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Analysis of class I complexity
induced spherical polytropic
models for compact objects
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In this research, we present a comprehensive framework that uses a complexity
factor to analyze class I generalized relativistic polytropes. We establish class I
generalized Lane–Emden equations using the Karmarkar condition under both
isothermal and non-isothermal regimes. Our approach considers a spherically
symmetric fluid distribution for two cases of the generalized polytropic equation
of state: 1) the mass density case μo and 2) the energy density case μ. To obtain
numerical solutions for both cases, we solve two sets of differential equations
that incorporate the complexity factor. Finally, we conduct a graphical analysis
of these solutions.
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1 Introduction

Physical factors interact to create complex characteristics in large-scale objects such as
stars, galaxies, and their clusters, making their analysis challenging. A system is composed
of elements arranged in a specific manner, and any disruption can cause complications.
Complexity refers to how these elements work together to form a complex system. In
astronomy, the complexity factor (CF) has become crucial to understanding various features
of compact objects. Herrera (2018) proposed a new definition of complexity in general
relativity for static self-gravitating objects by considering the orthogonal splitting of the
curvature tensor into scalars, known as structural scalars. This definition includes physical
factors such as anisotropic pressure and inhomogeneous energy density in terms of active
gravitational mass. Abbas and Nazar (2018) applied this idea of CF in the framework of
the f(R) theory for anisotropic fluid, calculating the effect of the f(R) term on the CF and
obtaining exact solutions to the alternated field equations. Sharif and Butt (2018) and Sharif
and Butt (2019) studied the impact of electric charge on the cylindrical static systemwith CF.
Khan et al. (2019), Khan et al. (2021a), and Khan et al. (2021b) investigated uncharged and
charged generalized polytropes (GPs) for spherical and cylindrical anisotropic inner fluid
distribution using CF.

Modeling and describing compact objects are crucial topics in the relativistic discipline.
It is not new to consider four-dimensional spacetime being embedded with higher-
dimensional space. Schlafli (1871) introduced the embedding problem, and Eiesland (1925)
proposed the necessary condition for the n-dimensional spacetime to be embedded in
higher-dimensional space, which is that the Gaussian curvature must be zero, referred
to as the Christoffel curvature tensor. Karmakar (1948) thoroughly examined this
condition and developed an equation for class I embedding called the class I Karmarkar
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condition. However, Pandey and Sharma (1982) corrected the
insufficiency of this equation. Maurya et al. (2015) solved the
Einstein–Maxwell field equations by considering the charged
ordinary baryonic matter and analyzed three sets of solutions (I,
II, and III) of stellar models using the spherically symmetric metric
of embedded class I. Singh and Pant (2016) and Singh et al. (2017)
derived exact results for anisotropic fluid distribution using the
Karmarkar class I condition and described several well-behaved
models for various neutron stars. Ramos et al. (2021) found a class I
interior solution for spherically symmetric inner fluid distribution
using the polytropic equation of state (PEoS) and developed a
compatible Lane–Emden equation with the Karmarkar condition
under both isothermal and non-isothermal regimes. Malik et al.
(2022a) investigated the class I interior solution for spherically
symmetric inner fluid distribution in the f(R) theory of gravity. Some
interesting work related to stellar structures in modified theories of
gravities has been done by other researchers (Malik et al., 2022b;
Malik et al., 2022c; Malik et al., 2022d; Malik, 2022; Shamir, 2022;
Malik et al., 2023).

PEoS has been widely used in astrophysics and cosmology due
to its simplicity. In the study of star structure, PEoS has been applied
to investigate physical models of white dwarfs through Newtonian
polytropes. Several researchers have analyzed different neutron stars
in general relativity using PEoS. The idea of Newtonian polytropes
was introduced by Chandrasekhar (1939), who used principles of
thermodynamics to determine the mass and density limit of white
dwarf stars. Tooper (1964) applied PEoS to analyze the solution
of field equations for compressible fluid spheres in view of the
general theory of relativity. He also studied models of massive hot
stars through the numerical solutions of the Lane–Emden equation
(LEe) (Tooper, 1965). Kaplan and Lupanov (1965) studied the
relativistic effects in the context of the theory of polytropes and
derived a relation between the mass of a sphere and its central
density in general relativity. Managhan and Roxburgh (1965) used
an approximation technique to examine the structure of turning
polytropes by matching two solutions at the interface. Kaufmann
(1967) investigated the solution of a single integro-differential
equation (DE) under spherical static symmetry, which depended on
the value of different polytropic indices. Occhionero (1967) studied
the structures of turning polytropes for polytropic index n ⩾ 2 and
showed that a second-order approximation for the internal core of
these structures, with suitable parameters, was more accurate than
a first-order approximation. Finally, Kovetz (1968) removed some
ambiguities in the theory of slowly turning polytropes defined by
Chandrasekhar (1939).

PEoS has proven to be a useful tool for studying the structure
of stars in astrophysics and cosmology due to its simplicity. Many
researchers have explored different aspects of polytropic models for
stars and spheres. For example, Chandrasekhar (1939) introduced
the concept of Newtonian polytropes and determined the mass
and density limit of white dwarf stars based on thermodynamics
principles. Tooper (1964) and Tooper, (1965) used PEoS to analyze
compressible fluid spheres in the context of general relativity,
while Kaplan and Lupanov (1965) studied the relativistic effects
of polytropes. Managhan and Roxburgh (1965) investigated the
structure of turning polytropes using an approximation technique,
and Kaufmann (1967) explored the solution of a single integro-
differential equation under spherical static symmetry. Horedt’s

research (Horedt, 1973; Horedt, 1987) investigated the behavior of
slowly rotating cylinders, polytropic rings, and radially symmetric
polytropes in dimensions higher than three. Sharma (1981) used
Pade’s approximation to obtain analytic solutions for fundamental
field equations in the context of stationary spheres, while Singh
and Singh (1983) formulated models for relativistic polytropes that
take into account rotation, tides, and deformations. Pandey et al.
(1991) used relativistic PEoS to explore various parameters in static
spherically symmetric structures, and Hendry (1993) developed
uncomplicated polytropicmodels to describe the Sun’s interior using
power-law relationships.

Herrera and Barreto (2004); and Herrera and Barreto (2013a)
proposed a comprehensive approach to modeling different types
of relativistic stars using PEoS. They introduced the Tolman
mass to explain certain features of these models, particularly for
static dissipative fluid spheres. Other studies, such as those by
Herrera et al. (2014) and Herrera et al. (2016), applied PEoS to
investigate the properties of spherical static fluids under conformally
flat conditions and used the cracking method to analyze the
relationship between energy density and mass. These investigations
also explored various physical models and presented numerical
results regarding spherical compact stars.

The generalized polytropic equation of state (GPEoS) offers
greater freedom to explore the universe and astronomical objects
at a deeper level. This equation of state consists of two equations,
enabling us to study these objects in more detail.

i) PEoS, which discusses the dark matter of the universe, is

Pr = Kμ
1+ 1

n
o , (1)

where γ, K, n, and Pr are polytropic exponent, polytropic index,
polytropic constant, and radial pressure, respectively.

ii) The linear equation of state, which discusses the dark energy of
the universe, is defined as

Pr = α1μo, (2)

where α1 is a constant of proportionality.
The combination of Eqs 1, 2 defines the GPEoS (Azam et al.,

2016) as

Pr = Kμ
γ
o + α1μo = Kμ

1+ 1
n

o +1μo, (3)

replacing μo with μ; then, Eq. 3 is taken as

Pr = Kμ
1+ 1

n + α1μ. (4)

Azam et al. (2016) and Azam and Mardan (2017) used GPEoS to
examine the impact of charge on generalized polytropes (GPs)
while considering both spherical and cylindrical symmetries.
Mardan et al. (2018) and Mardan et al. (2019) focused on the
gravitational consequences of massive compact objects (COs)
through GPs with spherical symmetry and explored various
mathematical models of COs with radiation factors using GPEoS
for different values of polytropic index n. They found these models
physically plausible and well-behaved. In addition, Mardan et al.
(2020a) and Mardan et al. (2020b) introduced novel classes of
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mathematical models and investigated the radius–mass relationship
of compact stars using spherical symmetry and GPEoS.

The outline of this document is as follows: in Section 2, a
spherically static anisotropic fluid distribution will be used to
develop the basic equations and the Tolman–Oppenheimer–Volkoff
(TOV) equation. In Section 3, the mass function for a self-
gravitating source will be studied with the help of the Weyl tensor.
The study of CF, which is defined through orthogonal splitting of
the curvature tensor, will be covered in Section 4. In Section 5,
relativistic GPs for the two cases, mass density and energy density,
will be discussed. We will discuss the Karmarkar condition to
develop the class I GPs in Section 6. A graphical solution will be
given for class I GPs with CF in Section 7. A summary of this work
will be given in Section 8.

2 Basic equations

Consider a static, spherically symmetric metric for an
anisotropic fluid distribution, as

ds2 = eνdt2 − eλdr2 − r2 (dθ2 + sin2 θdϕ2) , (5)

where ν and λ are functions of “r”. The coordinates are
x0 = t,x1 = r,x2 = θ,x3 = ϕ. The field equation Gμ

ν = −8πT
μ
ν must be

satisfied by Eq. 5. The energy–momentum tensor defines the matter
content for anisotropic fluid distribution as

Tμν = (Pr − P⊥) sμsν + (μ+ P⊥)uμuν − P⊥gμν, (6)

where P⊥ denotes the tangential pressure.

sμ = (0,e
−λ
2 ,0,0), (7)

Eq. 7 represents four vectors, and four velocity uμ is given by

uμ = (e
−ν
2 ,0,0,0) , (8)

with sμuμ = 0, s
μsμ = −1. Using Eqs 5–8, we have

8πμ = −(λ
′

r
+ 1
r2
)e−λ − 1

r2
, (9)

8πPr = −(
ν′

r
− 1
r2
)e−λ − 1

r2
, (10)

8πP⊥ = [−2
λ′ − ν′

r
+ ν′2 − λ′ν′ + 2ν′′] e

−λ

4
, (11)

where the prime denotes the differentiation with respect to “r.” We
take Schwarzschild spacetime at the exterior of the fluid distribution
as

ds2 = −(2M
r
dt2 − 1)+(2M

r
− 1)
−1
dr2 − r(dθ2 + sin2 θdϕ2) . (12)

For smooth matching of the two metrics, Eq. 5 and 12, the first and
second basic forms must be continuous (the Darmois condition)
on the boundary r = rΣ = constant. Matching of this type gives the
following results:

1− 2M
rΣ
= eνΣ , (13)

1− 2M
rΣ
= e−λΣ , (14)

PΣ = 0. (15)

Using Eqs 9–11, the TOV equation can be read as

P′r =
2(P⊥ − Pr)

r
− ν
′

2
(μ+ Pr) , (16)

and

ν′ = 2
m+ 4πPrr

3

r (r− 2m)
, (17)

so,

P′r =
2(P⊥ − Pr)

r
−
(m+ 4πPrr3)
r (r− 2m)

(μ+ Pr) , (18)

m (mass function) is defined as

2m
r
= R3

232 = 1− e
−λ, (19)

otherwise,

m = 4π∫
r

0
r2μdr. (20)

It is better to write the energy–momentum tensor as

Tμ
ν = Δ

μ
ν + μuμuν − Ph

μ
ν , (21)

with

Δμ
ν = Δ(sμsν +

1
3
hμν); P =

Pr + 2P⊥
3
.

Δ = Pr − P⊥; hμν = δ
μ
ν − uμuν. (22)

3 Mass function through the Weyl
tensor

TheWeyl tensor Cρ
αβμ, Ricci scalar R, and Ricci tensor Rβ

α can be
used to illustrate the Riemann tensor as

Rρ
αβμ = C

ρ
αβμ +

1
2
Rρ
βgαμ −

1
2
Rαβδ

ρ
μ +

1
2
Rαμδ

ρ
β

− 1
2
Rμ
μgαβ −

1
6
R(δρβgαμ − gαβδ

ρ
μ) . (23)

The electric part (Eαβ = Cαγβδu
γuδ) of the Weyl tensor can be

written as

Cμνκλ = (gμναβgκλγδ − ημναβηκλγδ)u
αuγEβδ, (24)

with gμναβ = gμαgνα and ημναβ being the Levi-Civita tensor and its
magnetic part dissipating in a spherically symmetric case. Note that
Eαβ can also be expressed as

Eαβ = E(
1
3
hαβ + sαsβ), (25)
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with

E = −[

[

2(1− eλ)

r2
+ ν
′2 − λ′ν′

2
+ ν′′ − ν

′ − λ′

r
]

]

e−λ

4
, (26)

satisfying

Eαγu
γ = 0, Eαγ = E(αγ), Eαα = 0 (27)

Using Eqs 9–11, 19, 23, and 25, we have

m = r
3E
3
+ 4π

3
r3 (P⊥ − Pr + μ) , (28)

and we have

E
4π
= − 1

r3
∫
r

0
r3μ′dr+ (Pr − P⊥) . (29)

Using Eq. 29–28, we have

m (r) = 4π
3
r3μ− 4π

3
∫
r

0
r3μ′dr. (30)

4 Vanishing complexity factor through
orthogonal splitting of the Riemann
tensor

We will now discuss the structural scalars that result from
the orthogonal splitting of the curvature tensor (Bel, 1961). These
scalars contribute to the definition of the CF (Herrera, 2018), and
the subsequent tensors (Herrera et al., 2009; Herrera et al., 2011)
represent the outcome of this splitting.

Yαβ = Rαγβδu
γuδ, (31)

Zαβ = *Rαγβδu
γuδ = 1

2
ηαγϵμR

ϵμ
βδu

γuδ, (32)

Xαβ = *R*
αγβδu

γuδ = 1
2
ηϵμαγR*

ϵμβδu
γuδ, (33)

where * shows the dual tensor, i.e., R*
αβγδ =

1
2
ηϵμγδR

ϵμ
αβ. Equation 23

may be expressed as

Rαγ
βδ = C

αγ
βδ + 28πT

[αγ]
[βδδ]
+ 8πT(1

3
δαγ
[βδδ]
− δ[αγ]
[βδδ]
). (34)

Using Eq. 18 in Eq. 34 gives the splitting of the Riemann tensor as

Rαγ
βδ = R

αγ
(I)βδ + β

αγ
(II)βδ +R

αγ
(III)βδ, (35)

where

Rαγ
(I)βδ = 16πμu

[αγ]u[βδδ] − 28πPh
[αγ]
[βδδ]
+ 8(μ− 3P)(1

3
δ[αγ]
[βδδ]
)− δ
[αγ][βδδ] ,

(36)

Rαγ
(II)βδ = 16πΔ

[αγ]
[βδδ]
, (37)

Rαγ
(III)βδ = 4u

[αγ]u[βEδ] − ϵ
αγ
μ ϵβδνE

μν = 0, (38)

with

ϵαγβ = uμημαγβ, ϵαγβu
β = 0. (39)

We can find the explicit expressions for the three tensors, Yαβ, Zαβ,
and Xαβ, as

Yαβ = hαβ (3P+ μ)
4π
3
+ 4πΔαβ +Eαβ, (40)

Zαβ = 0, (41)

and

Xαβ =
8π
3
μhαβ + 4πΔαβ −Eαβ. (42)

Scalars XT , XTF , YT , and YTF , are defined through the tensors Xαβ
and Yαβ (Bel, 1961) as

XT = 8πμ, (43)

XTF = 4πΔαβ −E, (44)

XTF =
4π
r3
∫
r

0
r3μ′dr, (45)

YT = 4π(3Pr + μ+−2Δ) , (46)

YTF = E+ 4πΔ, (47)

using Eq. 29

YTF = 8πΔ−
4π
r3
∫
r

0
r3μ′dr. (48)

From Eq. 45 and 48, we get

8πΔ = XTF +YTF. (49)

Many factors, including pressure anisotropy, charge, heat
dissipation, viscosity, and density inhomogeneity, are responsible
for the complexity of a system. Any system, in general, lacking
these factors, with the exception of isotropic pressure and energy
density, should be regarded as the simplest system with vanishing
complexity. In addition, the complexity of the system for fluid
distribution is brought about by inhomogeneous density and
anisotropic pressure. The “complexity factor” is related to structure
scalar YTF , since Eq. 49, which defines it, involves these factors.
Therefore, when we apply the condition YTF = 0 on Eq. 48, it gives

Δ = 1
2r3
∫
r

0
r3μ′dr. (50)

5 Relativistic spherical generalized
polytropes

In this section, we talk about the mass density and energy
density of GPEoS for anisotropic fluids in both isothermal and
non-isothermal regimes (Azam et al., 2016).
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5.1 Non-isothermal regime

5.1.1 Case 1
In this case, mass density is used to study GPEoS.

Pr = α1μo +Kμ
γ
o = α1μo +Kμ

1+ 1
n

o , (51)

taking γ ≠ 1 and energy density μ connected with total mass density
μo (Herrera et al., 2014) as

Pr =
1
n
(μ− μo) . (52)

The following assumptions are made:

α =
Prc
μc
, rA = ξ, α (n+ 1)A2 = 4πμc. (53)

μocψo = μo, 4πμcv (ξ) =m (r)A
3. (54)

The dimensionless form of TOV Eq. 18 is

[4πPrc2ψo
n ((1+ n) (α− α1 + αα1n)ψo + (1− αn) (α1 + α1n+ 1))

×(ξ3ψo
n (α1 +ψo (α− α1 + αα1n) − αα1n) + v)]/

[αξ(8πPrcv− αA2ξ)] − 2Δ
ξ
+ 1
α
[Prcψo

n−1ψo
′

×((1+ n)ψo (αα1n− α1 − α) + (1− αn)α1n)] = 0,

where prime shows differentiation w. r. t. ξ. From Eq. 19 and 9,
we have

m′ = 4πr2μ, (55)

or, using Eqs 53 and 54, we get

dv
dξ
= ξ2ψn

o (nψo (α− α1 + αα1n) − (αn− 1) (α1n+ 1)) . (56)

ξ = ξn defines the boundary such that ψo(ξo) = 0, and the following
assumptions are made at the boundary:

v (ξ = 0) = 0 and ψo (ξ = 0) = 1. (57)

Equations 55 and 56 give the generalized spherical LEe

[4πψo
′ (1+ n)Prc2 (α− α1 + nαα1)ψo

n

×(ξ3ψo
n (α1 +ψo (α− α1 + αα1n) − αα1n) + v)]/

[αξ(αA2ξ− 8πPrcv)] − [4πnPrc2ψo
n−1ψo
′ ((αn− 1)

×(α1 + α1n+ 1) − (n+ 1)ψo (α− α1 + αα1n))

×(ξ3ψo
n (α1 +ψo (α− α1 + αα1n) + αα1 (−n)) + v)]/

[αξ(αA2ξ− 8πPrcv)] + [4πPrc2ψo
n ((αn− 1)

×(1+ α1 + α1n) −ψo (1+ n) (α− α1 + αα1n))

×(ξ3ψo
n (α1 + (αα1n+ α− α1)ψo − αα1n) + v)]/

[αξ2 (αA2ξ− 8πPrcv)] + [4πPrc2ψo
n ((1+ n)

×(α− α1 + αα1n)ψo − (αn− 1) (α1 + α1n+ 1))

×(ξ3ψo
n (α1 + (α− α1 + αα1n)ψo − αα1n) + v)

×(8πξ2Prcψo
n (nψo (α− α1 + αα1n)

−(αn− 1) (α1n+ 1)) − αA2)]/[αξ(αA2ξ− 8πPrcv)
2]

+ [4πξPrc2ψo
2n−1 ((1+ n)ψo (α− α1 + αα1n)

−(αn− 1) (α1 + α1n+ 1)) (ξψo
′ ((1+ n)ψo

×(α− α1 + αα1n) + α1n (1− αn)) +ψo ((n+ 3)

×(α− α1 + αα1n)ψo + (1− αn) (α1 (n+ 3) + 1)))]/

[α(αA2ξ− 8πvPrc)] + 2Δξ−2 + [Prcψo
n−1ψo
′′ ((1+ n)

×(α− α1 + αα1n)ψo − α1n (αn− 1))]
1
α

[(−1+ n+)Prcψo
n−2ψo
′2 ((1+ n) (αα1n+ α− α1)ψo

+α1n (1− αn))]
1
α

+ 1
α
[(1+ n)Prc (α− α1 + αα1n)ψo

n−1ψo
′2] = 0.

5.1.2 Case 2
It is easy to see GPEoS with energy density (Azam et al., 2016)

as

Pr = Kμ
1+ 1

n + α1μ, (58)

total energy density μ is used in place of mass density μo in Eq. 52
according to the relation (Herrera and Barreto, 2013b) as

μ =
μo

(1−Kμ1/no )
n , (59)

considering

ψn =
μ
μ c
. (60)

The TOV equation is obtained as

−1
αξ(8πPrcv− αA2ξ)

[4πPrc2ψn (ψ (α− α1) + 1+ α1)

×(v− ξ3ψn ((α1 − α)ψ− α1))] −
2Δ
ξ

+ 1
α
[Prcψn−1ψ′ ((n+ 1) (α− α1)ψ+ α1n)] = 0,

and from Eq. 55, we have

dv
dξ
= ξ2ψn. (61)

Equation 61 gives the generalized LEe

−1
αξ(8πPrcv− αA2ξ)

[4πnPrc2ψn−1ψ′ (ψ (α− α1) + 1+ α1)

×(v− ξ3ψn (α1 + (α− α1)ψ))] −
1

αξ(8πPrcv− αA2ξ)
× [4πPrc2 (α− α1)ψnψ′ (v− ξ3ψn ((α1 − α)ψ− α1))]

+ 1
αξ2 (8πPrcv− αA

2ξ)
[4πPrc2ψn (ψ (α− α1) + 1+ α1)

×(v− ξ3ψn (ψ (α− α1) + α1))] +
1

αξ(αA2ξ− 8πPrcv)
2

× [4πPrc2ψn ((α− α1)ψ+ 1+ α1) (8πξ2Prcψn − αA2)

×(v− ξ3ψn (ψ (α1 − α) − α1))] −
1

α(8πPrcv− αA2ξ)
× [4πξPrc

2ψ2n−1 (ψ (α− α1) + α1 + 1)

×(ψ (3 (α− α1)ψ+ 3α1 + 1) + ξ ((1+ n) (α− α1)ψ+ α1n)ψ′)]
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+ 2Δ
ξ2
+ 1
α
[ψn−1ψ′′Prc (nα1 + (1+ n)ψ (α− α1))]

+ 1
α
[Prc (n− 1)ψn−2ψ′2 ((n+ 1)ψ (α− α1) + α1n)]

+ 1
α
[(1+ n)Prc (α− α1)ψn−1ψ′2] = 0.

5.2 Isothermal regime

In this regime, only the energy density case (μ)will be discussed
because mass density (μo) and energy density (μ) become the same
in both cases for the isothermal regime (γ = 1). In this regime, ψ is
defined as

e−ψ =
μ
μc
. (62)

Introducing dimensionless variables, we get

α =
Prc
μc
, rA = ξ, B2α = 4πμc v (ξ)4πμc =m (r)B

3, (63)

so, Eq. 55 changes to

dv
dξ
= e−ψξ2, (64)

and the TOV equation becomes

1
αξ(αB2ξ− 8πPrcv)

[4π (α+ 1)Prc2e−2ψ (αξ3 + eψv)] −
2Δ
ξ
− Prce−ψψ′ = 0.

(65)

From Eq. 64 and Eq. 65, we have the second-order generalized LEe

B
αξ2(αB2ξ− 8πPrcv)

2 [(4π (α+ 1)ξ
3Prc

2e−2ψ

× (αB2ξ(−2αξψ′ + α+ 1) + 8πPrcv(2αξψ′ − 2α− 1))

+4π (α+ 1)Prc
2e−2ψv(eψ (8πPrcv(ξψ

′ + 1)

−αB2ξ(ξψ′ + 2)) + 8πξ3Prc) + 2αΔ(αB2ξ− 8πPrcv)
2

+αξ2Prce−ψ (ψ′2 −ψ′′)(αB2ξ− 8πPrcv)
2

+32π2α (α+ 1)ξ6Prc
3e−3ψ)] = 0.

6 Class I spherical generalized
polytropes

It is sometimes helpful to merge four-dimensional spacetime
with higher dimensions when studying cosmological phenomena
(Karmakar, 1948), and one suchmerging is theKarmarkar condition
(Maurya et al., 2015), read as

R1010R2323 = R1212R0303 +R1202R1303, (66)

with R2323 ≠ 0, it gives

2ν′′ = eλλ′

eλ − 1
− λ′2, eλ ≠ 1. (67)

6.1 Case 1

From Eqs 51–54, 67, we have

Δ =
(3m− rm′)(m− 4πr3ψn+1 (Prc − α1μc) − 4πα1μcr

3ψn)

16πmr3
. (68)

Equation 68 in dimensionless form is

Δ = 1
4vξ3
[μc (v− ξ

3ψo
n (α1 − (α1 + α− αα1n)ψo

− αα1n)) (3v− ξ3ψo
n (nψo (α− α1 + αα1n)

+(1− αn) (1+ α1n)))] . (69)

Equations 69 and 55 together provide the class I spherical
generalized TOV equation.

1
2α
[APrc(−

1
(8πPrcv− αA

2ξ)ξ
[8πPrcψo

n ((1+ n)

×(α− α1 + αα1n)ψo − (αn− 1) (α1 + α1n+ 1))

×(ξ3ψo
n (α1 +ψo (α− α1 + αα1n) − αψoαn) + v)]

+ 2ψo
′ψo

n−1 (ψo (1+ n) (α+ αα1n− α1) − α1n (αn− 1))

− 1
ξ4v
[(v− ξ3ψo

n (α1 + (α+ αα1n− α1)ψo − αα1n))

×(3v− ξ3ψo
n (nψo (α− α1 + αα1n)

+(1− αn) (α1n+ 1)))])] = 0,

so, the class I spherical generalized LEe is

1
2α
[APrc((−

1
ψo

2 [2 (n− 1)n (nα− 1)α1ψo
′2]

+ 1
ξ2 (A2αξ− 8πPrcv)

[(nα1α+ α− α1)ψo

×(8πPrc ((n+ 3)v+ (n+ 1)ξv′) −A2 (n+ 3)αξ)]

+ 1
ξψo
[n(2 (n+ 1) (nα1α+ α− α1)ξψo

′2 − (nα− 1)

×((n+ 3)α1 + 1)ψo
′ + 2 (1− nα)ξα1ψo

′′)]

+ 1
ξ2 (A2αξ− 8πPrcv)

[ξ(A2α ((nα− 1) ((3+ n)α1 + 1)

+(1+ n) (nα1α+ α− α1)ξ((n+ 3)ψo
′ + 2ξψo

′′))

− 8πPrc (nα− 1) (nα1 + α1 + 1)v′) − 8πPrcv ((nα− 1)

×((3+ n)α1 + 1) + (1+ n) (nα1α+ α− α1)ξ

×((n+ 3)ψo
′ + 2ξψo

′′))])ψo
n + 1

v2

×[ξ2 (−nαα1 + α1 + (nα1α+ α− α1)ψo)

×(n (nα1α+ α− α1)ψo − (nα− 1) (nα1 + 1))v
′ψo

2n]

+ 1
(A2αξ− 8πPrcv)

2 [8πPrcξψo
2n−1 ((n+ 1)

×(nα1α+ α− α1)2 (αξA2 + 8πPrc (ξv′ − 2v))ψo
3

+(nα1α+ α− α1) (2(n+ 1)2 (nα1α+ α− α1)ξ

×(A2αξ− 8πPrcv)ψo
′ − (nα− 1) (2 (n+ 1)α1 + 1)

×(αξA2 + 8πPrc (ξv′ − 2v)))ψo
2 − (nα− 1)

×((2n+ 1) (2 (n+ 1)α1 + 1) (nα1α+ α− α1)ξ

×(A2αξ− 8πPrcv)ψo
′ + (1− nα)α1 (1+ α1 + nα1)

×(αξA2 + 8πPrc (ξv′ − 2v)))ψo + 2n(1− nα)
2α1
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×(1+ α1 + nα1)ξ(A2αξ− 8πPrcv)ψo
′)]

−1
v
[ξψo

2n−1 (2n(nα1α+ α− α1)
2ψo

3

+ 2 (nα1α+ α− α1) (n (n+ 1) (nα1α+ α− α1)ξψo
′

−(nα− 1) (2nα1 + 1))ψo
2 + (nα− 1) (2 (nα− 1)α1

×(nα1 + 1) − (2n+ 1) (2nα1 + 1) (nα1α+ α− α1)ξψo
′)

×ψo + 2n(nα− 1)
2α1 (nα1 + 1)ξψo

′)]

+ 1
ξ5
[4v( 1
(A2αξ− 8πPrcv)

2 [2πPrcξ
3ψo

n−1 (−2 (n+ 1)

×(nα1α+ α− α1) (A2αξ− 4πPrc (v+ ξv′))ψo
2

+((nα1α+ α− α1)ξ(A2αξ− 8πPrcv)ψo
′(1+ n)212

×(1− nα) (α1 + nα1 ++1) (A
2αξ− 4πPrc (v+ ξv

′)))ψo

+ n (1− nα) (nα1 + α1 + 1)ξ(A2αξ− 8πPrcv)ψo
′)]

+ 3)] − 3v
′

ξ4
)] = 0. (70)

6.2 Case 2

Using Eqs 58, 60, 67,

Δ =
(3m− rm′)(m− 4πr3ψn+1 (Prc − α1μc) − 4πα1μcr

3ψn)

16πmr3
, (71)

the dimensionless form of Eq. 71 is

Δ =
μc (3v− ξ

3ψn)(ξ3ψn ((α1 − α)ψ− α1) + v)

4ξ3v
. (72)

The class I spherical generalized TOV equation for the energy
density case is

−1
ξ(8πPrcv− αA2ξ)

[8πPrcψn (ψ (1+ α− α1) + α1)

×(v−ψnψ ((α1 − α)ψ− α1))] + 2ψ
n−1ψ′ ((n+ 1)

×(α− α1)ψ+ α1n) +
1
ξ4v
[(ξ3ψn − 3v)

×(ξ3ψn ((α1 − α)ψ− α1) + v)] = 0. (73)

Then, using Eq. 61 and Eq. 73, the second-order class I spherical
generalized LEe is

ψn( 1
ξ2 (αA2ξ− 8πPrcv)

[ξ(αA2 (−3α1 + ξ (n+ 1) (α− α1)

×(2ψ′′ξ+ 3ψ′) − 1) + 8π (α1 + 1)Prcv
′)

+8πPrcv(3α1 − (n+ 1)ξ (α− α1) (3ψ′ + 2ξψ′′) + 1)]

+ 1
ξ2
[(α− α1)ψ(

8πξPrcv′

αA2ξ− 8πPrcv
− 3)]+ 1

ξψ

[n(2α1ξψ′′ +ψ′ (3α1 + 2 (n+ 1)ξ (α− α1)ψ′ + 1))]

+1
v
[2α1 (n− 1)nψ

′2]) + 1
ξ5
[4v( 1
(αA2ξ− 8πPrcv)

2

×[2πξ3Prcψn−1 (ξψ′ (αA2ξ− 8πPrcv) ((n+ 1)ψ

×(α− α1) + (α1 + 1)n) − 2ψ2 ((α− α1) + α1 + 1)

×(αA2ξ− 4πPrc (ξv
′ + v)))] + 3)] + 1

(αA2ξ− 8πPrcv)
2

× [8πξPrcψ2n−1 ((α− α1)ψ2 (2 (n+ 1)ξ (α− α1)ψ′

×(αA2ξ− 8πPrcv) + (2α1 + 1) (αA2ξ+ 8πPrc
×(ξv′ − 2v))) +ψ((2α1 + 1) (2n+ 1)ξ (α− α1)ψ′

×(αA2ξ− 8πPrcv) + α1 (α1 + 1) (αA2ξ+ 8πPrc
×(ξv′ − 2v))) + 2α1 (α1 + 1)nξψ′ (αA2ξ− 8πPrcv)

+ (α− α1)2ψ3 (αA2ξ+ 8πPrc (ξv′ − 2v)))]

− 1
v2
[ξ2ψ2nv′ ((α1 − α)ψ− α1)] +

1
v

× [ξψ2n−1 (2ψ ((α1 − α)ψ− α1) + ξψ′ ((2n+ 1)

×(α1 − α)ψ− 2α1n))] −
3v′

ξ4
= 0. (74)

In the isothermal regime (γ = 1), the procedure is now repeated
for only the energy density case. In order to accomplish this, we take
Eqs 58, 62, and 67 and obtain

Δ =
e−ψ (3m− rm′)(meψ − 4πPrcr3)

16πmr3
, (75)

the dimensionless form of Eq. 75 is

Δ =
Prce
−ψ (3ν− ξν′)(νeψ − αξ3)

4ανξ3
, (76)

for (γ = 1), the class I spherical generalized TOV equation is

1
2
BPrce
−2ψ[

8πPrce−ψ (αeψ + eψ)(αξ3 + eψv)
αξ(αB2ξ− 8πPrcv)

− 2eψψ′

−
eψ (3v− ξ3e−ψ)(eψv− αξ3)

αξ4v
] = 0, (77)

and the class I spherical generalized LEe is

1
αξv(αB2ξ− 8πPrcv)

[BPrce−ψ(α3B4ξ11 + v

×(16παξ9Prc (4π (α+ 2)Prcv− αB2ξ) + 12e3ψv2

× (αB2ξ− 8πPrcv)
2 + 2αξ6eψ (α2B4ξ2 (ξψ′ − 1)

+ 4πB2ξPrcv(−2α (α+ 3)ξψ′ + α (α+ 6) + 1) + 64π2

×(α+ 2)Prc2v2 (ξψ′ − 1)) + ξ3e2ψv(α2B4ξ2

×(ξ(ψ′ (2αξψ′ − 3α− 1) − 2αξψ′′) − 3α− 4)

+ 8παB2ξPrcv(ξ(4αξψ′′ − 4αξψ′2 + (5α+ 1)ψ′)

+ 4α+ 6) + 64π2Prc2v2 (2αξ(ψ′ (ξψ′ − 1) − ξψ′′)

− 2α− 3))))] = 0. (78)

The following conditions should be satisfied:

μ > 0, Pr ≤ μ, P⊥ ≤ μ. (79)

For case 1, (γ ≠ 1), conditions Eq. 79) take the form

[(α− α1 + nαα1)n+ (1+ nα1) (1− nα)]ψn
oμc > 0,

α1
ψ0
+ (αψo − α1)

(α− α1 + nαα1)n+ (1+ nα1) (1− nα)
≤ 1,

3μov
2

ξ
+ μoξ

5ψ2n
o [α1 + nαα1 + (α− α1 + nαα1)ψo]

[(α− α1 + nαα1)n+ (1+ nα1) (1− nα)] ≤ ξ2vψn
o

[(1− nα) (5+ 3α1)μc + (3+ 5n) (nα− 1)α1μc + 4α1μoc] , (80)
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and these conditions (Eq. 79) for case 2 (γ ≠ 1) are taken as

μ > 0, α1 +ψ (α− α1) ≤ 1,
3v
ξψn +

αξ5ψn+1

v
+ ξ2 (4α1 − 5+ (α− 4α1)ψ) ≤ 0. (81)

Now, for the isothermal regime (γ = 1), these conditions will be

μce
−ψ > 0, α ≤ 1, e−ψ (α− 5)ξ3 +

e−2ψαξ6

v
+ 3v ≤ 0. (82)

7 Vanishing complexity factor and
class I relativistic spherical generalized
polytropes

7.1 Case no. 1

Vanishing complexity factor YTF = 0 is integrated with Eqs 53
and 54, and the result is

− 1
ψo
[4πξ2 (2ξψoΔ

′ + 6Δψo + μcnξψo
nψo
′ ((n+ 1)ψo

×(α− α1 + αα1n) − (αn− 1) (α1n+ 1)))] = 0. (83)

A system of first-order DEs is formed by Eq. 56–70 and 83.
For constant values of α = .5 and α1 = .5, this system is numerically
solved. Figures 1–3 show the patterns of v, ψo, and Δ for various n
values.

7.2 Case no. 2

CF in this case will be expressed as

4πξ2 (2ξΔ′ + 6Δ− μcnξψ
n−1ψ′) = 0, (84)

for both α1 = .5 and α = .5, Figures 4–6 illustrate how v, ψ, and Δ
behave for various n values.The system of ordinary DEs (61, 73, 71)
is solved to achieve these characteristics numerically.

FIGURE 1
v(ξ) curves.

FIGURE 2
ψo(ξ) curves.

FIGURE 3
Δ(ξ) curves.

FIGURE 4
v(ξ) curves.
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FIGURE 5
ψ(ξ) curves.

FIGURE 6
Δ(ξ) curves.

FIGURE 7
v(ξ) curves.

FIGURE 8
v(ξ) curves.

FIGURE 9
Δ(ξ) curves.

Vanishing CF YTF = 0 with class I GPs (γ = 1) will be regarded
as

4πξ2 (2ξΔ′ + 6Δ− μc (ξe
ψψ′ + 6 sinh (ψ))) . (85)

The variables that are used in case 2(γ ≠ 1) constitute a set of first-
order DEs (62, 77, 85). This set of DEs was also numerically solved
for different values of parameters. Graphs of Figures 4–6 are used to
illustrate the actions of v, ψ, and Δ.

8 Summary

Dark energy and dark matter are vital aspects of the
universe which are explained by the GPEoS. It describes different
scenarios of these two special features of astrophysics and gives
information about the early and late universe (Babichev et al.,
2004; Mukhopadhyay et al., 2008; Chavanis, 2012; Chavanis, 2014a;
Chavanis, 2014b). Different self-gravitating system have been
discussed through LEe over a long period of time (Lane, 1870;
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Chandrasekhar, 1939). The significance of this equation is that
it helps to study the gravitational collapse of systems, stability
of relativistic stellar objects, and density and pressure profiles of
dark matter (Abellan et al., 2019; Bhatti and Tariq, 2019; Wojnar,
2019). In recent years, the concepts of GPEoS (Azam et al., 2016;
Azam and Mardan, 2017; Mardan et al., 2018; Khan et al., 2019;
Mardan et al., 2019; Mardan et al., 2020a; Mardan et al., 2020b;
Khan et al., 2021a; Khan et al., 2021b), complexity factor (Abbas and
Nazar, 2018; Herrera, 2018; Sharif and Butt, 2018; Khan et al., 2019;
Sharif and Butt, 2019; Khan et al., 2021a; Khan et al., 2021b), and the
Karmarkar condition (Karmakar, 1948; Maurya et al., 2015; Singh
and Pant, 2016; Singh et al., 2017; Ramos et al., 2021) have all been
widely used to explain various physical aspects and characteristics
of self-gravitating compact objects. These three theories about self-
gravitating stellar structures have been combined in the current
study to explore a few of their characteristics (v,ψo,ψ,andΔ)
under isothermal and non-isothermal regimes. For this reason,
a generalized framework is built to create a modified version of
the class I spherical LEe. The class I spherical TOV equation is
constructed using field equations. Structure scalars are generated by
means of the curvature tensor, the Weyl tensor and mass function
are built, and CF is defined using these scalars. Class I spherical
generalized LEes are developed through GPEoS for two cases: 1)
mass density and 2) energy density in both non-isothermal and
isothermal regimes.These LEes give us class I spherical GPs to study
some features of self-gravitating stellar structures. Additionally, the
energy conditions for each case have been determined. Vanishing
CF with three pairs of LEes (55, 70), (61,73), and (64,77) generate
three sets of DEs. The numerical solutions to these sets of DEs are
presented graphically.

The numerical solution of the set of DEs (55, 70, 83) of case (1)
is explained by the curves in Figures 1–3.The value of v for different
values of n has been shown in Figure 1, which shows that the value
of v is zero at the center of the spherical self-gravitating object, and
it increases for higher values of n along the increasing direction
of radius. It can also be seen that this object is more compact for
n = .5(curvea), and its compactness decreases for higher values of
n(curved). The curves in Figure 2 show the behavior of ψo, which
has its highest value at the center and it steadily diminishes as the
radius increases. For n = .5, it is zero at the boundary surface. The
curves in Figures 1, 2 are all smooth and exhibit normal behavior
for various parameter values. The curves of Figure 3 express the
response of variable Δ. It can be observed that these curves exhibit
the same pattern as shown by the curves of Figure 2, except curve
(a) of variable Δ, which shows some abnormal behavior at n = .5.

In case (2), Figure 4 shows the pattern of the variable v for
different values of ξ. It has zero value at the center and gradually
increases with the increase of ξ, and it attains maximum value at the
boundary surface for the maximum value of n.

Figure 5 explains the behavior of variable ψ for different values
of n. It attains maximum values at the center, which continuously
decrease toward the boundary. It can be observed from Figure 6 that
the measure of anisotropy has smaller values at the center of a self-
gravitating object, and it attains maximum values at the middle of
the radius of the object. It then starts decreasing until it reaches the
minimum again at the boundary of the object.

Figures 7–9 illustrate the results of variables v, ψ, and Δ through
the solutions of the set of DEs (62, 77, 85), for the isothermal regime.

Figure 7 shows the exponential increase in variable v from the center
to the boundary as the value of α decreases. Meanwhile, variable
ψ in Figure 8 shows an exponential decrease as α decreases. The
variable Δ in Figure 9 exhibits some abnormal behavior for smaller
values of α. It can be seen from Figure 9 that Δ has the maximum
value at the center and has a very small value at the boundary
(curvea), and with a decrease in the value of α, it has higher values
at the boundary (curvebandc), while at α = .0005, Δ changes its
orientation and becomes minimum at the center (curved).

In the presence of anisotropic pressure, we have proposed the
basic framework for the solutions of class I spherical generalized
relativistic LEes with CF. We undertook this task by showing the
perceptible presence of anisotropy in cosmological objects and its
influence on the structure of such objects. Another factor is that
fluid systems can be represented by the solutions of LEe with a
number of applications in astrophysics and cosmology. The major
goals of this study are to build a modified version of the class I
spherical generalized LEe in relation to CF under isothermal and
non-isothermal regimes and to numerically solve the systems of
DEs. Some possible extensions to this work are the development of
more generalized frameworks in modified theories of gravity such
as f(R) and f(R,T) (Manzor and Shahid, 2021; Mumtaz et al., 2022).
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