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Introduction: Machine learning (ML) applications for studying asteroid resonant
dynamics are a relatively new field of study. Results from several different
approaches are currently available for asteroids interacting with the z2, z1, M1:2,
and ν6 resonances. However, one challenge when using ML to the databases
produced by these studies is that there is often a severe imbalance ratio
between the number of asteroids in librating orbits and the rest of the asteroidal
population. This imbalance ratio can be as high as 1:270, which can impact the
performance of classical ML algorithms, that were not designed for such severe
imbalances.

Methods: Various techniques have been recently developed to address this
problem, including cost-sensitive strategies, methods that oversample the
minority class, undersample the majority one, or combinations of both. Here,
we investigate the most effective approaches for improving the performance of
ML algorithms for known resonant asteroidal databases.

Results: Cost-sensitive methods either improved or had not affect the outcome
of ML methods and should always be used, when possible. The methods
that showed the best performance for the studied databases were SMOTE
oversampling plus Tomek undersampling, SMOTE oversampling, and Random
oversampling and undersampling.

Discussion: Testing these methods first could save significant time and efforts
for future studies with imbalanced asteroidal databases.

KEYWORDS

machine learning, minor planets asteroids: general, artificial intelligence, data structure
and algorithms, planetary science

1 Introduction

Studying resonant dynamics in the asteroid belt using machine learning (ML) is a
relatively new field of research. One of our initial works in this area applied a perceptron
neural network to classify resonant arguments of asteroids affected by the exterior M1:2
mean-motion resonance with Mars Carruba et al. (2021a). Genetic algorithms were then
used to optimize ML methods to study the population of asteroids interacting with the
z1 and z2 non-linear secular resonances Carruba et al. (2021b). More recently, perceptron
Carruba et al. (2022b) and advanced convolutional neural network models, like the VGG,
Inception, and ResNet Carruba et al. (2022a), have been used to study the population of
asteroids interacting with the ν6 secular resonance.

However, one problem with these databases is that, in some cases, we observe a severe
imbalance between the number of asteroids identified as resonant, and the remaining, more
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FIGURE 1
Time behavior of the resonant angle ϖ − ϖ6 for an asteroid in a circulating orbit (top left panel), in a switching orbit (top right panel) in an antialigned
orbit (bottom left panel) and in an aligned orbit (bottom right panel). Adapted from the Figure 1 of Carruba et al. (2022b).

numerous population. The imbalance can be slight or severe, with
the latter happening when the imbalance ratio between theminority
and majority classes is 1:100 or more. Imbalanced classification
can be challenging for classical ML methods, like those available
in the scikit-learn Python package (Pedregosa et al. 2011). Because
the class distribution is often unbalanced, most ML algorithms will
underperform and will need to be modified to prevent predicting
the majority class in all circumstances. Additionally, measures
like classification accuracy lose relevance, and new methods for
evaluating predictions on unbalanced data, such as the ROC area
under curve, become necessary.

Several methods have recently been introduced to work with
imbalanced datasets. One can use cost-sensitive approaches, where
different weights, based on the class population, are given to
False Negative and False Positive classifications, or penalize models
that fail to identify objects in the minority class (see Section 2.2
for more details on this). Other approaches involve oversampling
the minority class with various strategies, to reduce the class
imbalance, or undersampling of the majority class. Combinations of
oversampling and undersampling have often proven to be amongst
the most effective approaches in dealing with imbalanced datasets
(see Section 3). Interested readers can find more information on
imbalanced learning in the review by Brownlee (2020), and in
Section 2 of the Supplementary Materials.

As is often the case in machine learning, there are many
approaches to imbalanced classification, and it is often challenging
to know a priori which method is best suited for a given problem.
Here, we tested 19 differentmethods available in the imblearn library
developed by Lemaître et al. (2017), on five databases of labeled
asteroids interacting with four resonances. Our main goal was to
investigate the use of imbalanced classification methods in resonant
asteroid dynamics, and to identify what methods one should try first

to improve the performance of standardMLmodels when applied to
imbalanced datasets for problems in asteroid dynamics.

As far as we know, this is the first application of imbalanced
classification in this area. While some of the techniques studied in
this work have been applied in other astronomical areas, like solar
flares forecasting (Ribeiro and Gradvohl, 2021), there is simply no
precedent application in our field. Here we also aim to provide a
basic framework, upon which future, more advanced studies can be
based.

We will start our analysis by reviewing the currently available in
the literature.

2 Materials and methods

2.1 Available datasets

Themethods used to study a population of asteroids interacting
with a resonance vary, but a preliminary classification of resonant
asteroids is often performed by analyzing plots of the resonant
arguments of asteroids interactingwith the resonances.The resonant
argument of a resonance is a combination of the asteroid and planet
angles associated with the given resonance. For example, in the case
of the ν6 secular resonance, the resonant angle would be given by:

σ = ϖ−ϖ6, (1)

with ϖ being the longitude of the pericenter of the asteroid and ϖ6
that of Saturn. Interested readers can find more information about
the definitions of the different resonant arguments in the relevant
cited papers for the z2, z1 (Carruba et al., 2021a),M1:2 Carruba et al.
(2021b), and ν6 Carruba et al. (2022b) resonances. In general,
objects not interacting with any resonance will have a resonant
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argument that covers the whole possible range of values over time,
from 0° to 360°. This class of orbits is defined as “circulation,” and
is often labeled as 0 in machine learning. For asteroids interacting
with secular resonances, the resonant argument will oscillate, or
librate, around an equilibrium point, often, but not exclusively, 180°
or 0°. Such orbits are called “librations” and are labeled as 2 or
3, depending on the equilibrium point around which the resonant
argument oscillates. Finally, orbits that display alternate phases of
circulation and libration during the numerical integration are said
to be “switching.” They are labeled as 1 in most used databases. For
most resonances, there is only one equilibriumpoint and one class of
librating orbits. For the case of the ν6 resonance, however, we observe
both classes of libration, around 180° (antialigned libration, since the
pericenters of the asteroid and Saturn point in opposite directions),
and around 0° (aligned libration, since the pericenters are aligned).
Aligned libration is much rarer than the antialigned one, for reasons
explained in Carruba et al. (2022b). Examples of the various types of
orbits for the ν6 secular resonance are shown in Figure 1.

Datasets with proper elements and labels for these four
resonances are currently available in repositories listed in the cited
articles, and at a GitHub repository prepared for this work. Such
databases were designed, in most cases, for multi-class problems,
with a 0 label for asteroids in circulating orbits, 1 for switching cases,
and 2 for the librating cases. Here we will focus our attention on
the use of imbalance learning to predict the labels of asteroids in
the librating classes, which are the ones that are of most interest
for asteroid dynamical studies. For this purpose, we converted the
available databases into dual ones, for which 0 identifies orbits that
are not in the librating class of interest, and 1 is associated with the
relevant librating class.

Table 1 presents the number of asteroids in each class for
the various problems, while Figure 2 shows the synthetic proper
(a, sin(i)) distribution for the z2 and aligned ν6 databases, which
are the two extreme cases of imbalance between class 0 and class 1.
We chose to plot the data in the (a, sin(i)) plane rather than in the
(a,e) domain because proper inclination is more stable on longer
timescales than proper eccentricity. Proper inclination is a function
of the angular momentum and of its z-component, while the proper
eccentricity also depends on the orbital energy. Non-conservative
forces can affect the orbital energy, but not the angular momentum.
As a consequence, asteroid families are more recognizable in proper
(a, sin(i))domains.Here adenotes the proper semi-major axis of the
asteroid orbit, and i represents the proper inclination of the orbital
plane. Contrary to osculating orbital elements, proper elements are
constants of the motion on timescales of the order of a few million
years. Interested readers can refer to Knežević andMilani (2003) for
information on obtaining synthetic proper elements. For some of the
studied databases, such as the one for the aligned configuration of
the ν6 secular resonance, there is a severe imbalance between the
two classes and one could expect to encounter the problems and
limitations of conventional machine learning methods, as discussed
in Section 1.

2.2 Base models

After setting up the databases that we are going to study in this
work with the procedure discussed in the previous section, we aim

TABLE 1 We report the number of asteroids in class 0, class 1, and the
imbalance ratios between class 0 and class 1 for the asteroid databases
studied in this work. AA ν6 stands for the antialigned configuration of this
resonance, with oscillations of the resonant argument around the 180°
equilibrium point, while Ameans aligned, with oscillations around the 0°
equilibrium point.

Database Class 0 Class 1 Imbalance

name # of ast # of ast ratio

z2 1409 2702 0.5

z1 1662 1113 1.5

AA ν6 3981 861 4.6

M1:2 5345 355 15.1

A ν6 4832 18 268.4

to identify the optimal machine learning (ML) method to fit each
database. To test the efficiency of each method, we will use the area
under curve score (AUC) of the receiver operating characteristic
(ROC) curve. The ROC curve is a is a graphical representation of
the performance of a binary classification model. It plots the True
Positive Rate (TPR) on the y-axis and the False Positive Rate (FPR)
on the x-axis. The true positive rate is defined as:

TPR = TruePositive
TruePositive+ FalseNegative

, (2)

where the true positives are data correctly identified by the model
to belong to the desired class, while false negatives are data miss-
classified as belonging to the class of interest. Other used names for
TPR are sensitivity or recall.

The false positive rate (FPR, hereafter) is defined as:

FPR = FalsePositive
FalsePositive+TrueNegative

, (3)

where false positives are outcomes where the model incorrectly
predicts the positive class, and true negatives are data in the
negative class correctly identified by the model. The plot displays
the percentage of correct predictions for the positive class ( y-axis)
versus the percentage of errors for the negative class (x-axis). The
best possible classifier would have a TPR of 1 and a FPR of 0. By
analyzing the true positives and false positives for different threshold
levels a curve that runs from the bottom left to the top right and
bows toward the top left can be formed. This is known as the ROC
curve. A classifier that is unable to distinguish between positive and
negative classes will draw a diagonal line from a FPR of 0 to a TPR of
1 (coordinate (0,1)) or forecast all negative classes. Models indicated
by points below this line have worse than no skill. The performance
of amodel can be quantitatively estimated using theROC area under
curve (ROC AUC).This is a score between 0.0 and 1.0, with 1.0 being
the value for a perfect classifier. For the ROC AUC score we are
using the default cut-off point in probability between the positive
and negative classes at 0.5.

As an example of anROC curvewe display inFigure 3 the case of
predictions from a no-skill classifier, which is unable to distinguish
between positive and negative classes, and a Logistic Regression
model Cox (1958), used to predict classes for a binary problem with
equal weights for the two classes. Interested readers can find more
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FIGURE 2
An (a, sin(i)) projection of the asteroids in the z2 and aligned ν6 databases.

FIGURE 3
ROC Curve of a Logistic Regression Model and a no-skill classifier.
Adapted from figure 7.1 of Brownlee (2020), available from Jason
Brownlee, Imbalanced Classification with Python, https://
machinelearningmastery.com/imbalanced-classification-with-
python/, accessed 10 November 2022.

details on how to produce this example in chapter 7 of Brownlee
(2020).The logistic regressionmodel had anROC AUC of 0.90, while
the no-skill model had a score of 0.50.

To identify the best-performing model and its optimal set of
hyper-parameters, we used genetic algorithms. Genetic algorithms
were first developed by Bremermann (1958) and popularized by
Holland (1962). They are a search and optimization programming
technique based on Darwin’s theory of species evolution, in which
the strongest individual is favored, and their reproduction is more
likely than that of others, forming a new generation. Using the
methods codified by Chen et al. (2004), and following the procedure
described by Carruba et al. (2021a) and Lourenço and Carruba
(2022), we identified the best machine learning algorithms and
the most appropriate combination of hyper-parameters for each
considered database. Our results are summarized in Table 2, while
in Section 1 of the supplementary materials we report the full set
of hyper-parameters for each model. We use the ROC AUC score to

TABLE 2 The optimal machine learningmodel for the five datasets studied
in this work (second column, GBoost stands for GradientBoosting). The third
column shows the Imbalance ratio of the database. The fourth column
displays the values of the ROC AUC score for the best-performingmethods,
with their errors. For tree-basedmethods, we displayed in the fifth column
values of the ROC AUC score after themethods were optimized by assigning
higher weights to the imbalanced classes.

Database Optimal Imb ROCAUC Class-weigthed Δ(score)

name model ratio score ROCAUC score

z2 ExtraTrees 0.5 0.637 ± 0.001 0.636 ± 0.001 −0.001 ± 0.001

z1 GBoost 1.5 0.742 ± 0.001 - -

AA ν6 GBoost 4.6 0.742 ± 0.001 - -

M1:2 ExtraTrees 15.1 0.858 ± 0.001 0.863 ± 0.001 0.005 ± 0.001

A ν6 ExtraTrees 268.4 0.965 ± 0.001 0.974 ± 0.002 0.009 ± 0.002

assess the validity of each model. Since the methods are stochastic
in nature, we applied each model ten times to provide an estimate of
the ROC AUC score’s value and of its error, defined as the mean and
the standard deviation of the ten outcomes, respectively. Errors were
generally very small and of the order of 10–3.

Models that use the ExtraTrees classifier can be further
optimized by assigning proper weights to each class. This method is
called a cost-sensitive approach.We brieflymentioned the confusion
matrix when we introduced the concept of ROC AUC score. For
a binary classification problem, we can distinguish between the
actual negatives and positives, and the predicted ones.The confusion
matrix has the structure shown below:

For imbalanced datasets, since there are much fewer members of
class 1 than class 0, the cost of predicting a False Negative is much
higher than that of predicting a False Positive. Failing to detect a
real member of class 1 may produce a sample that is even more
imbalanced than the original class. In contrast, predicting a False
Positive has a smaller impact. This imbalance can be corrected by
assigning different weights to False Negatives and False Positives.
For example, in the case of a 1:100 ratio of examples in the minority
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FIGURE 4
Left panel: application of SMOTE to the ν6 antialigned database: Right panel: application of Tomek links to the same data.

FIGURE 5
Dependence of the Δ(score) versus the Imbalance ratio for the three
most successful models: a combination of Random oversampling and
undersampling, SMOTE oversampling, and SMOTE oversampling plus
Tomek undersampling.

class, we can define a cost matrix where the cost of a False Positive
event is 1, while that of a False Negative is 100 as shown below:

Tree-based algorithms can automatically assign different weights to
different classes based on the heuristic approach by selecting the
option class_weight = “balanced.” We further optimized the tree-
based algorithms for the z2, M1:2, and aligned ν6 databases, and
our results are displayed in the fifth and sixth columns of Table 2.
We define Δ(score) as the difference between the ROC AUC scores
of the models with and without class weights. Its error is computed
using standard error propagation formulas. We can see that Δ(score)
depends on the imbalance ratio. It is negligible for the balanced
z2 dataset, and it is maximum for the more imbalanced aligned ν6
database.

TABLE 3 Results of imbalancedmodels for the ν6 aligned dual database (1:
268 imbalance).

Method ROCAUC SCORE Δ(score)

Base model 0.972 ± 0.001 0.000 ± 0.001

Oversampling

 Random 0.977 ± 0.001 0.005 ± 0.001

 SMOTE 0.971 ± 0.001 −0.001 ± 0.001

 Borderline SMOTE 0.959 ± 0.002 −0.013 ± 0.002

 Borderline SMOTE SVM 0.959 ± 0.003 −0.013 ± 0.003

 ADASYN 0.974 ± 0.002 0.002 ± 0.002

Undersampling

 Random 0.908 ± 0.005 −0.064 ± 0.005

 Near Miss 1 0.560 ± 0.028 −0.412 ± 0.028

 Near Miss 2 0.647 ± 0.026 −0.325 ± 0.026

 Near Miss 3 0.595 ± 0.022 −0.377 ± 0.022

 Tomek links 0.973 ± 0.002 0.001 ± 0.001

 Edited Nearest Neighbors 0.972 ± 0.001 0.000 ± 0.001

 One Side Selection 0.957 ± 0.002 −0.015 ± 0.002

 Neighbourhood Cleaning Rule 0.972 ± 0.002 0.000 ± 0.001

Over- and Undersampling

 Random & Random 0.978 ± 0.001 0.005 ± 0.001

 SMOTE & Random 0.970 ± 0.002 −0.002 ± 0.002

 SMOTE & Tomek links 0.972 ± 0.001 0.000 ± 0.001

 SMOTE & Edited Nearest Neighbors 0.975 ± 0.001 0.003 ± 0.001

3 Imbalance correction methods:
Results

Methods for correcting class imbalance depend on how
they handle the minority and majority classes. Methods that
increase the population of the minority class are classified as

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2023.1196223
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Carruba et al. 10.3389/fspas.2023.1196223

oversampling. Approaches that decrease themajority class are called
undersampling. Finally, both oversampling and undersampling can
be used at the same time.

For instance, in the random oversampling method examples
from the minority class are randomly duplicated and added to
the training dataset, until the minority class has the same number
of members as the majority one. This is often referred to as
the “minority class” sampling strategy. Random undersampling
involves deleting random examples from the majority class to
reduce the class imbalance, ideally until both classes have the same
number ofmembers. Amore commonly used oversamplingmethod
is the Synthetic Minority Oversampling Technique, or SMOTE
(Chawla et al., 2002). SMOTE works by picking instances in the
feature space that are close together, drawing a line connecting the
examples, and drawing a new sample at a position along that line.

To be specific, initially a random case from the minority
class is picked and then, for that example, k of its nearest
neighbors are determined (usually k = 5). A randomly determined
neighbor is selected, and a new example is constructed in the
feature space at a randomly chosen position between the two
instances.

A commonly used undersampling method is Tomek Links, or
simply Tomek (Tomek, 1976). The method is a modification of the
condensed nearest-neighbor (CNN) approach Hart (1968). CNN is
an undersampling strategy that finds a subset of samples that results
in no loss inmodel performance, also known as aminimal consistent
set. It is a subset that correctly classifies all of the remaining points in
the sample set when used as a stored reference set for the k-nearest
neighbors (KNN) rule Ghosh and Bandyopadhyay (2015). This is
accomplished by enumerating the samples in the dataset and adding
them to the store only if they cannot be accurately categorized by
the store’s present contents. Tomek (1976) made two modifications
to CNN, one of which is a method that selects pairs of samples, one
from each class, that have the minimal Euclidean distance in feature
space to each other. In a binary classification problem with classes 0
and 1, this means that a pair would have an example from each class
and be closest neighbors throughout the dataset.

Examples of applications of both SMOTE and Tomek to the
ν6 antialigned database are shown in Figure 4. The first method
oversamples the minority class so that it has the same number of
objects as the majority one, while Tomek undersamples the majority
class to reduce the imbalance.

Apart from SMOTE and Tomek, several other methods have
been recently introduced and are available in the imblearn
library (Lemaître et al. 2017), which we will use in this work.
Among the oversampling approaches, we can mention Borderline
SMOTE, Borderline SMOTE plus SVM, and ADASYN. Among
the undersampling approaches, we also have Near Miss (versions
1, 2, and 3) Edited Nearest Neighbours, One Side Selection,
and Neighbourhood Cleaning Rule. Finally, the most effective
combinations of oversampling and undersampling are Random and
Random, SMOTE plus Random, SMOTE plus Tomek, and SMOTE
plus Edited Nearest Neighbours. To avoid making this text too long,
we will not provide a detailed explanation of all these methods
here. Interested readers can find more details on these methods in
Brownlee (2020), and in Section 2 of the Supplementary materials.

Table 3 displays our results for the ν6 aligned database, which
is the most imbalanced among the ones considered in this work.

Similar tables for the other datasets are presented in Section 3 of
the supplementary materials. As expected, balanced databases,
such as the z2 and z1 datasets, do not benefit from imbalance
learning methodologies. In general, undersampling algorithms
did not do well, with the three variations of the Near Miss
methods, which retain instances of the majority class based on
how far away the minority class data is from them, performing
the worst. The combinations of random oversampling and
undersampling, SMOTE oversampling, and SMOTE oversampling
plus Tomek undersampling showed the greatest results for the
three most unbalanced datasets, the antialigned nu6, M1:2, and
aligned nu6. Their performance in terms of Δ(score) versus the
Imbalance ratio is displayed in Figure 5. Imbalanced classification
algorithms can provide an increase in performance of up
to ≃ 1%.

4 Conclusion

In this work, we applied imbalanced classification methods
to study five available datasets for asteroids interacting with four
different resonances, namely, the z2, z1, M1:2, and ν6. Firstly, we
transformed the datasets from multi-labels to dual classes, with a
label 1 assigned to asteroids in librating configurations, and a label
0 given to the rest, to allow the application of standard methods
of imbalanced classification. Then, we used genetic algorithms to
identify which machine learning methods, and what combination
of their hyper-parameters, could best fit the data. For tree-based
algorithms, a cost-sensitive approach was also used for further
optimization. Finally, we tested various methods of oversampling,
undersampling, or combinations of both, using the optimal models
identified with the genetic algorithms.

Our findings show that cost-sensitive optimization methods
should always be considered when feasable, since they either
enhance the model’s performance or have no effect. Imbalanced
classification methods are recommended for datasets with severe
imbalance. Although each database is unique and should be studied
independently to determine the most effective imbalance method,
the experience gained in this study suggests that testing SMOTE
oversampling plus Tomek undersampling, SMOTE oversampling,
and Random oversampling and undersampling, in this order,
could be a good strategy for dealing with imbalanced datasets
for asteroids’ resonant problems. Testing these methods first could
save considerable time and efforts for future studies in this
area.
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