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Occurrence of heavy
precipitation influenced by solar
wind high-speed streams
through vertical atmospheric
coupling
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1Physics Department, University of New Brunswick, Fredericton, NB, Canada, 2Astronomical Institute,
Slovak Academy of Sciences, Tatranská Lomnica, Slovakia

A tendency of heavy rainfall-induced floods in Canada to follow arrivals of solar
wind high-speed streams (HSSs) from coronal holes is observed. Precipitation
events during the winter, including extreme freezing rain events in the province
of New Brunswick, also tend to occur following HSSs. More direct evidence is
provided using the satellite-based gridded precipitation dataset IntegratedMulti-
satellitE Retrievals for GPM (IMERG) in the superposed epoch analysis of high-
rate precipitation. The results show an increase in the high-rate daily precipitation
occurrence over Canada following arrivals of major HSSs. This is consistent with
previously published results for other mid-latitude geographic regions. The ERA5
meteorological reanalysis is used to evaluate the slantwise convective available
potential energy (SCAPE) that is of importance in the development of storms.
The role of the solar wind-magnetosphere-ionosphere-atmosphere coupling,
mediated by globally propagating aurorally excited atmospheric gravity waves
releasing the conditional symmetric instability in the troposphere leading to
convection and precipitation, is proposed.
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1 Introduction

Solar influences on weather and climate through changes in total solar irradiance
(Reid, 1997; Crowley, 2000), ultraviolet flux (Chandra and McPeters, 1994), and galactic and
extragalactic cosmic raysmodulated by solar activity (Harrison andCarslaw, 2003) have been
extensively studied and reviewed (Gray et al., 2010).

A possible influence of solar wind and the resulting geomagnetic activity on the winter
mid-latitude tropospheric circulation on the scale of days was suggested in the 1960s and
1970s. Wintertime deepening of 300-mb troughs has been found to be statistically related to
geomagnetic activity (Macdonald and Roberts, 1960; Roberts andOlson, 1973).Wilcox et al.
(1973) and Wilcox et al. (1974) discovered a relation (now referred to as the “Wilcox effect”)
between the solar magnetic sector structure and tropospheric vorticity using the upper-
level tropospheric vorticity area index, which is a proxy for extratropical storminess. These
results have been shown to be statistically significant (Hines and Halevy, 1977), raised a
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lively discussion among scientists (Williams, 1978; Williams and
Gerety, 1978; Burns et al., 1980; Rostoker and Sharma, 1980; Arora
and Padgaonkar, 1981; Lundstedt, 1984), and prompted a search
for a physical mechanism that could explain these results (Park,
1976; Wilcox et al., 1976; Wilcox, 1979; Wilcox and Scherrer, 1981).
More recently, the dawn–dusk (By) component of the interplanetary
magnetic field (IMF) and atmospheric electrical circuit influences
on the ground-level atmospheric pressure have been shown
(Burns et al., 2007; Burns et al., 2008; Tinsley, 2008; Lam et al.,
2013; Lam et al., 2014; Lam and Tinsley, 2016), and Lam and
Tinsley (2016) reviewed the connections of solar wind–atmospheric
electricity–cloud microphysics to weather and climate. Owens et al.
(2014) considered the polarity of the magnetic field modulating
lightning in UK, and Scott et al. (2014) observed solar wind
modulation of lightning in response to the arrival of solar wind high-
speed streams coinciding with an increased flux of solar energetic
protons.

A tendency of significant weather conditions, including
explosive extratropical cyclones (Prikryl et al., 2016; Prikryl et al.,
2018), rapid intensification of tropical cyclones (Prikryl et al., 2019),
and heavy rainfall causing floods (Prikryl et al., 2021a; Prikryl et al.,
2021b), to follow arrivals of solar wind high-speed streams from
coronal holes has been observed. A possible physical mechanism
that could explain these results was proposed (Prikryl et al., 2003;
Prikryl et al., 2007; Prikryl et al., 2009a; Prikryl et al., 2009b).

Extreme weather events, such as heavy precipitation leading to
floods or flash floods, particularly in summer, and snow- or ice-
storms in winter, pose natural hazards with major socio-economic
and environmental consequences (Brooks et al., 2001; Burn et al.,
2016; Buttle et al., 2016). Despite the advances made in forecasting
and improved understanding of mesoscale processes (Doswell
and Bosart, 2001), predictions of extreme precipitation events
continue to present difficult challenges (Doswell and Bosart, 2001;
Villarini et al., 2010; Gourley et al., 2012). Such events are common
in Canada, and with climate change affecting the stability of the
Earth’s atmosphere, their occurrence is expected to increase (Burn
and Whitfield, 2016). Buttle et al. (2016) ( Table 2) reviewed the key
processes, classified as meteorological, hydrological, geomorphic,
and human-induced, which generate floods in Canada.

In this paper, we focus on heavy precipitation events in Canada
where the proximity of the auroral zone, the source region of
atmospheric gravity waves (AGWs), makes it the most favorable
geographic location to investigate the relationship between high-rate
precipitation occurrence and solar wind high-speed streams.

2 Data sources and methods

A list of heavy rainfall-induced flood events in Canada between
1966 and 2020 is compiled from various other sources (https://
www.for.gov.bc.ca/hfd/library/documents/, https://www.public-
safety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-en.aspx). The initial
days of heavy rainfall events (some lasting for a few days) that
lead to these floods were checked and identified as the events’ first
days with significant rainfall by browsing historical weather data
on the Environment and Climate Change Canada website (https://
climate.weather.gc.ca/index_e.html).

Winter storm precipitation events, including extreme freezing
rain, which caused power outages in the Province of New
Brunswick have been studied by Chartrand and Thériault (2020)
and Chartrand et al. (2022). These events were associated with
a low-pressure system and were identified in sea-level pressure
maps.

The Integrated Multi-satellitE Retrievals for GPM
(IMERG) Final Precipitation L3 1 day 0.1° × 0.1° V06
(GPM_3IMERGDF) dataset (Huffman et al., 2019) is provided
by the Goddard Earth Sciences Data and Information Services
Center (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/
summary?keywords=IMERG).

For the analysis of moist symmetric instability in the
troposphere, the latest hourly climate reanalysis produced by
ECMWF, ERA5, at 0.25 × 0.25° is utilized (Hersbach et al., 2020).
Following Chen et al. (2018), indices including convective available
potential energy (CAPE), slantwise CAPE (SCAPE), and vertically
integrated extent of realizable symmetric instability (VRS) are
diagnosed, to assess the likelihood of slantwise convection in the
observed precipitation events.

For the study of high-rate precipitation occurrence in the context
of solar wind, the interplanetary magnetic field and solar wind
plasma data are provided by the National Space Science Data
Center (NSSDC), OMNIWeb (http://omniweb.gsfc.nasa.gov) (King
and Papitashvili, 2005). The OMNI data also include geomagnetic
indices, e.g., the Dst index that is used to characterize geomagnetic
storms (Gonzalez et al., 1994). Solar wind plasma parameters are
used to identify co-rotating interaction regions (CIRs) at the
leading edge of high-speed streams (HSSs). As CIRs pass by a
spacecraft, the solar wind density increases to a maximum and then
decreases within a narrow stream interface while the magnetic field
magnitude peaks.This interface between the fast and slow solarwind
defines arrivals of HSSs. The high-density plasma ahead of CIRs
(Tsurutani et al., 1995) and interplanetary coronal mass ejections
(ICMEs) are also known to be highly geoeffective (Gopalswamy,
2016; Tsurutani et al., 2016). A catalog of near-Earth ICMEs was
compiled by Richardson and Cane (2010) (https://izw1.caltech.edu/
ACE/ASC/DATA/level3/icmetable2.html).

The sources of HSSs are coronal holes, open solar magnetic field
regions that appear dark in the solar corona observed in the emission
lines of ionized atoms, e.g., Fe XIV, 530.3 nm. Measurements of
this green coronal emission by ground-based coronagraphs at high
altitudes have been merged into a modified homogeneous coronal
dataset (Dorotovič et al., 2014) (https://www.suh.sk/online-data),
as a continuation of the original homogenized coronal dataset
(Rybanský, 1975; Rybanský et al., 2005).

Super Dual Auroral Radar Network (SuperDARN) radars
(Chisham et al., 2007) measure the line-of-sight velocity of
ionospheric irregularities (ionospheric convection) and ground
scatter power to observe traveling ionospheric disturbances, such as
the ones caused by atmospheric gravity waves.

The superposed epoch analysis (SPE) method (Ambrož, 1979)
is applied on the time series of green corona intensity, solar
wind parameters and high-rate precipitation keyed to heavy
rainfall events, arrivals of major HSSs/CIRs (Prikryl et al., 2021a;
Prikryl et al., 2021b), or the maximum growth rate of extratropical
cyclones (Prikryl et al., 2016).
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3 The SPE analysis of high
precipitation occurrences in the
context of solar wind HSSs

Following the approach taken in previous studies ( Prikryl et al.,
2021a; Prikryl et al., 2021b), the SPE analysis (Figures 1A, B) of
the time series of the green corona intensity and solar wind
variables is keyed to the initial days of heavy rainfall events that
lead to floods in Canada. For each epoch day, Figure 1C shows,
for the IMERG data that are available since 2000, the cumulative

number of IMERG grid cells over Canada up to 60° N of latitude
where daily precipitation rates exceeded thresholds of 60, 80, 100,
and 120 mm. Figure 1A shows a depletion in the mean green
corona intensity at low heliographic latitudes before the epoch
day −2, which is due to superposition of coronal holes that are
sources of HSSs arriving a few days later, as shown by themean solar
wind variables in Figure 1B,with themean velocity,V, ramping up to
a maximum on epoch day +1. The broad peaks in the mean density
and magnetic field are due to superposition of CIRs. The standard
deviation, σBz , of the IMF, BZ, component, which is a measure of

FIGURE 1
SPE analysis of the time series of (A,D) green corona intensity and (B,E) solar wind plasma variables keyed to start dates of (left panels) heavy
rainfall-induced flood events in Canada and (right panels) significant precipitation events, including snow and freezing rain in New Brunswick (NB). The
representative standard error bars for the mean values are shown. Bottom panels show cumulative numbers of grid cells with above-threshold daily
precipitation rates (C) over Canada up to latitude 60° N and (F) over a rectangular area that includes NB.
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FIGURE 2
SPE analysis of the time series of (A) green corona intensity and (B) solar wind plasma variables keyed to arrivals of major HSSs/CIRs for solar wind
streams that reached maximum velocity Vmax >600 km/s. (C) Histograms show cumulative numbers of IMERG grid cells (divided by 100) over Canada
up to 60° N latitude with above-threshold daily precipitation rates. Line plots (in the blue color) of the mean numbers of grid cells with the precipitation
rate exceeding 60 mm/day, along with standard error bars for the mean that are superposed. (D–F) Cumulative numbers of IMERG grid cells for the
SPE analysis performed for three ranges of Vmax.

solar wind Alfvén wave amplitudes, also maximizes around the
epoch day 0. These results suggest these heavy rainfall events tend
to follow arrivals of HSSs/CIRs.

Figures 1D, E show the results of the SPE analysis keyed to start
days of significant precipitation events, including snow and freezing
rain (Chartrand et al., 2022) that caused power outages in New
Brunswick (NB) during 2003–2013. Figure 1F shows the cumulative

number of IMERG grid cells over a rectangular area that includes
NB, where daily precipitation rates exceeded thresholds of 30, 40,
50, and 60 mm. Although the patterns of the mean V pattern and
the depletion in the mean green corona intensity are similar to
those in Figures 1A, B, the increase in the mean density, np, and
magnetic field magnitude, B, around epoch day 0 is less prominent.
The pattern still indicates that many NB events were associated with
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FIGURE 3
SPE analysis of the time series of (A) green corona intensity and (B)
solar wind plasma variables keyed to the maximum growth
(deepening) rate of extratropical cyclones that caused NB storm
events. (C) Corresponding mean sea level pressure and mean
deepening rate. The dotted lines show the standard error of the mean.
Histograms of the number of CIRs (purple) and ICMEs (orange) are
shown at the bottom.

arrivals of HSSs/CIRs. The peaks in B and np at later epoch days
(+2 and +4) are due to superposition of ICMEs, as further discussed
later.

In Figure 2, to examine the statistical occurrence of high-rate
precipitation relative to arrivals of HSSs/CIRs, the approach is
inverted by defining the key time in the SPE analysis as arrival
times of major HSSs/CIRs. For the period of 2000–2020 and major
HSSs reaching a maximum solar wind velocity Vmax >600 km/s,
Figures 2A, B show the SPE analysis results for the green corona
intensity and solar wind parameters. As expected, the superposition

of HSSs/CIRs relative to the well-defined interface between the fast
and slow solar wind results in sharp peaks in the mean values of np,
B, and σBz close to the key time, while mean solar wind velocity V
increases from a minimum before to a maximum after the key time
(Figure 2B), with themean coronal hole preceding it by about 4 days.

The main interest in this analysis is the total cumulative number
of IMERG grid cells over Canada, up to 60° N latitude where daily
precipitation rates exceeded given thresholds, summed up for each
epoch day relative to the key time (Figure 2C). The occurrence of
high-rate precipitation shows an increase starting at epoch day −1,
to a maximum at epoch day +1 following the arrival of HSSs/CIRs.
For the numbers of grid cells with the precipitation rate exceeding
60 mm/day, the mean ± standard error of the mean is shown.
While the observed increase is relatively small, it is greater than
the standard error of the mean. Furthermore, splitting the analysis
into subperiods shows that the increase persists and becomes
progressively more prominent for faster HSSs. The SPE analysis for
three intervals of Vmax (Figures 2D–F) shows the increase in the
cumulative number of IMERG grid cells with above-threshold daily
precipitation rates. In all three cases, high precipitation rates peak
at epoch day +1. For progressively faster/stronger HSSs/CIRs, the
relative increase in the high-rate precipitation occurrence following
the key time is higher (Figures 2E, F). It is important to vary n
and group the analysis by Vmax. First, larger n should yield higher
statistical significance for SPE results. Second, faster HSSs result in
stronger MIA coupling. Third, the grouping into subperiods allows
the consistency of SPE results to be checked.

In the case of NB events that caused power outages in
the period of 2003–2013, we identified extratropical cyclones
that caused the storms. Using global satellite images of clouds
provided by the International Satellite Cloud Climatology Project
(ISCCP), the Global ISCCP B1 Browse System (GIBBS) (https://
www.ncdc.noaa.gov/gibbs/) and the mean sea level pressure (SLP)
fields from the JRA-55 meteorological reanalysis data, the minima
of central pressure of deepening extratropical cyclones were traced.
Following the criterion introduced by Sanders and Gyakum (1980),
the normalized central pressure deepening rate (NDRc) [Lim and
Simmonds 2002; their Eq. (1)] was computed. The maximum
deepening rates of the cyclones are used as key times in the SPE
analysis, with Figure 3C showing the mean SLP and deepening rate
dP/dt. The results for the green corona intensity and solar wind
plasma variables (Figures 3A, B) are similar to those in Figures 1D, E
and to the previously published results linking the explosive
development of extratropical cyclones to arrivals of HSSs/CIRs
(Prikryl et al., 2016). The pattern of an increase in mean solar wind
velocity V, from a minimum before the key time to a maximum
at the epoch day + 2, with substantial increase in mean solar wind
density np and magnetic field magnitude B starting from epoch day
−2 is due to superposition of the number of CIRs that are shown in
histograms between epoch days −2 and +1.This indicates a tendency
of intensification of these cyclones to be associated with arrivals of
HSSs/CIRs, which are often preceded by high-density plasma that is
further discussed in the next section. In addition to CIRs, six ICMEs
that are superposed on epoch day +1 contributed to peaks in B and
np. However, as will be discussed in Section 6, HSSs/CIRs generate
trains of AGWs. The impacts of ICMEs, while often resulting in
geomagnetic storms, are more impulsive but short-lived.
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4 Cases of high precipitation events
leading to floods in the context of
solar winds

4.1 Heavy rainfall-induced floods in
Canada

The results of SPE analyses in Figures 1, 2 indicate a strong
tendency of high-precipitation occurrence following arrivals of
HSSs from coronal holes. We now examine cases of heavy
rainfall events in the context of solar wind disturbances, including
HSSs/CIRs (Gosling and Pizzo, 1999; Tsurutani et al., 2006a;
Tsurutani et al., 2006b) and interplanetary coronal mass ejections
(Gopalswamy, 2016). The solar wind magnetic sector boundaries,
where the IMF direction switches its polarity between “away” and
“toward” the Sun, that have been identified as heliospheric current
sheets (HCSs; Smith et al., 1978; Hoeksema et al., 1983), usually
closely precede or are imbedded within CIRs at the leading edge of
HSSs. The high-density plasma (HDP) ahead of HCSs/CIRs leads
to magnetic field compression, which is another geoeffective solar

wind disturbance (Tsurutani et al., 1995). In the absence of IMF
data, the magnetic sectors can be estimated from ground-based
magnetograms (Svalgaard, 1975).

Figure 4 shows solar wind variables such as the IMF direction
longitude (orange crosses) and the Dst index (green line). The
symbols on the time axis indicate the times of HSS/CIR arrivals,
impacts of ICMEs, and the IMF sector boundary/HCS crossings.
Where available, the proxy magnetic field sectors (A: away; T:
toward) are indicated below the time axis. Start dates of heavy
rainfall events in Canada included in the SPE analysis are marked
by symbols at the top. These are examples of events that occurred
following arrivals of HSSs/HCSs/CIRs or impacts of ICMEs that
caused geomagnetic storms. On 8 June 1999 (Figure 4A), White
Rock, BC, experienced a sudden, intense storm with heavy rain
that caused flash floods and mudslides. In July 1999 (Figure 4B),
heavy snow and rain fell starting on July 2 caused flooding in
Clearwater, AB. On September 22–23 (Figure 4C), Prince Edward
Island experienced a severe rainstorm, causing flash flooding,
damaging eight highways and bridges. The IMERG satellite-based
precipitation data for June 2000 are obtained. At the top in

FIGURE 4
OMNI solar wind V (solid black line), B (red), and np (broken light blue line, with the y-axis scales shown on the left). The magnetic field direction
longitude (orange crosses) and the Dst index (green line) with the y-axis are shown on the right. The symbols at the time axis indicate CIRs ( ), ICMEs
( ), HCSs ( ), and the proxy magnetic field sector (A: away; T: toward). (A–E) The symbols at the top mark the starting days of heavy rainfall-induced
floods in Canada (∆ BC; □ AB/SK/MB; ⁎ ON/QC; ◊ NS/PEI/NL; NB). (D,E) Maximum IMERG daily rates (solid purple line); the number of grid cells over
Canada with precipitation rates exceeding 50 mm (dotted purple line) is shown at the top.
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FIGURE 5
OMNI solar wind V (solid black line), B (red), and np (broken light blue line, with the y-axis scales shown on the left). The magnetic field direction
longitude (orange crosses) and the Dst index (green line) with the y-axis shown on the right. The symbols at the time axis indicate CIRs ( ), ICMEs ( ),
and HCSs ( ). Open circles scaled by the maximum normalized deepening rate (NDRc) of the central mean SLP of extratropical cyclones that caused
NB storms. The symbols mark the starting days of heavy rainfall-induced floods in Canada (∆ BC; □ AB/SK/MB; ⁎ ON/QC; ◊ NS/PEI/NL; NB storms).

Figures 4D, E, the maximum IMERG daily rates at any grid cell
over Canada (solid purple line) and the number of IMERG
grid cells over Canada with precipitation rates exceeding 50 mm
(dotted line) are shown. Figures 4C, D show cases of heavy
rainfall events in New Brunswick and Quebec, respectively, and
enhanced high-rate precipitation occurrence following HSSs/CIRs.
More events in the context of solar wind can be viewed in the
Supplementary Material.

4.2 Winter NB storm precipitation events in
December 2010

Several heavy precipitation events affected eastern Canada in
December 2010. Figure 5 shows the maximum IMERG daily rates
and the number of grid cells over New Brunswick with precipitation
rates exceeding 50 mm. The focus here is on the NB storms
(marked by red diamonds) that followed rapid intensifications
of extratropical cyclones (marked by open circles scaled by the
maximum normalized deepening rate of the central mean SLP).
On December 6, the storm that caused strong winds, heavy wet
snow, and floods coincided with the arrival of a broad CIR on
the leading edge of a moderate HSS that was preceded by high-
density plasma adjacent to HCSs. While heavy precipitation and
an extreme storm surge that caused floods occurred after the low
pressure reached the east coast on December 6, this extratropical
cyclone explosively deepened off the East Coast of the United States.
Figure 6A shows the daily accumulated precipitation on December
6, overlaid with the storm track. The maximum deepening rate
and the minimum central SLP reached are indicated in green and
red colors, respectively. Another intense storm during December
13–14 resulted in extensive flood damages in New Brunswick
and Quebec. It was caused by a rapidly deepening low-pressure
system (Figure 6B) that closely followed the arrival of a major
HSS/CIR (Figure 5). The cyclone brought heavy rain, wet snow,
and strong winds, causing major power outages in New Brunswick.

Heavy rain and floods also occurred in Gaspé, QC, when the
high-rate IMERG precipitation peaked. Figure 6B shows the daily
accumulated precipitation on December 13, overlaid with the storm
track. Similarly, minor HSSs/CIRs on December 20 and 25 were
followed by rapid intensifications of extratropical cyclones over
the east coast, which brought heavy rain, wet snow, and strong
winds to New Brunswick. The December 21 storm also caused a
storm surge and flooding. In each case, there was an increase in
the IMERG high-rate precipitation occurrence over New Brunswick
(Figure 5).

5 Assessment of conditional
symmetric instability and slantwise
convection

Prikryl et al. (2009b) suggested that down-going aurorally-
excited atmospheric gravity waves could contribute to release of
moist symmetric instability, leading to slantwise convection (Schultz
and Schumacher, 1999). Such a mechanism could explain the
aforementioned results linking severe weather occurrences to solar
wind events. In this section, the presence of slantwise convection in
frontal zones is assessed for cases of extratropical cyclones using the
method discussed by Chen et al. (2018).

Release of conditional symmetric instability (CSI; Schultz and
Schumacher, 1999; Chen et al., 2018) has been known to initiate
slantwise convection over frontal precipitation bands (Bennetts
and Hoskins, 1979; Bluestein, 1993; Houze, 1993; Emanuel, 1994).
The warm frontal cloud bands, in rapidly intensifying extratropical
cyclones, were identified as “striated delta” clouds (Feren, 1995).
Glinton et al. (2017) (Figures 1, 2) studied cases of CSI release
contributing to precipitation in mature extratropical cyclones.
Chen et al. (2018) (Figures 7, 10) investigated the evolution of
slantwise convective available potential energy and CAPE in
explosive and nonexplosive cyclones. They found that SCAPE
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FIGURE 6
IMERG daily accumulated precipitation (A) on December 6 and (B) 13 December 2010. The rectangular area around New Brunswick is superposed.
Tracks of central SLP of intensifying extratropical cyclones (orange line) with the maximum deepening rate and minimum central SLP are shown by
green and red dots, respectively.

exhibits values greater than CAPE prior to the onset of the
rapid intensification of explosive cyclones and then decreases
sharply thereafter, thus pointing to the importance of CSI in the
development of storms.

5.1 Case of the storm on 12–13 December
2010

The GOES-13 infrared images (https://www.ncdc.noaa.gov/
gibbs/) of an intensifying extratropical cyclone showed “back
building” convection cells along squall lines (Bluestein and Jain,
1985) off the East Coast of United States (Figure 7A). The
CIMSS data archive (http://tropic.ssec.wisc.edu/archive/) provides
overlay data products from wind analysis. The enhanced upper-
level (150–300 mb) divergence (Figure 7B) indicates a region with
rising air motion. There were strong mid-upper-level southwesterly
winds (Figure 7C), low-level winds (Figure 7D) turning southerly
over a string of convection cells, and large mid-level wind
shear (Figure 7E). Furthermore, low-level winds and vertical wind
shears based on the ERA5 reanalysis are also shown in Figure 8,
discussed as follows. These conditions are conducive to over-
reflection of down-going aurorally excited AGWs with a possibility
of amplification (Section 6.3). The over-reflecting AGWs in the
unstable frontal zone could contribute to the release of CSI, resulting
in a series of convection cells forming the “back building” squall line.
Similar cases of intensifying extratropical cyclones were discussed
previously (Prikryl et al., 2018; including Supplementary Material).

Several indices are calculated using the ERA5 reanalysis to
evaluate the likelihood of slantwise convection in this case. These
indices that provide different but Supplementary Material, include
SCAPE, fractional SCAPE residual ( f s = (SCAPE—CAPE)/SCAPE),

and vertically integrated extent of realizable symmetric instability
(Glinton et al., 2017; Chen et al., 2018). A high SCAPE, indicating
high convective available potential energy for a slantwise ascending
air parcel from low levels, is found but limited to the warm sector
of the cyclone (Figure 8A). A closer-to-one f s indicates the relative
dominance of slantwise over upright convection, although such a
condition is also scatteredmostly in the south (Figure 8B).While the
aforementioned two indicate the potential energy, VRS shows the
thickness of the air layer (measured in pressure), where CSI, high
relative humidity, and vertical motion coexist (Chen et al., 2018).
Figure 8C shows that the cold front, where strings of “back building”
convection cells (Figure 7A) produced high-rate precipitation co-
located well with a high VRS value of above 150 hPa, shows a
strong indication that CSI is being released actively there. Such high
VRS values well-match the high precipitation band persisted for
more than 1 day. As already noted previously, this was co-located
with low-level southerly winds and wind shears evaluated between
900 and 1,000-hPa levels (Figure 8D), which is favorable for over-
reflection of AGWs.

5.2 Case of the storm on 5–6 December
2010

The extratropical cyclone that caused heavy rain in New
Brunswick on December 6 explosively intensified off the east coast
(Figure 6A). This coincided with the arrival of the solar wind high-
density plasma sheet on the leading edge of a moderate HSS/CIR
(Figure 5). Figure 9A shows the GOES-13 infrared images (https://
www.ncdc.noaa.gov/gibbs/) of an explosive extratropical cyclone
showing development of a “striated delta” cloud in the cyclone
vortex and “back building” bands in the cold front. They coincide
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FIGURE 7
(A) GOES-13 infrared images (https://www.ncdc.noaa.gov/gibbs/) of an intensifying extratropical cyclone showing “back building” squall lines. Overlay
data products from the CIMSS data archive (http://tropic.ssec.wisc.edu/archive/) of wind analysis show (B) upper-level (150–300 mb) divergence, (C)
mid-upper-level winds, (D) low-level IR-cloud drift winds, and (E) mid-level wind shears.

FIGURE 8
(A) SCAPE (shaded) and SCAPE–CAPE (red contours; 100, 300, and 500 J/kg), (B) 1-h accumulated precipitation (shaded) and fs (red contours; thin for
0.5 and thick for 0.8), and (C) VRS (shaded) and precipitation (yellow contours; 0.5 and 5.5 mm), (D) low-level wind shear (yellow contour; 12, 21
m/s/km). (A–D) All overlapped with 950-hPa wind (vectors; m/s) and 950-hPa geopotential height (black contours; m; at intervals of 50 m).

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2023.1196231
https://www.ncdc.noaa.gov/gibbs/
http://tropic.ssec.wisc.edu/archive/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Prikryl and Rušin 10.3389/fspas.2023.1196231

FIGURE 9
(A) GOES-13 infrared images (https://www.ncdc.noaa.gov/gibbs/) of an explosive extratropical cyclone showing a “striated delta” cloud in the cyclone
vortex and “back building” bands in the cold front. (B) SCAPE (shaded) and SCAPE–CAPE (red contours; 100, 200, 300, and 400 J/kg), (C) 1-h
accumulated precipitation (shaded) and fs (red contours; thin for 0.5 and thick for 0.8). (B,C) All overlapped with the 950-hPa wind (vectors; m/s) and
950-hPa geopotential height (black contours; m; at intervals of 50 m).

with regions of high SCAPE and close-to-one f s (Figure 9B). The
resulting latent heat release could have contributed to the explosive
development of the cyclone that later brought heavy rainfall to New
Brunswick (Figure 6A).

While large SCAPE–CAPE residuals are mostly over the warm
sector (to the south) of the extratropical cyclone, the heavy
precipitation over New Brunswick on December 6, 00:06 UTC
(Figure 10B), is co-located with some locally high VRS values
(peak >150 hPa thickness at 03:00 UTC) that lasted more than 6 h
over the “bent-back warm front” that wraps around the cyclone
center. It should be noted that there exist other low-level forcing
mechanisms for heavy precipitation, e.g., frontogenetical lifting
and the strong low-level convergence of flows associated with
two cyclone centers, which was likely the case when the cyclone
was reaching New Brunswick (Figure 10B). Nevertheless, heavy
precipitation and a storm surge that caused floods coincided with
the arrival of a broad HSS/CIR with a dense HDP at its leading
edge on December 6. Furthermore, similar to the observation
on December 13, the high-rate precipitation was co-located with

high low-level winds and wind shears at 950 hPa (Figure 10D).
Equatorward propagating AGWs generated by solar wind coupling
to the magnetosphere–ionosphere–atmosphere system could have
reached the cyclone and contributed to the release of CSI, leading to
cyclone intensification.

6 Solar wind coupling to the
magnetosphere-ionosphere-
atmosphere (MIA) system

6.1 High-latitude sources of AGWs in the
lower thermosphere

At high latitudes, solar wind coupling to the magnetosphere-
ionosphere-thermosphere system is the energy source of auroral
heating, primarily Joule heating, due to collisions among electrons,
positive ions, and neutral molecules (Brekke and Kamide, 1996;
Knipp et al., 2004; Thayer and Semeter, 2004; Xu et al., 2013;
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FIGURE 10
Same as Figure 8 but for December 6, 06:00 UTC.

Richmond, 2021), although its impact on the thermodynamics of the
neutral atmosphere is thought to decrease below 100 km (Xu et al.,
2013). Auroral heating is highly variable and often driven by ultra-
low-frequency (ULF) waves.

The main source of ULF waves are HSSs emanating from
coronal holes (Krieger et al., 1973). HSSs from polar coronal holes
have speeds of ∼750–800 km/s (Phillips et al., 1994; Phillips et al.,
1995; Tsurutani et al., 2006a; Tsurutani et al., 2006b). However,
coronal holes that affect the Earth by HSSs are either extensions
of polar coronal holes (Phillips et al., 1994) to low latitudes or
are self-contained coronal holes forming at low heliographic
latitudes (de Toma, 2011). The high-density HCS plasma sheet
ahead of CIRs leads to compression of the magnetic field that
can cause recurring moderate-to-weak geomagnetic storms
(Tsurutani et al., 1995). The high-density plasma sheet impinging
onto the magnetosphere results in precipitation of magnetospheric
relativistic electrons (Tsurutani et al., 2016). HSSs/CIRs have
been shown (Tsurutani et al., 2006a; Tsurutani et al., 2006b) to be
associated with high-intensity, long-duration continuous auroral
electrojet activity (HILDCAAs) (Tsurutani and Gonzalez, 1987;
Tsurutani et al., 1990; Tsurutani et al., 1995). HILDCAAs are caused
by trains of solar wind Alfvén waves (Belcher and Davis, 1971) that
couple to the magnetosphere–ionosphere system (Dungey, 1961;
Dungey, 1995). Coupling produces pulses of Joule heating in the
lower thermosphere that can launch AGWs with duration between
tens of minutes to hours.

The theoretical understanding of gravity waves and their role in
the ionosphere was developed by Hines (1960). The auroral sources
of medium- to large-scale gravity waves have been recognized, and
AGWs have been observed as traveling ionospheric disturbances
(TIDs) for a long time (Chimonas and Hines, 1970; Testud, 1970;
Richmond, 1978; Tanaka, 1979; Williams et al., 1993; Balthazor
and Moffett, 1997; Oyama et al., 2001; Oyama and Watkins, 2012;
Richmond, 2021). Francis (1974) theoretically described and
distinguished between direct and Earth-reflected gravity waves and
pointed out that the latter appear in the F-region as wave packets
of nearly monochromatic waves, while the former induce isolated
(nonperiodic) TIDs, which is consistent with the modeling of

gravity waves generated by enhancements in the ionospheric electric
field (Millward et al., 1993a; Millward et al., 1993b; Millward, 1994).
Each electric field enhancement causes a Joule heating pulse, which
in turn launches a single gravity wave propagating equatorward and
poleward from the source region.

6.2 Global propagation of AGWs

The gravity wave dispersion relation (Hines, 1960) allows
both upward (downward phase) and downward group (upward
phase) propagation (Hocke and Schlegel, 1996). For clarity, we will
refer to downward/upward group (wave energy) propagation as
down/upgoing AGWs to distinguish them from upward/downward
AGW phase propagation. Yeh and Liu (1974) used the ray theory
approach and the WKB approximation and pointed out that a
simplified ray tracing procedure based on Snell’s law is applicable
for a horizontally stratified atmosphere, e.g., (Bristow et al., 1996;
Prikryl et al., 2005; and Prikryl et al., 2009b). A dispersion relation
derived from Navier-Stokes equations (Bristow et al., 1996) with
temperature gradients included by allowing the scale height to vary
with altitude but not considering viscosity, thermal conductivity,
and ion drag, showed results suggesting a seasonally dependent
reflection of gravity waves due to the temperature gradient at
mesospheric altitudes.

Based on a spectral model in terms of spherical harmonics,
Mayr et al. (1984a) and Mayr et al. (1984b) described gravity wave
response in the atmosphere and showed that propagating waves
originating in the thermosphere can excite a spectrum of AGWs in
the lower atmosphere, though with much smaller amplitudes. Their
transfer function model (TFM), which describes global propagation
of acoustic gravity waves in a dissipative and static atmosphere with
globally uniform temperature and density variations, was reviewed
(Mayr et al., 1990; Mayr et al., 2013). Globally propagating AGWs
from sources in the lower thermosphere at high latitudes can be
ducted in the lower atmosphere over long distances and reach the
troposphere at mid-to-low latitudes. However, the amplitude of
AGWs is known to decrease exponentially with decreasing height.
At the top of the troposphere, the amplitude in velocity perturbation
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is 3–4 orders of magnitude smaller than the amplitude of the wave
launched in the E-region (Hines, 1965). In the lower thermosphere,
large vertical wind velocities with magnitudes of 10–20 m/s are
common at high latitudes (Larsen and Meriwether, 2012). Even
larger vertical ion motions with amplitudes up to ± 50 m/s have
been observed by incoherent scatter radars (Oyama et al., 2005) at
altitudes of 95–111 km. Oyama et al. (2008) observed vertical winds
exceeding 30 m/s at high-latitude altitudes of 110–120 km during
moderately disturbed geomagnetic conditions. Hernandez (1982)
observed periodic oscillations of vertical winds with amplitudes up
to 50 m/s and a period of 40 min in the mid-latitude thermosphere,
whichwere attributed to the passage of gravitywaves froman auroral
source. Rees et al. (1984) identified sources at high latitudes of strong
vertical winds >100 m/s, resulting from local geomagnetic energy
input and subsequent generation of thermospheric gravity waves.
In situ measurements of large vertical motions of 100–250 m/s in
the thermosphere were attributed to aurora-induced gravity waves
(Spencer et al., 1976; Spencer et al., 1982), and vertical winds of
10–20 m/s are commonly observed in the lower thermosphere
(Larsen and Meriwether, 2012). Such vertical motions scale down
to a few cm/s at the tropospheric level, which is comparable to mean
verticalmotions in the troposphere (Fukao et al., 1991; Nastrom and
Vanzandt, 1994) but less than typical instantaneous vertical motions
of up to a few tens of cm/s associatedwith tropospheric gravitywaves
(Nastrom et al., 1990).

6.3 Initiation of tropospheric convection
by aurorally excited AGWs

As already mentioned in Introduction, it has been suggested
that aurorally excited AGWs can play a role in the CSI release,
leading or contributing to explosive development of extratropical
cyclones. When downgoing AGWs over-reflect in the warm frontal
zone of extratropical cyclones, even a small lift that they would
impart to a moist air parcel already rising over the cold air can
initiate slantwise convection, forming a precipitation band. Extreme
rainfall events often result from mesoscale convective systems
producing convective rainfall regions that are sometimes nearly
stationary. Bluestein and Jain (1985) (in Figure 1) introduced a
concept of distinct kinds of mesoscale convective line (squall line)
developments based on radar reflectivity and satellite observations
of squall lines, with the two most commonly identified as “broken
line” and “back building” formations. The squall lines form in a
conditionally and convectively unstable atmosphere. The “broken
line” forms typically along a cold front by probable development
of “externally” forced multi-cells appearing at about the same time
and transforming “into a solid line as the area of each existing cell
expands and new cells develop” (Bluestein and Jain, 1985).The “back
building” squall line “consists of the periodic appearance of a new
cell upstream, relative to cell motion” and can form along different
types of surface boundaries. The other types may include warm
frontal bands andwide cold frontal bands (Bluestein and Jain, 1985).
Similar to striated delta clouds (Prikryl et al., 2018; their Figure 9),
the SPE analysis of solar wind data keyed to dates from the list of
squall line cases (Bluestein and Jain, 1985; their Table 1) appears to
show a tendency of such mesoscale convective line development to
follow arrivals of HSSs/CIRs/ICMEs.

TFM simulations (Prikryl et al., 2018; their Figure 16) of
propagation of the gravity wave launched by Joule heating with
given vertical heating profiles in the lower thermosphere showed
that they can produce vertical wind amplitudes of up to ∼1 cm/s at
10 km altitude. The gravity wave ray tracing examples (Prikryl et al.,
2018; their Figure 15) show that AGWs can reach lower troposphere
altitudes, where they may at least seed the slantwise convection in
a symmetrically unstable environment by providing a small lift to a
parcel of air and contribute to the release of instability (Prikryl et al.,
2009b; pp. 34 and 42–43). Cases of TIDs and/or their sources
in the ionosphere followed several hours later by series of rain
bands, or convective cells, indicated an approximately one-to-one
correspondence (Prikryl et al., 2009b; Prikryl et al., 2018) that was
consistentwith the estimatedAGWpropagation time from the lower
thermosphere to the upper troposphere. While even a very small
amplitude of these AGWs at tropospheric levels may be sufficient
to release the CSI, there is possibility of amplification of AGWs at
the reflection point if waves encounter a wind shear or an opposing
wind (Jones, 1968; Cowling et al., 1971;McKenzie, 1972; Eltayeb and
McKenzie, 1975).

6.4 Observations of AGWs in the upper
atmosphere

SuperDARN radars (Nishitani et al., 2019) measure the line-of-
sight velocity component of E × B drift velocities of ionospheric
irregularities in the F-region (at altitudes of ∼350 km), with the
electric field E mapping along equipotential magnetic field lines
to the lower ionosphere. Velocity measurements are used to map
ionospheric convection at mid-to-high latitudes. In addition to
ionospheric scattering, the radars also observe the ground scatter
power modulated by TIDs, including those that are driven by
AGWs. To study the relevant geophysical context of the December
2010 storm event, we now examine in situ measurements of solar
wind variables, ionospheric velocity and ground scatter power
observed by the SuperDARN, and ground magnetometers sensing
ionospheric currents.

On December 12, as in previously studied cases (Prikryl et al.,
2009b; Prikryl et al., 2018), pulsed ionospheric flows (PIFs)
observed over northern Greenland generated equatorward
propagating AGWs/TIDs. Figure 11A shows ionospheric line-of-
sight velocityV los as a function of the magnetic latitude observed by
the Iceland Stokkseyri radar beam 15. The ionospheric currents in
the E-region at altitudes of ∼110 km flow in the opposite direction
to ionospheric convection (PIFs). It is the Joule heating caused
by pulses of ionospheric currents that generated AGWs that were
observed as TIDs by the Goose Bay radar in Labrador (Figure 11B).
Similarly, onDecember 5, pulses of ionospheric convection/currents
at high latitudes generated equatorward-propagating AGWs.
Figure 11C shows TIDs in the ground scatter observed by the
Pykkvibaer radar beam 7. Figures 11B, C show the ground scatter
power focused/defocused by equatorward-propagating TIDs
observed by radar beam 12. Rather than showing the ground scatter
slant range, the ground scatter range is mapped to reflect the TID
location in the ionosphere (Bristow et al., 1994). It is noted that
PIFs and the consequent AGWs/TIDs were generated by solar wind
Alfvén waves coupling with the dayside magnetosphere/ionosphere
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FIGURE 11
(A) Line-of-sight (LoS) velocity observed by the Stokkseyri radar beam 15. (B) Ground scatter power observed by the Goose Bay radar beam 12. (C)
Ground scatter power observed by the Pykkvibaer radar beam 7.

by the pulsed magnetic reconnection at the subsolar magnetopause
( Prikryl et al., 1998; Prikryl et al., 2002).

Themagnetic reconnection is primarily driven by the southward
IMF BZ component, which is opposite to the Earth’s magnetic
field at the subsolar magnetopause. Figure 12A shows the IMF BZ
component in Geocentric Solar Ecliptic (GSE) coordinates (black
line) measured by Wind spacecraft in the upstream solar wind.
The dotted lines show detrended time series of IMF BZ (red) and
proton velocity VZ (blue) components that are correlated. The
correlation between the respective components of the solar wind
magnetic field is the signature of anti-sunward propagating solar
wind Alfvén waves (Belcher and Davis, 1971). The normalized fast
Fourier transform (FFT) power spectra of the detrended time series
of BZ and VZ show similar multiple peaks at frequencies of ∼0.25,
0.4, and 0.6 mHz.

The north–south X component of the ground magnetic field
(Figure 12B) was measured by a magnetometer on the west coast of
Greenland in Upernavik (UPN), located in the field of view of the
Stokkseyri radar beam15.The perturbations of the groundmagnetic
field are caused by ionospheric currents at altitudes of∼110 km, with
the north–south X component sensing east–west currents. The FFT
power spectrum of the detrended time series (red dotted line) is

very similar to those of the IMF BZ and VZ observed by the Wind
spacecraft.

Figure 12C shows the time series of the Goose Bay radar ground
scatter power for the range gate 30 showing variations that are due
to equatorward-propagating TIDs. The main peak in the FFT power
spectrum of the detrended time series (dotted line) is close 0.5 mHz
(∼30 min), representing the period of equatorward-propagating
AGWs.

6.5 Ray tracing AGWs in a model
atmosphere

Ray tracing of AGWs in a model atmosphere using the
dispersion relation has been conducted (Prikryl et al., 2005) to show
that downgoing AGWs launched by ionospheric currents at high
latitudes can reach the troposphere. They can be ducted in the lower
atmosphere to low latitudes, as shown by ray tracing and TFM
methods (Prikryl et al., 2018).

Using the MSIS-90 model atmosphere, Figure 13 shows possible
group paths from a source at 110 km altitudes of AGWs with
a period of 30 min, including the ducted mode in the lower
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FIGURE 12
(A) Southward components of the magnetic field and proton velocity measured by the Wind spacecraft in the upstream solar wind. The normalized FFT
power spectra of the detrended time series (dotted line) of IMF BZ (red) and proton velocity VZ (blue) components are shown. (B) The UPN X
component of the ground magnetic field (black line) observed in Upernavik and the FFT spectrum of the detrended time series (dotted red line). (C)
Ground scatter power observed by the Goose Bay radar beam 12 at range gate 30 and the FFT spectrum of the detrended time series (dotted line).
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FIGURE 13
Ray tracing in the MSIS-90 model atmosphere of gravity waves with a 30-min period launched over Upernavik, Greenland. The rays are color-coded by
group time, t. The neutral temperature TN(z) profiles for each ray are superposed. TN for the first down-leg path is shown by the red dotted line.
Multiple offsets of 100 K are applied to successive profiles for rays b and c. The initial values α0 of wave vector k directions from the horizontal
direction, wave period P and group time, are printed.

atmosphere. It is noted that group times for rays reaching the
troposphere at distances past 3,000 km are greater than 4 h, which is
approximately the time from the launch of AGWs to the appearance
of “back building” convection cells (Figure 7A). Similar cases have
been discussed previously (Prikryl et al., 2009a; Prikryl et al., 2018).
Over-reflection of downgoingAGWs in unstable frontal zones could
have contributed to the release of the instability, leading to a string
of convection cells forming the “back building” squall line shown in
Figure 7A.

Theoretical analysis of AGW propagation in the lower
atmosphere using an expansion of three-dimensional normal mode
functions was performed by Hagiwara and Tanaka (2020). These
authors showed that the waves can propagate downward to the
troposphere as attenuating gravitywaves and “thewave propagations
and reflections at the surface create an anti-node of geopotential at
the bottom of the atmosphere corresponding to the vertical width of
the initial state of the impact.” On the other hand, “standing waves
in temperature create a node at the ground surface.” They suggested
that standing waves generated in the lower troposphere could affect
atmospheric stability through the passage of gravity waves, in turn
affecting the development of cyclones.

These theoretical results propose the following question: could
the strings of convective cells forming “back building” squall lines,
as observed in Figure 7A, be caused by standing waves, as they are
generated in the lower troposphere by downgoing AGWs? If so,
the nodes (anti-nodes) of a standing wave would be separated by
half a wavelength λ/2. While upgoing medium-scale AGWs/TIDs
have typically horizontal wavelengths λ ≥400 km, downgoing AGW
packets would have shorter horizontal wavelengths λ <300 km
(Prikryl et al., 2005; their Figure 2B). Standing waves generated by
such AGWs in the lower troposphere, as suggested previously,
would have node spacing comparable with the spacing between
the convective cells (∼150 km or less). Furthermore, the two
“back building” squall lines seem to have formed simultaneously
(Figure 7A).This would be consistent with the notion that they were
formed by equatorward-propagating AGWs at this time, although
the one associated with the main cold front transformed more

quickly into a solid squall line, while the convective cells forming
the adjacent squall line persisted longer as they expanded.

7 Summary and conclusions

It is observed that heavy rainfall-induced floods in Canada
tend to follow arrivals of solar wind high-speed streams from
coronal holes. Cool season precipitation events, including extreme
freezing rain events, that were caused by intensifying low-pressure
systems and that resulted in power outages in the province
of New Brunswick, also show this tendency. The superposed
epoch analysis of solar wind variables keyed to the maximum
deepening rate of the central sea-level pressure indicates that
many of these extratropical cyclones intensified, some explosively,
following arrivals of high-speed streams. Further evidence is
provided by using a satellite-based gridded precipitation dataset.
The superposed epoch analysis of high-rate precipitation over
Canada shows a statistically significant increase in the high-rate
precipitation occurrence following arrivals of major high-speed
streams. These results support previously published results for other
mid-latitude geographic regions. The link between solar wind high-
speed streams and heavy precipitation occurrence points to solar
wind–magnetosphere–ionosphere–atmosphere coupling mediated
by aurorally excited globally propagating atmospheric gravity waves
potentially contributing to convection by releasing the conditional
symmetric instability in the troposphere. The latent heat release is
often associated with intensification of storms. This is supported
by the ERA5 reanalysis dataset used to diagnose SCAPE and the
vertically integrated extent of realizable symmetric instability to
assess the likelihood of slantwise convection. The assessment of
conditional symmetric instability using the global ERA5 dataset
will provide opportunities to study events when the proposed
mechanism may be in action. The role of globally propagating
aurorally excited gravity waves will be considered in future studies
examining severeweather conditions, such as heavy rainfall-induced
flash floods and large tornado outbreaks.
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