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Efficient galaxy classification
through pretraining

Jesse Schneider*, David C. Stenning and Lloyd T. Elliott

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada

Deep learning has increasingly been applied to supervised learning tasks in
astronomy, such as classifying images of galaxies based on their apparent shape
(i.e., galaxy morphology classification) to gain insight regarding the evolution of
galaxies. In this work, we examine the effect of pretraining on the performance
of the classical AlexNet convolutional neural network (CNN) in classifying images
of 14,034 galaxies from the Sloan Digital Sky Survey Data Release 4. Pretraining
involves designing and training CNNs on large labeled image datasets unrelated
to astronomy, which takes advantage of the vast amounts of such data available
compared to the relatively small amount of labeled galaxy images. We show a
statistically significant benefit of using pretraining, both in terms of improved
overall classification success and reduced computational cost to achieve such
performance.
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1 Introduction

Convolutional neural networks (CNNs) are a type of deep learning that is particularly
well suited to computer vision tasks (Aggarwal, 2018). Originally inspired by research
on the visual cortex by neurophysiologists Hubel and Wiesel in the mid-20th century
(Hubel and Wiesel, 1959; Aggarwal, 2018), CNNs have been successfully applied to a
variety of computer vision tasks, such as image classification (Krizhevsky et al., 2012), facial
recognition (Taigman et al., 2014), and classification of various forms of interstitial lung
disease (Li et al., 2014). CNNs have also been applied to tasks outside of computer vision,
such as forecasting prices in financial stock markets (Tsantekidis et al., 2017).

As astronomy and astrophysics increasingly rely on large sets of image data, CNNs
have increasingly been used to tackle a variety of interesting astronomical and astrophysical
problems. These include identifying gravitational lenses (Davies et al., 2019), identifying
contamination in astronomical images, e.g., by cosmic rays and diffraction spikes
(Paillassa et al., 2020), and for supernovae detection (Cabrera-Vives et al., 2016). One
particular task for which CNNs have proved successful, which will be discussed in more
depth below, is galaxy morphology classification as in Cavanagh et al. (2021). We will
therefore use galaxy morphology classification to explore how pretraining [a type of transfer
learning (Tan et al., 2018; Ribani and Marengoni, 2019)] can potentially benefit many tasks
in astronomy and astrophysics that use CNNs.

When applied to a particular task, CNNs (and neural networks in general) can be trained
from scratch for the given task, or instead we can use a pretrained network. A pretrained
CNN is one which has already been trained on a separate data set prior to its application to
the given task (Aggarwal, 2018). The training of neural networks is, in general, an energy-
intensive activity (Strubell et al., 2020; Borowiec et al., 2022), and research is ongoing to
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quantify and reduce energy use [e.g., (Yang et al., 2017; García-
Martín et al., 2019)]. Training neural networks from scratch can
require more training and therefore greater expense and resource
usage compared to using a pretrained network. Furthermore,
this requirement for a large amount of training presupposes the
availability of a sufficient amount of datawithin the intendeddomain
for the desired amount of training. Thus, data availability itself can
be a limitation which may preclude the possibility of a large amount
of training being performed from scratch.

In astronomy, obtaining large, labelled training data sets
is expensive, impractical, or both. As a result of the demands
required to train deep learning models from scratch, pretraining
may be an attractive alternative for astronomy. In recent years,
transfer learning has been adopted for classification tasks in
astronomy and astrophysics involving galaxy morphologies
(Domínguez Sánchez et al., 2018), variable stars (Kim et al., 2021),
and star clusters (Wei et al., 2020). However, the learning that
is “transferred” in these cases is between different astronomical
surveys. That is, a classifier is trained using data from one survey,
and deployed, perhaps with modification, on test data arising from
a different survey. For example, a model may be trained on Sloan
Digital Sky Survey images and deployed on Dark Energy Survey
images (Domínguez Sánchez et al., 2018).

An alternative type of transfer learning, which we refer to
specifically as pretraining hereafter, involves the practice of training
a neural network on another unrelated data set before applying
the neural network to the particular data set of interest. This
means that pretraining, using our definition, can exploit the vast
effort undertaken to design CNNs for classifying large volumes
of natural (everyday) images. Specifically, we will use a CNN
trained on millions of non-astronomical images that comprise
the ImageNet database (Deng et al., 2009); this CNN is known as
AlexNet (Krizhevsky et al., 2012). We will demonstrate, through
a series of numerical experiments, that for the task of galaxy
morphology classification, a pretrained AlexNet outperforms an
architecturally identical CNN that is trained from scratch using only
galaxy morphology images. Transfer learning using training on a
large data set of natural images has been explored in the context
of analysis of data from the Laser Interferometer Gravitational-
Wave Observatory (George et al., 2018) and in galaxy merger
detection (Ackermann et al., 2018). However, as far as we are aware,
such transfer learning has not been explored in the context of
galaxy morphology classification, which is the focus of the present
paper.

The rest of this paper explores the utility of pretraining in the
application of a CNN to galaxy morphology image classification.
This domain represents a potential use case for a pretrained network
due to the expense and difficulty of gathering and labeling images
of galaxies (Cavanagh et al., 2021). We begin in Section 2 with
an overview of galaxy morphology classification and the data we
will use for our experiments. In Section 3 we describe CNNs,
including the particular CNN used in this paper, as well as data
preparation procedures and tooling. Our numerical experiments
and results are detailed in Section 4. We discuss and summarize
our contributions in Section 5, and also discuss directions for future
research.

All code and materials necessary to reproduce our work can be
found at: https://github.com/jsa378/01_masters.

2 Galaxy morphology classification
and data

Images of galaxies are captured using either earthbound
equipment or spacecraft. Traditionally, the images are classified by
groups of experts who examine each image and come to a consensus
regarding its classification (Cavanagh et al., 2021). In order to speed
up the classification of images, other strategies have been used, such
as the recruitment of enthusiastic amateurs (Lintott et al., 2010), and
various automated classification techniques (Cheng et al., 2020).

CNNs in particular and deep learning more generally are well
suited to tackle challenges in galaxy morphology classification,
and as such there is a large body of literature devoted to such
aims. We describe a few of these below, but note that the list is
non-exhaustive.

• Cheng et al. (2020) use CNNs and othermachine/deep learning
techniques to classify galaxy images from the Sloan Digital Sky
Survey Data Release 7 into two categories (i.e., they perform
two-way classification)—elliptical and spiral—reporting a best
overall accuracy of over 99%, achieved with a CNN.
• Barchi et al. (2020) combine data from Galaxy Zoo 1
(Lintott et al., 2010) and the Dark Energy Survey (Abbott et al.,
2018) when performing galaxy morphology classification.
Using deep learning, they also achieve an overall accuracy
of over 99% for two-way classification. However, when a third
class (barred galaxies) is added, overall accuracy drops to 82%.
• Gharat and Dandawate (2022) also use Galaxy Zoo data, but
adopt an extended Hubble tuning fork classification scheme,
which places galaxies into 10 categories. Using a CNN, they
achieve a best overall accuracy of about 85%.
• Cavanagh et al. (2021) use galaxy images from Sloan Digital
Sky Survey Data Release 4 (SDSS DR4) (York et al., 2000;
Stoughton et al., 2002; Adelman-McCarthy et al., 2006), and
compare the performance of different CNNs on three-way and
four-way classification, reporting best overall accuracy results
of 83% and 81%, respectively.The four-way classification task is
especially interesting and important because the fourth class is
for “irregular and miscellaneous” galaxies that do not belong to
one of the other three classes.

In the near future, an expected deluge of data obtained
by new spacecraft such as the European Space Agency’s Euclid
will overwhelm available resources for classification by humans
(Silva et al., 2018). This adds urgency to the search for accurate,
rapid, automated classification techniques, such as those cited above,
among others.However, the galaxy image data currently available for
training deep learning models remains relatively small. Following
Cavanagh et al. (2021), for this work we used 14,034 (labeled) galaxy
images from the SDSS DR4 (York et al., 2000; Stoughton et al., 2002;
Adelman-McCarthy et al., 2006); the data are described in detail in
Nair and Abraham (2010). Each galaxy is labeled according to its
morphology, or shape, as belonging to the class of:

1) elliptical galaxies, having a smooth, diffuse, and elliptical shape;
2) spiral galaxies, disk-like in appearance and with spiral arms;
3) lenticular galaxies, an intermediate class of galaxies between the

elliptical and spiral categories; or
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FIGURE 1
Examples of the four categories of galaxy from the Sloan Digital Sky Survey Data Release 4 (Nair and Abraham, 2010). (A) Elliptical galaxy. (B) Lenticular
galaxy. (C) Spiral galaxy. (D) Irr + Misc galaxy.

4) irregular + miscellaneous (Irr + Misc) galaxies, not meeting the
membership criteria for any of the above three categories.

An example of each type of galaxy, taken from the set of 14,034, is
presented in Figure 1. The 14,034 galaxy morphology images varied
in size, but were often quite small—around 100× 100 pixels, or 0.01
megapixel. The class breakdown of the images is as follows:

1) 2,738 images of elliptical galaxies (19.4% of the total),
2) 7,708 images of spiral galaxies (54.9% of the total),
3) 3,215 images of lenticular galaxies (22.9% of the total), and
4) 373 images of Irr + Misc galaxies (2.7% of the total).

While this is clearly a highly imbalanced data set as governed by the
distribution of galaxies in the regions imaged, we did not attempt
to correct for these imbalances because for this work we are only
concerned with demonstrating the benefit of pretraining. Further
discussion of class differences is in Subsection 4.1.

Although Cavanagh et al. (2021) initially performed three-way
classification, excluding Irr +Misc galaxies, we will limit the current
work to considering the (more challenging) four-way classification
task. The reason for this is two-fold: (1): we do not want to pre-filter
Irr + Misc galaxies as they will undoubtedly be present in the future
survey data, and (2) it is precisely for Irr + Misc galaxies that we
notice the greatest benefit of pretraining, perhaps due to the relative
lack of training examples; we will demonstrate and discuss this in
more detail in Sections 4, 5.1

1 Methods and tools used in the present work are similar although not identical
to those used in (Cavanagh et al., 2021), so while the peak accuracy results
obtained in the present paper are slightly superior to those obtained in
(Cavanagh et al., 2021), the results are not directly comparable and we
therefore do not make such a comparison.

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2023.1197358
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Schneider et al. 10.3389/fspas.2023.1197358

FIGURE 2
The AlexNet architecture. After receiving a 224×224×3 input image, AlexNet applies a sequence of convolutions, ReLU operations, and pooling
operations (in the portions represented by the deep rectangular prisms) before applying a set of linear layers with dropout (in the portions represented
by the tall rectangular prisms). Figure created using NN-SVG.

3 Methods and data preparation

3.1 Convolutional neural networks

3.1.1 Introduction to CNNs
CNNs are a type of neural network that are well suited to

image data (Goodfellow et al., 2016). They are so named because
of the “convolution” operations applied within the network,
although strictly speaking these operations are cross-correlations
(Goodfellow et al., 2016). CNNs are perhaps the archetypal
example of biologically-inspired artificial intelligence, because their
conception was influenced by exploration of the visual cortex in the
mid-20th century (Aggarwal, 2018).

Although formalmathematical justification for CNNs is lacking,
the common explanation is that CNNs function by detecting
relatively crude features of an input image, such as lines, in the
early layers of the network, and superimpose these features into
progressively more complex features in later layers (Aggarwal,
2018).

3.1.2 CNN operations
Like feedforward neural networks, CNNs consist of an input

layer, one or more hidden layers and an output layer. The primary
differences are the types of operations that the layers perform.
The fundamental principles of neural networks—the forwards and
backwards phases, and gradient-based optimization—also apply to
CNNs. Furthermore, training methods consisting of feeding the
entire training data set to the network multiple times, each time
referred to as an epoch, are similar for both types of networks.
For brevity, therefore, we will focus on the unique mathematical
operations employed in CNNs; these unique operations are
convolution and pooling operations. We will also briefly discuss
the regularization technique known as dropout, which is commonly
used to avoid overfitting deep neural networks.

3.1.2.1 The convolution (cross-correlation)
Consider a color image I of size h×w pixels, represented

numerically as an array with dimensions h×w× 3. (The depth of 3 is
for storage of the red, green and blue color values.) The convolution
operation involves placing a smaller h′ ×w′ × 3 (h′ ≤ h, w′ ≤ w)
array K, called the kernel or filter, at all possible positions overlaid
on I and computing the component-wise dot product between I
and K.2

More formally, the convolution of h×w× 3 image I (having i, j, l
entry Ii,j,l) with h′ ×w′ × 3 kernel K (having i, j, l entry Ki,j,l) is a
function

*:ℝh×w×3 ×ℝh
′×w′×3→ℝ(h−h

′+1)×(w−w′+1)×1

defined by

(I*K)r,s: =
h′

∑
i=1

w′

∑
j=1

3

∑
k=1

Ir+(i−1),s+(j−1),l ⋅Ki,j,l.

3.1.2.2 Themax pool
The max pool operation involves a smaller array P

similar to the kernel K, except that P has a depth of 1.
If P has dimensions p× q× 1 and acts on a layer L having
dimensions h×w× d, then the pooling operation produces a
layer P(L) having dimensions (h− p+ 1) × (w− q+ 1) × d. In
particular,

P(L)r,s,t : =max{li,j,t ∈ L:r ≤ i

≤ (r+ p− 1) , s ≤ j ≤ (s+ q− 1)} .

2 The convolution operation, for which CNNs are named, is actually a cross-
correlation since neither of the functions in the operation’s arguments are
reflected. Despite this, this paper will adhere to the convention of referring
to this operation as a convolution.
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FIGURE 3
(A) Histograms of peak test accuracies for all runs for both the pretrained and non-pretrained networks. The pretrained networks are both more
accurate on average and less varied in the peak accuracy that they achieve. (B) Histograms of the epoch in which peak test accuracy is achieved for
each run, for both pretrained and non-pretrained networks. These histograms appear to suggest that 200 epochs of training are probably sufficient for
the pretrained networks, while the non-pretrained networks might have benefited from even more than 400 epochs of training.

3.1.2.3 Dropout
Dropout is a regularization technique applied layer-wise during

CNN training, which involves training random subsets of the overall
network (Hinton et al., 2012; Srivastava et al., 2014). If dropout is
applied to layer l in the network, then each time the network
is fed a training image, independent draws from a Bernoulli(p)
distribution are made to determine which nodes in layer l are
kept or discarded. The training prediction and backpropagation
are then carried out only over the sub-network containing the
remaining nodes. During training, repeated samples from the
Bernoulli(p) distribution are drawn, which means that different
subsets of the original network are trained. During testing, dropout
is not applied, so the entire network is used. Using dropout
significantly reduces network overfitting, and thus improves the
network’s ability to generalize to the test data (Srivastava et al.,
2014).

3.2 AlexNet

The CNN that underpins our work is called AlexNet
(Krizhevsky et al., 2012). Although CNNs date back to the 1980s, in
2012 the AlexNet CNN ushered in what is arguably the modern era

in computer vision by winning the ImageNet Large Scale Visual
Recognition Challenge, thoroughly surpassing past performers
and challengers (Aggarwal, 2018). Since then, CNNs have served
as the standard for image classification, as can be seen by the
fact that subsequent winners of the ImageNet competition have
also been CNNs (Aggarwal, 2018). Below, a brief summary of the
AlexNet architecture is provided. Further details can be found in
Krizhevsky et al. (2012).

The AlexNet network can be broken into two broad parts:
an early convolutional part and a later, more conventional feed-
forward part. In the convolutional part, AlexNet takes as input
a 224× 224× 3 image and, over a number of layers, applies an
increasing number of convolution filters which decrease in height
and width. The first convolutional layer applies 64 filters of
size 11× 11× 3; a later convolutional layer applies 384 filters of
size 3× 3× 256. (As previously mentioned, formal mathematical
justification for CNN operation is lacking, but the intuition is
that larger numbers of smaller filters in later layers capture
more complex features of the input image.) AlexNet uses five
convolutional layers in total. After every convolutional layer the
ReLU operation is used, and a handful of max-pooling operations
are layered in as well. In the feed-forward part, AlexNet contains
3 linear layers with ReLU activation functions before delivering
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FIGURE 4
Histograms of the gains that result from using the pretrained network as opposed to the non-pretrained network. On the left is the peak test accuracy
for the pretrained network minus the respective figure for the non-pretrained network. On the right is the epoch in which peak test accuracy was
achieved for the pretrained network, minus the respective figure for the non-pretrained network, if the non-pretrained network had been restricted to
train for only 200 epochs. It is clear that in terms of accuracy, the non-pretrained network never outperforms the pretrained network. In terms of speed
in reaching peak accuracy, the pretrained network is almost always faster than the non-pretrained network, even when restricting the latter to 200
epochs of training.

FIGURE 5
This figure is similar to the left histogram in Figure 4, except that we
only consider the first 200 epochs for the non-pretrained networks.
The advantage for the pretrained networks roughly doubles in this
case.

its class probability calculations.3 To reduce overfitting, dropout is
used.

Because the ImageNet Challenge requires classifying images
belonging to one of 1,000 categories, AlexNet by default has 1,000
nodes in its final layer. However, this can bemodified when applying
AlexNet for other purposes, such as classifying galaxy morphology
into four categories.

The architecture of AlexNet is shown in a standard visual
representation in Figure 2. Note that the original AlexNet

3 Krizhevsky et al. (2012), which introduced the AlexNet architecture, makes
clear that the size of AlexNet was limited by computational power and
memory, and patience to endure long training times.

architecture (shown in Figure 2) has 1,000 nodes in its output
layer, corresponding to the 1,000 object categories in the ImageNet
dataset. For this paper, the number of output nodes was reduced
to 4, in accordance with the number of categories of galaxy
morphology.

3.3 Data preparation, procedures and
tooling

For our work, all galaxy images were scaled to 256× 256 in
height and width to allow room for cropping to 224× 224, which is
the input size required by AlexNet. Regarding data augmentation,
PyTorch is naturally set up to use random data augmentation,
which involves the probabilistic application of standard data
augmentation techniques. For example, the PyTorch function
transforms.RandomHorizontalFlip() will, each epoch,
horizontally flip a given image with probability 0.5.

The data set was split into 12,000 training images and 2,034
testing images uniformly at random. We constructed 100 such
test/train splits. No hyperparameter tuning was done. (The decision
to forgo hyperparameter tuning was made in order to make an even
comparison between the pretrained and non-pretrained networks.)
For each random split of the data set, which we refer to as a run,
the pretrained AlexNet was trained for 200 epochs, while the non-
pretrained AlexNet was trained for 400 epochs. This additional
training time was given to the non-pretrained AlexNet so that it had
a better opportunity to achieve optimal performance. The training
used the standard cross-entropy loss via the PyTorch function
torch.nn.CrossEntropyLoss(), which is described in the
PyTorch documentation.

Standard Python-language tools including Matplotlib (Hunter,
2007), NumPy (Harris et al., 2020), pandas (McKinney, 2010;
Pandas development team, 2020), and seaborn (Waskom, 2021)
were used for performing our numerical experiments and compiling
the results to be presented. In particular, PyTorch (Paszke et al.,
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FIGURE 6
(A) Gain from letting the pretrained networks train for 200 epochs, as opposed to only 50 epochs. The gain is roughly 1%. (B) Gain from letting the
pretrained networks train for 200 epochs, as opposed to only 20 epochs. The gain is roughly 2%–2.5%. (C) Each line in this panel contains the
progression in test accuracy for the pretrained AlexNet for 1 of the 100 runs performed. It is clear that most of the improvement occurs within the first
20–30 epochs of training. (D) Each line in this panel contains the progression in test accuracy for the non-pretrained AlexNet for 1 of the 100 runs
performed. The width of the band of lines suggests that performance of the non-pretrained AlexNet is more variable than the pretrained AlexNet.
Furthermore, it usually takes around 50 epochs of training for the non-pretrained AlexNet’s parameters to adjust enough in order for the network’s
predictions to begin shifting.

TABLE 1 Selected figures summarizing the results from the present paper.

Number of training epochs

Network Type 400 200 50 20 10 5

Pretrained — 84.2%, 0.7% 83.1%, 0.7% 82.0%, 0.8% 80.8%, 1.1% 79.3%, 1.2%

Non-Pretrained 82.4%, 0.9% 79.7%, 1.5% — — — —

The percentages are the average peak accuracy (over 100 runs) and associated standard deviations. Certain figures are excluded from the table because they are not meaningful. Percentages are
rounded to the nearest tenth of a percent. The pretrained AlexNet clearly outperforms the non-pretrained AlexNet, but analyzed in terms of efficiency its advantage is even more striking: with
just 20 epochs of training it is clearly superior to the non-pretrained AlexNet with 10 times as much training, and almost tied with the non-pretrained AlexNet with 20 times as much training.

2019) was used to obtain the pretrained and non-pretrainedAlexNet
networks, and to train and test them. The networks used are
available off the shelf in PyTorch, via the torchvision.models
subpackage. Further, the Cedar computing system at Simon Fraser
University, provisioned by the Digital Research Alliance of Canada
and the BC DRI Group, was used to carry out the neural network
training and testing. Specifically, we used an Intel Xeon Silver 4216
processor with 12 GB RAM, and a NVIDIA Tesla V100 32 GB
GPU. The total computing time used to carry out the numerical
experiments described in this work was 5.64 CPU months and 0.96
GPU months.

4 Results

In this section, we present and discuss the results obtained
over the 100 runs, and compare the pretrained and non-pretrained
networks on a variety of metrics. We begin with Figure 3, in which
we present histograms of the peak test accuracy for all runs for
both the pretrained and non-pretrained networks; this figure also
provides the epoch in which peak test accuracy is achieved. We
also compute the difference in peak test accuracy between the
pretrained and non-pretrained networks, as well as the difference
in the epoch number for which peak test accuracy was achieved for

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2023.1197358
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Schneider et al. 10.3389/fspas.2023.1197358

FIGURE 7
(A) Train and test accuracies of run 49 over all epochs for the pretrained AlexNet. The blue line in this panel is one of the lines in Figure 6C. (B)
Equivalent information is presented for the non-pretrained AlexNet. The blue line in this panel is one of the lines in Figure 6D. (C) Train and test loss
values of run 49 over all epochs for the pretrained AlexNet. (D) Equivalent information is presented for the non-pretrained AlexNet. Run 49 was chosen
as an arbitrary representative of the 100 runs performed, although naturally there is some variation. Across most runs, performance of the pretrained
network in training eventually surpasses performance in testing, although the point at which this occurs, and the eventual gap between the two, vary
from run to run. This phenomenon is much weaker, perhaps nonexistent, for the non-pretrained networks, which may suggest that they would have
benefited from more than 400 epochs of training. The non-pretrained networks also often take at least 50 epochs before the weights have adjusted
enough for predictions to begin improving (Initially the non-pretrained networks appear to classify all test images as being of spiral galaxies).

the two networks, and display the results in Figure 4. (For the latter
calculation, only the first 200 epochs of training were considered
for the non-pretrained network.) (Note that here and elsewhere in
the paper, accuracy refers to the overall accuracy—the percentage of
correct classifications out of the total.)

To compare the pretrained and non-pretrained networks given
a fixed training budget of 200 epochs, for each run we compute
the difference between the peak accuracy of the pretrained network
and the highest accuracy achieved by the non-pretrained network
within its first 200 epochs of training. These results are presented
in Figure 5. Examination of the histograms displayed in Figures 3–5
indicates that the pretrained AlexNet is preferred over the non-
pretrained version. Pretraining leads to a higher overall accuracy,
with an average peak accuracy (over the 100 runs) of 84.2% versus
82.4% for pretrained and non-pretrained, respectively. Furthermore,
the pretrained network required significantly fewer epochs to reach
its peak accuracy.

To further explore the efficiency gain of pretraining, we evaluate
the performance of the pretrained network over a restricted portion
of training, such as the first 20 or 50 epochs. Selected results are
presented in Figure 6. Figure 6A is a histogram of the difference in

peak test accuracy for the 200-epoch pretrained network and the 50-
epoch pretrained network, showing that the average gain in accuracy
from the additional 150 epochs of training is only about 1%, and the
maximum gain over all 100 runs is less than 3%. If the pretrained
network is limited to only 20 epochs, then Figure 6B shows that the
average gain in accuracy from the additional 180 epochs of training
increases to approximately 2%–2.5%, with amaximum gain over the
100 runs of approximately 4%.This suggests that good performance
can be achievedwith relatively few epochs, such as 20. Depending on
the specific application and resource constraints, it may therefore be
sufficient to train a pretrained network for a relatively small number
of epochs.

The bottom row of Figure 6 displays the test classification
accuracy curves for pretrained (Figure 6C) and non-pretrained
(Figure 6D) models over all 100 runs. The classification accuracy
curves for the pretrained network reinforce the finding that the
vast majority of improvement is acquired within the first 10–20
epochs of training. The widths of the bands of lines (an informal
measure of variability) indicate that there is much less variability
when using a pretrained model than when using a non-pretrained
model. Figure 6D shows that the non-pretrained models require
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FIGURE 8
Histograms of class accuracies for the most accurate pretrained model of each run. There is a clear hierarchy in performance that is somewhat
consistent with the distribution of the test data set (i.e., highest performance in the most frequently occurring images), although the fact that the
lenticular galaxies are in some sense “between” the elliptical and spiral galaxies seems to reduce lenticular accuracy.

roughly 50 epochs of training in order to make any improvement
at all; presumably this is the typical amount of training necessary to
adjust a model’s parameters sufficiently in order to begin changing
its classification behavior.

Table 1 provides a summary of the results presented in
Figures 3–6. The information presented in the Table is consistent
with that conveyed in the Figures, namely, that the pretrained
network is more accurate and less variable in its performance than
the non-pretrained network. Table 1 also provides more precise
insight into the diminishing returns from training the pretrained
network. Within the first 10% of training (20 epochs as opposed
to 200), the pretrained network achieves an average peak test
accuracy of 82.0%; within the first 25% of training (50 epochs), the
pretrained network achieves a peak test accuracy of 83.1%. These
means are within approximately 2% and 1%, respectively, of the
peak test accuracy of 84.2%, and it is worth noting that despite
the reduced training time, the standard deviations are essentially
indistinguishable from those for the full 200 epochs’ worth of
training. This implies that there is no (or very little) variance
penalty when doing a comparatively small amount of training of the
pretrained network.

Figure 7 is presented as typical output for one of the 100 runs for
both networks. (Run 49 was selected arbitrarily.) The upper panels
present the train and test accuracy progression over all epochs of
training, while the lower panels present train and test performance
for both networks over all epochs from the perspective of the loss

function. In general, the values of the loss function did not appear
to provide any information not already apparent from the accuracy
information, but the loss information is nevertheless presented in
Figure 7 for additional illustration.

4.1 Classification accuracies by class, and
analysis of models

In order to develop a deeper understanding of model
performance, the top-performing pretrained and non-pretrained
models (by test accuracy) from each run were fed the test data set
once again, and per-class accuracy figures were recorded. Figures 8,
9 display histograms of this result.

The models were all roughly the same in that they were quite
accurate when presented with images of spiral galaxies, less accurate
when presented with images of elliptical galaxies, and less accurate
still when presented with images of lenticular galaxies. Furthermore,
they perform quite poorly when presented with images of irregular
or miscellaneous galaxies, presumably due to the fact that there are
few such images in the data set, and moreover the category itself is
ill defined in the sense that it mostly serves as a grab-bag of images
that fit in none of the preceding three categories.

However, besides the fact that pretrained networks classify
images of elliptical, lenticular and spiral galaxies slightly more
accurately than do the non-pretrained networks, there is one striking
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FIGURE 9
Histograms of class accuracies for the most accurate non-pretrained model of each run. These histograms are broadly similar to those in Figure 8, with
the main exception being much poorer Irr + Misc performance.

TABLE 2 Class accuracy averages and standard deviations across all 100 runs
for both pretrained and non-pretrained networks.

Class Pretrained Non-pretrained

Elliptical 83.3%, 3.2% 81.5%, 4.0%

Lenticular 66.4%, 3.0% 64.2%, 3.0%

Spiral 92.9%, 1.2% 92.4%, 1.7%

Irr + Misc 38.1%, 7.9% 21.4%, 6.7%

Percentages are rounded to the nearest tenth of a percent. The pretrained networks are more
accurate on average across all categories, and also have smaller or equal standard deviations
with the exception of the Irr + Misc category. Despite the larger standard deviation in that
case, it seems clear that the pretrained networks are far superior for the Irr + Misc category.

difference, namely, that the pretrained networks classify images
of Irr + Misc galaxies almost twice as accurately as the non-
pretrained networks. Even though the accuracy is still below 50%,
this result might suggest that pretraining is potentially valuable
for acquiring knowledge of uncommon or irregular examples in
the application at hand. The fact that the pretrained networks
offer a negligible improvement over the non-pretrained on spiral
galaxies, by far the most common in the data set, might bolster this
hypothesis.

Table 2 summarizes the results presented in Figures 8, 9. This
Table makes clear that not only is the pretrained network superior
across all classes to the non-pretrained network in average class

accuracy, but the pretrained network is also less variable in its
classification performance. The only exception to this is the Irr +
Misc class, for which the pretrained network is more variable than
the non-pretrained network, but the pretrained network’s almost
twofold superiority in average accuracy for this class offsets its
slightly higher variability.

Figure 10 presents confusion matrices for the top-performing
pretrained andnon-pretrainedmodels from run49. (This is the same
run as that presented in Figure 7). The information in this figure is
consistent with that presented in Figures 8, 9, namely, the hierarchy
in classification performance across the four categories of galaxy
morphology, and the general superiority of the pretrained network.
However, the confusion matrices also provide some insight into the
nature of themisclassifications made by the networks. In particular,
both pretrained and non-pretrained models tend to misclassify
galaxies into adjacent morphological categories. For example, the
majority of themisclassified spiral galaxies are classified as lenticular,
as opposed to being classified as elliptical galaxies.

Figure 11 presents confusion matrix data over all 100 runs for
the pretrained and non-pretrained AlexNets. (Note that as opposed
to Figure 10, the totals have been converted to proportions).
Similar to Figure 10, Figure 11 provides information not only
concerning how the models classify images of galaxies, but also
how they misclassify images of galaxies. In Figure 11A, the value
in each cell of the matrix is the average value for that cell
from the 100 individual confusion matrices for the pretrained
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FIGURE 10
(A) Confusion matrix for the top-performing model from run 49 of the pretrained AlexNet. The sum of the numbers within a row is the number of
images of that type within the test set for that run. For example, looking at the second row, in run 49 there were 110+309+ 77+5 = 501 images of
lenticular galaxies in the test set, and 309/501 ≈ 61.7% of those images were classified correctly. Furthermore, 110/501 ≈ 22.0% of images of lenticular
galaxies were mis-classified as elliptical galaxies. The confusion matrices for all runs are roughly similar in that the models tend to mis-classify images
of galaxies into adjacent categories, which is relatively sensible. (B) Confusion matrix for the top-performing model from run 49 of the non-pretrained
AlexNet. Again, the sum of the numbers within a row is the number of images of that type within the test set for that run. For example, looking at the
second row, in run 49 there were 95+319+86+ 1 = 501 images of lenticular galaxies in the test set, and 319/501 ≈ 63.7% of those images were
classified correctly. Furthermore, 95/501 ≈ 19.0% of images of lenticular galaxies were mis-classified as elliptical galaxies. As with the pretrained
network, the confusion matrices for all runs are roughly similar in that the models tend to mis-classify images of galaxies into adjacent categories.

FIGURE 11
(A) The average confusion matrix for the pretrained AlexNet is shown. The entries in this confusion matrix are the means across all 100 confusion
matrices for the pretrained network, one pertaining to each run. This figure shows that the network tends to misclassify images of galaxies into
adjacent categories. (B) A matrix showing the standard deviations of the individual confusion matrices for the pretrained network over all 100 runs. (C)
The average confusion matrix for the non-pretrained AlexNet. The entries in this confusion matrix are the means across all 100 confusion matrices for
the non-pretrained network, one pertaining to each run. Like the top-left figure, the bottom-left figure shows that the non-pretrained network tends
to misclassify images of galaxies into adjacent categories. (D) A matrix showing the standard deviations of the individual confusion matrices for the
non-pretrained network over all 100 runs.
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network. Figure 11C contains an equivalent matrix for the non-
pretrained network. Figures 11B, D contain the associated cell-
wise standard deviations for the pretrained and non-pretrained
networks, respectively. As with Figure 10, the most salient feature
of Figure 11 is the demonstration that both pretrained and non-
pretrained networks tend to misclassify images of galaxies into
adjacent categories. This is sensible given that the morphological
characteristics of these galaxies are thought to occur on a continuum,
at least to some extent.

4.2 Statistical significance tests

In order to provide a quantitative measure of the differences in
performance between the pretrained and non-pretrained AlexNets,
sign tests are conducted below. [The sign test makes no assumptions
about the distribution of the quantities being compared (Roussas,
1997)].

Let X0,X1,…,X99 be independent and identically distributed
random variables with distribution function F, representing the
distribution of peak test accuracy for the 100 runs of the pretrained
AlexNet (over 200 epochs of training). Similarly, let Y0,Y1,…,Y99
be independent and identically distributed random variables with
distribution function G, representing the distribution of peak test
accuracy for the 100 runs of the non-pretrained AlexNet (over 400
epochs of training). We wish to test the hypothesis

H: F = G.

The result of the two-sided sign test is a p-value of approximately
1.58× 10−30, which provides strong evidence against the null
hypothesis. We therefore have statistically significant evidence that
the pretrained model is more accurate, even though the differences
in accuracy may appear slight.

We can perform a similar test on differences in training time
and energy used, using the number of epochs of training required
to reach peak test accuracy as a proxy. Using similar definitions
as above, the result of a two-sided sign test is the same p-value of
approximately 1.58× 10−30, which again provides strong evidence
against the null hypothesis.We therefore have statistically significant
evidence that the pretrainedmodel is not onlymore accurate but also
more efficient.

4.3 Persistence of improvement to
increased number of training epochs

To test how well the non-pretrained network might perform if
it were given more than 400 epochs of training, runs 45–49 were
repeated (i.e., the same train and test data splits were used), and both
the pretrained and non-pretrained networks were trained for 1,000
epochs, instead of 200 and 400 epochs, respectively. (Runs 45–49
were arbitrarily chosen; time and computational resource limitations
prevent using 1,000 epochs for all 100 runs). Table 3 contains peak
test accuracies (rounded to the nearest tenth of a percent) and the
epoch in which the peak test accuracy occurred.

Examining Table 3 we observe that, for each run, the pretrained
network achieves a higher peak test accuracy than the non-
pretrained network, and the difference is usually in the 0.5%–1.0%

TABLE 3 Peak test accuracies (rounded to the nearest tenth of a percent) and
the epoch in which the peak test accuracy occurred, using 1,000 epochs of
training for runs 45–49.

Run Pretrained Non-pretrained

45 85.1%, 227 84.5%, 878

46 84.9%, 244 84.1%, 922

47 84.4%, 243 83.4%, 994

48 84.5%, 466 83.7%, 847

49 84.5%, 380 84.4%, 932

range. This evidence suggests that it is not simply a matter of
increasing the training time for the non-pretrained network in order
to close the gap to the pretrained network, at least not up to 1,000
epochs of training. In otherwords, Table 3 suggests that, at least up to
1,000 epochs of training, the advantage of pretraining on unrelated
image data is not only greater efficiency but also greater ultimate
performance in terms of overall accuracy.

5 Summary and outlook

The main objective of this work is to compare pretrained (on
ImageNet) and non-pretrained versions of AlexNet by training
them on galaxy images from the Sloan Digital Sky Survey Data
Release 4 [as described inNair andAbraham (2010)] and comparing
their performance and efficiency. We note that while the overall
classification accuracies achieved are comparable to or slightly
surpass similar attempts [e.g., those described in Cavanagh et al.
(2021)], chasing the highest possible classification accuracy would
lead us to consider other network architectures, hyperparameter
tuning, etc. Rather, we have demonstrated the benefit to considering
pretrained deep learning models for certain tasks. Our results are as
follows:

1. The pretrained AlexNet had a consistent edge (compared to the
non-pretrainedAlexNet) in peak classification accuracy. It had an
84.2% average peak test accuracy, compared to an average peak
test accuracy of 82.4% for the non-pretrained AlexNet.

2. The pretrained AlexNet was much more efficient (compared
to the non-pretrained AlexNet) in that it attained peak test
accuracymuchmore quickly. On average, the pretrainedAlexNet
achieved peak test accuracy in epoch 155 (standard deviation of
34 epochs), compared to epoch 367 (standard deviation of 33
epochs) for the non-pretrained AlexNet.

3. When considering only the first 200 epochs of training for the
non-pretrained AlexNet, in order to provide a comparison with
the pretrained AlexNet given an equal amount of training, the
peak classification accuracy advantage for the pretrainedAlexNet
more than doubles, to about 4.6%.

4. The pretrained AlexNet achieves comparable performance to
state-of-the-art methods, such as Cavanagh et al. (2021), rather
quickly. The pretrained AlexNet’s average peak test accuracy
after just 20 epochs of training is 82.0%, comparable with the
headline 81%–83% figures from Cavanagh et al. (2021). After 50
epochs of training, the pretrained AlexNet’s figure is 83.1%. This
suggests that, taking advantage of pretraining, peak performance
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TABLE 4 Precision, recall and F1 for each class for both pretrained and
non-pretrained networks.

Class Pretrained Non-pretrained

Elliptical precision 79.0%, 2.7% 78.2%, 3.6%

Lenticular precision 69.4%, 2.5% 66.5%, 2.6%

Spiral precision 91.7%, 1.2% 90.0%, 1.4%

Irr + Misc precision 58.5%, 9.0% 56.6%, 10.9%

Elliptical recall 83.3%, 3.3% 81.5%, 4.0%

Lenticular recall 66.4%, 3.0% 64.2%, 3.0%

Spiral recall 92.9%, 1.2% 92.4%, 1.7%

Irr + Misc recall 38.1%, 7.9% 21.4%, 6.7%

Elliptical F1 81.0%, 1.5% 79.7%, 1.6%

Lenticular F1 67.8%, 1.7% 65.3%, 2.0%

Spiral F1 92.3%, 0.6% 91.1%, 0.6%

Irr + Misc F1 45.5%, 6.8% 30.3%, 7.2%

In each cell, the first percentage is an average and the second a standard deviations,
computed over all 100 runs. Percentages are rounded to the nearest tenth of a percent.

comparable to that from Cavanagh et al. (2021) can be achieved
in as little as 10–60 min, depending on the computational
resources at hand.

5. Regarding per-class accuracies, the most striking advantage for
the pretrained AlexNet is that it often classifies the Irr + Misc
images more than twice as accurately as the non-pretrained
AlexNet. (Gains in classification accuracy for the other three
categories are much smaller).

Regarding the last point, as a neural network is somewhat
of a black box, it is hard to know precisely how the pretrained
AlexNet becomes so much more adept at identifying images of Irr
+ Misc galaxies. It seems reasonable to speculate that there is some
sort of generalizable information within the unrelated ImageNet
(pre)training set that is nevertheless applicable to classifying images
of galaxies. Further speculating, it may be that pretraining on
large, general, but unrelated data sets is of particular value in
maximizing the ability to identify or classify rare cases in the
particular application of interest, particularly when those rare cases
are considered significant.

To further explore the benefit of pretraining for classifying Irr
+ Misc galaxies, we compute precision, recall, and F1-score for all
galaxy types for both the pretrained and non-pretrained networks
(evaluated on the unseen test data for each of the 100 runs); the
results are presented in Table 4. The F1 score, as the harmonic
mean of precision and recall, is a more holistic measure of model
performance than either of its constituent components individually.
The F1 score's sensitivity to class imbalances makes it a useful
measure of model performance given an imbalanced dataset, as
in the present case (Murphy, 2022). While there is only marginal
improvement in precision, recall and F1 for elliptical, lenticular,
and spiral galaxies, there is a significant improvement in recall
and F1 for Irr + Misc galaxies (but only a slight improvement in
precision).

A challenge for galaxy morphology classification and many
areas of astrophysical image classification more generally is the
relative lack of training data. The number of galaxy images available
for the present work, 14,034, is much smaller than the amount
of data typically available for training deep learning models;
ImageNet alone contains more than 14,000,000 images, the labeling
of which is trivial compared to classifying galaxy morphologies
by hand. While upcoming surveys such as those by Euclid will
generate more data, proper labelling remains a challenge. However,
the use of pretrained models, as we described in this paper, offers
the community a way of leveraging the significant effort already
spent on developing and training deep learning models without
sacrificing accuracy. Indeed, we suggest that the accuracy of a
pretrained model may be slightly superior on common examples
and vastly superior on rare examples, withmuch greater efficiency to
boot.

Looking ahead we note that, in the deep learning community,
AlexNet in particular and perhaps CNNs in general are no longer
considered state of the art. This can be seen, for instance, in
the progression of performance on the ImageNet data set over
time. AlexNet is no longer close to the top-performing models on
ImageNet, most of which are no longer CNNs. Transformer models
(Vaswani et al., 2017) are often the highest-performing architectures
currently and are much closer to the current state of the art.
Exploration of their properties and performance is the subject of
future work, especially the potential benefit of pretraining with
them.
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