermal instability versus thermal
non-equilibrium

In the solar physics literature, the relationship between TNE
and TI is explained with reference to the TNE-TI cycle that
describes observed phenomenology (e.g., see Antolin and Froment,
2022), specifically the dynamics taking place in coronal loops
(magnetic flux tubes that extend from the chromosphere into
the corona but are rooted to the solar surface at both ends).
TNE itself has been described as a process that occurs when the
heating rate profile in a loop drops off sharply with height and
is unchanging with time, while the cooling rate remains a local
quantity, making it possible for there to be no ‘nearby’ thermal
equilibrium state (in ρ-T phase space) where cooling can reach a
balance with heating (Klimchuk, 2019). Both evaporative and bulk
flows can occur in response to pressure changes during a TNE
cycle.

Klimchuk (2019) claimed that it is meaningless to consider
TI occurring under TNE conditions on the (false) premise that
diagnosing TI requires the background flow to be in a steady state.
We stress that Balbus's (1986) stability criterion supersedes Field’s
criterion for the very purpose of applying to TNE conditions. For
there to be a consensus on this issue, the concept of TNE as given in
the preceding paragraph would have to be generalized to adopt the
definition that we have used in Section 2.4, namely, TNE is simply
the circumstance that flow departs from the equilibrium curve,
meaning L ≠ 0. We should furthermore specify that the bulk flow is
subjected toL ≠ 0 on dynamical timescales to distinguish TNE from
thermal misbalance, which simply refers to there being fluctuations
about L = 0 on very short timescales due to acoustic compression
and expansion cycles that result in the damping of MHD waves
(Kolotkov et al., 2019; Kolotkov et al., 2021).

It follows that under TNE conditions, the criterion for entropy
modes to be thermally unstable is given by Eq. 8, which expands to

(∂L
∂T
)

p
< L

T
. (33)

This reduces to the isobaric instability criterion of Field (1965) when
the gas reaches thermal equilibrium with L = 0. In the astrophysics
literature, the canonical example of a plasma that violates either
criterion is one with (e.g., McCourt et al., 2012; Mościbrodzka and
Proga, 2013; Balbus and Potter, 2016)

L = AρTd −B, (34)

5 An idealized version of this thought experiment is ‘the pulsating sphere’, a
well-known problem in acoustics (e.g., Devaud and Hocquet, 2013).

where A, B, and d are constants satisfying A > 0, B ≥ 0, and d < 1.
This is, however, the same example used by Klimchuk (2019) in an
attempt to illustrate a condensation forming under TNE conditions
in the absence of TI.6

Because the gas can be in TNE due to a variety of causes, a
further distinction has to be drawn between local TI and dynamical
TI. The theory of local TI, as summarized in Sections 2.1–2.2, is
not confined to a homogeneous gas; it applies whenever the so-
called local approximation holds, i.e., on length scales Δx over which
Δx≪ λq, where λq ≡ |∇ lnq|−1 is the scale length for the gradient of
the background flow quantity q to be significant. Dynamical TI is
the situation when the growth rates predicted by local TI cease to be
valid because Δx ∼ λq for at least one of the relevant flow variables
among q = (ρ,v,p,T).

Given the above considerations, the background flow for local TI
can be an initially uniform region that is in an evolving equilibrium
state or in a TNE state. As discussed in Section 2.4, the various
isochoric instability regimes are associated with the gas starting off
in TNE, as the entire isochoric TI zone is far from the equilibrium
curve. In Proga et al. (2022), we provided a qualitative example of a
column of gas starting off thermally stable but becoming unstable
to local TI upon following a time-dependent equilibrium curve. In
dynamical TI, by contrast, a flow can attempt to evolve along the
equilibrium curve to maintain L = 0, but the timescale associated
with adiabatic cooling can become shorter than tcool, thereby causing
the flow to tend toward a steady state at some position off the
equilibrium curve where L ≠ 0.

If the coronal rain observed in coronal loops is attributable to
the saturation of condensation modes, then due to the presence of
flows and a chromosphere–corona transition region in these loops,
the condensations are a clear instance of dynamical TI. Rather than
the black dot in Figure 1, which represents a constant density initial
condition appropriate for local TI, let us consider instead a possible
initial coronal loop TNE state having a density spanning the range
n ≈ 1011 − 1012 cm−3 and a nearly flat pressure profile that places it
below the equilibrium curve in a region of net heating (with L <
0). The plasma will approach the equilibrium curve with time, but
the flow traversing a converging (diverging) portion of the loop
will undergo slight adiabatic heating (cooling), making the phase
diagram ‘tracks’ of this flow spread vertically at different rates even
if the heating rate is uniform. The plasma with n ≳ 1.5× 1011 cm−3

is very close to the stable cold branch of the equilibrium curve and
will therefore not be subject to runaway heating. However, the stable
equilibrium state of the plasma with n < 1.5× 1011 cm−3 is the hot
branch where n ≲ 1010 cm−3. If pressure equilibrium can be closely
maintained, the bulk of the coronal region plasmamay approach this
branch without ever entering the TI zone.

This is, in essence, a TNE runaway heating scenario that leads to
a multi-temperature plasma without ever invoking TI. We therefore
agree with the overall premise of Klimchuk (2019), but our example
above debunks his assertion that “the physics that governs the
thermal runaway in a TNE loop is equivalent to the physics that
governs the thermal runaway in a [thermally] unstable equilibrium

6 We note that Klimchuk (2019) introduced a (half-wavelength) entropy mode
into his initial conditions by the choice of a density profile given by Eq. 1
with A = 0.01.
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loop”. To examine condensation formation occurring under TNE
conditions because of TI, we could alternatively imagine initial
conditions that place the gas above the equilibrium curve in Figure 1
in a region of net cooling. Here, we would have to confront
both bulk runaway cooling and the saturation of unstable entropy
modes, but we have hopefully made it clear that these are distinct
processes.

Either coronal loop scenario is complicated by the fact that
equilibrium curves are in general time dependent, i.e., the contour
L = 0 can change with time according to how the radiation field or
other background sources of heating evolve. If this evolution occurs
on timescales shorter than tcool, the plasma cannot maintain L = 0
even if it can settle on the equilibrium curve and will thus re-enter
TNE. The heating and cooling rates used for illustrative purposes
in this article allow studying this situation. Namely, the equilibrium
curve in Figure 1 models a column of gas being irradiated by both a
thermal and non-thermal source of X-rays, and the two parameters
TC,h and fh (controlling the temperature and flux of the non-thermal
photons, respectively) can be made time dependent to vary the
effective Compton temperature, which controls the shape of the
equilibrium curve (see the Appendix).

We have recently worked on several other applications of
dynamical TI that reveal the interplay between TI and TNE. In
Waters et al. (2021), we have shown that the multiphase radial
outflow solutions discovered in 1D by Dannen et al. (2020) can
reach a steady state, permitting a formal stability analysis of an
outflow occupying parameter space with L ≠ 0. There we also
investigated the interconnection between TI and runaway heating in
2D simulations of accretion diskwinds driven by external irradiation
from X-rays, showing that it is possible to identify the presence
of local TI even in a time-dependent, turbulent flow by plotting
the ‘tracks’ of individual streamlines on the phase diagram to see
if they pass through a TI zone. Finally, in Waters et al. (2022),
we have addressed a different point that was raised by Klimchuk
(2019). Referring to the stratified flow within a magnetic flux tube,
Klimchuk posed the question: “if a perturbation grows, does it
have time to reach a substantial amplitude before it is carried to
the chromosphere by the flow?” We have shown how to calculate
whether or not outflowing entropy modes have time to saturate
when they sample a time-dependent growth rate as they ‘fly through’
a TI zone.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/; further inquiries can be directed to the corresponding
author.

Author contributions

TW derived the identities in Section 3 while working as a
postdoc in DP’s group at UNLV. TW wrote the first draft of the
manuscript after several discussions with DP regarding the recent
literature. Together, TW and DP analyzed the new identities to
understand the saturation mechanism of TI and finalized the text.
Both authors approved the submitted version.

Funding

This research was supported by the National Aeronautics and
Space Administration under TCAN grant 80NSSC21K0496.

Acknowledgments

TW acknowledges funding support from Hui Li to attend the
conference entitled AGN Santa Fe: where are the objects in AGN
disks?, where this work was completed.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, editors, and reviewers. Any
product that may be evaluated in this article, or claim that may be
made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fspas.2023.1198135/full#supplementary-material

References

Antolin, P., and Froment, C. (2022). Multi-scale variability of coronal loops set
by thermal non-equilibrium and instability as a probe for coronal heating. Front.
Astronomy Space Sci. 9. doi:10.3389/fspas.2022.820116

Antolin, P. (2020). Thermal instability and non-equilibrium in solar coronal loops:
From coronal rain to long-period intensity pulsations. Plasma Phys. Control. Fusion 62,
014016. doi:10.1088/1361-6587/ab5406

Balbus, S. A. (1986). Local dynamic thermal instability. ApJL 303, L79.
doi:10.1086/184657

Balbus, S. A., and Potter, W. J. (2016). Surprises in astrophysical gasdynamics. Rep.
Prog. Phys. 79, 066901. doi:10.1088/0034-4885/79/6/066901

Balbus, S. A., and Soker, N. (1989). Theory of local thermal instability in spherical
systems. ApJ 341, 611. doi:10.1086/167521

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2023.1198135
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198135/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198135/full#supplementary-material
https://doi.org/10.3389/fspas.2022.820116
https://doi.org/10.1088/1361-6587/ab5406
https://doi.org/10.1086/184657
https://doi.org/10.1088/0034-4885/79/6/066901
https://doi.org/10.1086/167521
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Waters and Proga 10.3389/fspas.2023.1198135

Balbus, S. A. (1995). “Thermal instability,” in The physics of the interstellar
medium and intergalactic medium of astronomical society of the pacific
conference series. Editors A. Ferrara, C. F. McKee, C. Heiles, and P. R. Shapiro,
80, 328.

Banda-Barragán, W. E., Brüggen, M., Heesen, V., Scannapieco, E., Cottle, J.,
Federrath, C., et al. (2021). Shock-multicloud interactions in galactic outflows - II.
Radiative fractal clouds and cold gas thermodynamics. MNRAS 506, 5658–5680.
doi:10.1093/mnras/stab1884

Barai, P., Proga,D., andNagamine,K. (2012).Multiphase, non-spherical gas accretion
on to a black hole. MNRAS 424, 728–746. doi:10.1111/j.1365-2966.2012.21260.x

Begelman, M. C., and McKee, C. F. (1990). Global effects of thermal conduction on
two-phase media. ApJ 358, 375. doi:10.1086/168994

Binney, J., Nipoti, C., and Fraternali, F. (2009). Do high-velocity clouds form by
thermal instability? MNRAS 397, 1804–1815. doi:10.1111/j.1365-2966.2009.15113.x

Bottorff, M. C., Korista, K. T., and Shlosman, I. (2000). Dynamics of warm absorbing
gas in seyfert galaxies: Ngc 5548. ApJ 537, 134–151. doi:10.1086/309006

Burkert, A., and Lin, D.N. C. (2000).Thermal instability and the formation of clumpy
gas clouds. ApJ 537, 270–282. doi:10.1086/308989

Bustard, C., and Gronke, M. (2022). Radiative turbulent mixing layers and the
survival of magellanic debris. ApJ 933, 120. doi:10.3847/1538-4357/ac752b

Choudhury, P. P. (2023). Formation of multiphase plasma in galactic haloes
and an analogy to solar plasma. Front. Astronomy Space Sci. 10, 1155865.
doi:10.3389/fspas.2023.1155865

Claes, N., and Keppens, R. (2021). Magnetohydrodynamic spectroscopy of a non-
adiabatic solar atmosphere. SoPh 296, 143. doi:10.1007/s11207-021-01894-2

Claes, N., andKeppens, R. (2019).Thermal stability ofmagnetohydrodynamicmodes
in homogeneous plasmas. A&A 624, A96. doi:10.1051/0004-6361/201834699

Dannen, R. C., Proga, D.,Waters, T., and Dyda, S. (2020). Clumpy AGN outflows due
to thermal instability. ApJL 893, L34. doi:10.3847/2041-8213/ab87a5

Das, H. K., Choudhury, P. P., and Sharma, P. (2021). Shatter or not: Role of
temperature and metallicity in the evolution of thermal instability. MNRAS 502,
4935–4952. doi:10.1093/mnras/stab382

Devaud, M., and Hocquet, T. (2013). Lagrangian sound. hal-00904571.

Farber, R. J., and Gronke, M. (2022). Molecular shattering. arXiv e-prints,
arXiv:2209.13622. doi:10.48550/arXiv.2209.13622

Faucher-Giguere, C.-A., and Oh, S. P. (2023). Key physical processes
in the circumgalactic medium. arXiv e-prints, arXiv:2301.10253.
doi:10.48550/arXiv.2301.10253

Field, G. B., Goldsmith, D. W., and Habing, H. J. (1969). Cosmic-ray heating of the
interstellar gas. ApJL 155, L149. doi:10.1086/180324

Field, G. B. (1965). Thermal instability. ApJ 142, 531. doi:10.1086/148317

Gronke, M., and Oh, S. P. (2022). Cooling driven coagulation. arXiv e-prints,
arXiv:2209.00732. doi:10.48550/arXiv.2209.00732

Gronke, M., and Oh, S. P. (2020). Is multiphase gas cloudy or misty? MNRAS 494,
L27–L31. doi:10.1093/mnrasl/slaa033

Jennings, F., Beckmann, R. S., Sijacki, D., and Dubois, Y. (2023). Shattering and
growth of cold clouds in galaxy clusters: The role of radiative cooling, magnetic fields,
and thermal conduction. MNRAS 518, 5215–5235. doi:10.1093/mnras/stac3426

Jennings, R. M., and Li, Y. (2021). Thermal instability and multiphase gas in the
simulated interstellar medium with conduction, viscosity, and magnetic fields. MNRAS
505, 5238–5252. doi:10.1093/mnras/stab1607

Klimchuk, J. A. (2019).Thedistinction between thermal nonequilibrium and thermal
instability. SoPh 294, 173. doi:10.1007/s11207-019-1562-z

Kolotkov, D. Y., Nakariakov, V. M., and Zavershinskii, D. I. (2019). Damping of slow
magnetoacoustic oscillations by the misbalance between heating and cooling processes
in the solar corona. A&A 628 (A133), 6. doi:10.1051/0004-6361/201936072

Kolotkov, D. Y., Zavershinskii, D. I., andNakariakov, V.M. (2021).The solar corona as
an active medium for magnetoacoustic waves. Plasma Phys. Control. Fusion 63, 124008.
doi:10.1088/1361-6587/ac36a5

Krolik, J. H., McKee, C. F., and Tarter, C. B. (1981). Two-phase models of quasar
emission line regions. ApJ 249, 422–442. doi:10.1086/159303

Laha, S., Reynolds, C. S., Reeves, J., Kriss, G., Guainazzi, M., Smith,
R., et al. (2020). Ionized outflows from active galactic nuclei as the
essential elements of feedback. Nat. Astron. 5, 13–24. doi:10.1038/
s41550-020-01255-2

Lepp, S., McCray, R., Shull, J. M., Woods, D. T., and Kallman, T. (1985). Thermal
phases of interstellar and quasar gas. ApJ 288, 58–64. doi:10.1086/162763

Mandelker, N., van den Bosch, F. C., Springel, V., van de Voort, F., Burchett, J. N.,
Butsky, I. S., et al. (2021). Thermal instabilities and shattering in the high-redshift
WHIM: Convergence criteria and implications for low-metallicity strongH I absorbers.
ApJ 923, 115. doi:10.3847/1538-4357/ac2d29

McCourt,M., Oh, S. P., O’Leary, R., andMadigan, A.-M. (2018). A characteristic scale
for cold gas. MNRAS 473, 5407–5431. doi:10.1093/mnras/stx2687

McCourt, M., Sharma, P., Quataert, E., and Parrish, I. J. (2012). Thermal
instability in gravitationally stratified plasmas: Implications for multiphase structure
in clusters and galaxy haloes. MNRAS 419, 3319–3337. doi:10.1111/j.1365-2966.2011.
19972.x

McKee, C. F., and Ostriker, J. P. (1977). A theory of the interstellar medium: Three
components regulated by supernova explosions in an inhomogeneous substrate. ApJ
218, 148–169. doi:10.1086/155667

Meerson, B. (1996). Nonlinear dynamics of radiative condensations in optically thin
plasmas. Rev. Mod. Phys. 68, 215–257. doi:10.1103/RevModPhys.68.215

Mościbrodzka, M., and Proga, D. (2013). Thermal and dynamical properties of gas
accreting onto a supermassive black hole in an active galactic nucleus. ApJ 767, 156.
doi:10.1088/0004-637X/767/2/156

Parker, E. N. (1953). Instability of thermal fields. ApJ 117, 431. doi:10.1086/145707

Perry, J. J., and Dyson, J. E. (1985). Shock formation of the broad emission-
line regions in QSOs and active galactic nuclei. MNRAS 213, 665–710.
doi:10.1093/mnras/213.3.665

Proga, D., Waters, T., Dyda, S., and Zhu, Z. (2022). Thermal instability in radiation
hydrodynamics: Instability mechanisms, position-dependent S-curves, and attenuation
curves. ApJL 935, L37. doi:10.3847/2041-8213/ac87b0

Soler, R., Ballester, J. L., and Parenti, S. (2012). Stability of thermal modes in cool
prominence plasmas. A&A 540, A7. doi:10.1051/0004-6361/201118492

Soler, R., and Ballester, J. L. (2022). Theory of fluid instabilities in partially
ionized plasmas: An overview. Front. Astronomy Space Sci. 9, 789083.
doi:10.3389/fspas.2022.789083

Sparre,M., Pfrommer, C., and Ehlert, K. (2020). Interaction of a cold cloudwith a hot
wind: The regimes of cloud growth and destruction and the impact of magnetic fields.
MNRAS 499, 4261–4281. doi:10.1093/mnras/staa3177

Tumlinson, J., Peeples, M. S., and Werk, J. K. (2017). The circumgalactic medium.
ARA&A 55, 389–432. doi:10.1146/annurev-astro-091916-055240

Vázquez-Semadeni, E., Gazol, A., Passot, T., et al. (2003). “Thermal instability
and magnetic pressure in the turbulent interstellar medium,” in Turbulence and
magnetic fields in astrophysics. Editors E. Falgarone, and T. Passot, 614, 213–251.
doi:10.48550/arXiv.astro-ph/0201521

Veilleux, S.,Maiolino, R., Bolatto,A.D., andAalto, S. (2020). Cool outflows in galaxies
and their implications. A&A Rv 28, 2. doi:10.1007/s00159-019-0121-9

Waters, T., and Proga, D. (2019a). Cloud coalescence: A dynamical instability
affecting multiphase environments. ApJL 876, L3. doi:10.3847/2041-8213/
ab12e8

Waters, T., Proga, D., Dannen, R., andDyda, S. (2022). Dynamical thermal instability
in highly supersonic outflows. ApJ 931, 134. doi:10.3847/1538-4357/ac6612

Waters, T., Proga, D., and Dannen, R. (2021). Multiphase AGN winds from X-ray-
irradiated disk atmospheres. ApJ 914, 62. doi:10.3847/1538-4357/abfbe6

Waters, T., and Proga, D. (2019b). Nonisobaric thermal instability. ApJ 875, 158.
doi:10.3847/1538-4357/ab10e1

Zhang, D. (2018). A review of the theory of galactic winds driven by stellar feedback.
Galaxies 6, 114. doi:10.3390/galaxies6040114

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2023.1198135
https://doi.org/10.1093/mnras/stab1884
https://doi.org/10.1111/j.1365-2966.2012.21260.x
https://doi.org/10.1086/168994
https://doi.org/10.1111/j.1365-2966.2009.15113.x
https://doi.org/10.1086/309006
https://doi.org/10.1086/308989
https://doi.org/10.3847/1538-4357/ac752b
https://doi.org/10.3389/fspas.2023.1155865
https://doi.org/10.1007/s11207-021-01894-2
https://doi.org/10.1051/0004-6361/201834699
https://doi.org/10.3847/2041-8213/ab87a5
https://doi.org/10.1093/mnras/stab382
https://doi.org/10.48550/arXiv.2209.13622
https://doi.org/10.48550/arXiv.2301.10253
https://doi.org/10.1086/180324
https://doi.org/10.1086/148317
https://doi.org/10.48550/arXiv.2209.00732
https://doi.org/10.1093/mnrasl/slaa033
https://doi.org/10.1093/mnras/stac3426
https://doi.org/10.1093/mnras/stab1607
https://doi.org/10.1007/s11207-019-1562-z
https://doi.org/10.1051/0004-6361/201936072
https://doi.org/10.1088/1361-6587/ac36a5
https://doi.org/10.1086/159303
https://doi.org/10.1038/s41550-020-01255-2
https://doi.org/10.1038/s41550-020-01255-2
https://doi.org/10.1086/162763
https://doi.org/10.3847/1538-4357/ac2d29
https://doi.org/10.1093/mnras/stx2687
https://doi.org/10.1111/j.1365-2966.2011.19972.x
https://doi.org/10.1111/j.1365-2966.2011.19972.x
https://doi.org/10.1086/155667
https://doi.org/10.1103/RevModPhys.68.215
https://doi.org/10.1088/0004-637X/767/2/156
https://doi.org/10.1086/145707
https://doi.org/10.1093/mnras/213.3.665
https://doi.org/10.3847/2041-8213/ac87b0
https://doi.org/10.1051/0004-6361/201118492
https://doi.org/10.3389/fspas.2022.789083
https://doi.org/10.1093/mnras/staa3177
https://doi.org/10.1146/annurev-astro-091916-055240
https://doi.org/10.48550/arXiv.astro-ph/0201521
https://doi.org/10.1007/s00159-019-0121-9
https://doi.org/10.3847/2041-8213/ab12e8
https://doi.org/10.3847/2041-8213/ab12e8
https://doi.org/10.3847/1538-4357/ac6612
https://doi.org/10.3847/1538-4357/abfbe6
https://doi.org/10.3847/1538-4357/ab10e1
https://doi.org/10.3390/galaxies6040114
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	1 Introduction
	2 Summary of (non)linear theory results
	2.1 Condensation modes
	2.2 Isobaric versus nonisobaric regimes
	2.3 Nonisobaric versus isochoric evolution
	2.4 TI zones

	3 Saturation mechanism
	3.1 Equations governing nonlinear regime of TI
	3.2 Crossing the Balbus contour
	3.3 Landing on the equilibrium curve
	3.4 Passing through the isochoric TI zone
	3.5 Other applications of the new identities

	4 Summary and discussion of controversial claims
	4.1 Shattering versus splattering
	4.2 Thermal instability versus thermal non-equilibrium

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

