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The internal heat flow related to the Moon’s composition, interior structure, and
evolution history is not well-constrained and understood on a global scale. Up to
now, only two in situ heat flow experiments, Apollo 15 and 17were deployed nearly
50 years ago. Themeasured high values of heat flowmight be influenced by lateral
heat at highland/mare boundaries and enhanced by heat production from
radioactive elements enriched unit, and may also be disturbed by astronauts’
activities. In this study, we proposed a new method to retrieve heat flows at two
permanently shadowed craters, Haworth and Shoemaker of the Moon’s south
pole, from Chang’E-2 microwave radiometer data and Diviner observations. Our
results show that the average heat flow is 4.9 ± 0.2 mW/m2. This provides a
constraint for the bulk concentration of Thoriumwithin the lunar south polar crust
656 ± 54 ppb, which helps us understand the Moon’s thermal evolution and
differentiation.
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1 Introduction

The interior heat flow provides a direct method for constraining the bulk abundance of
radiogenic elements (e.g., U, Th, and K) which helps us to understand the differentiation and
thermal history of theMoon (Langseth et al., 1976;Warren and Rasmussen, 1987;Wieczorek
and Phillips, 2000; Siegler and Smrekar, 2014). The accurate interpretation of internal heat
flow is also important to understand the volcanic history of the Moon such as the occurrence
of moderately fresh “Irregular Mare Patches” (Qiao et al., 2021). Nearly 50 years ago, only
two in situ heat flow experiments (HFEs) at the Hadley Rille and Taurus-Littrow during
Apollo 15 and 17 missions obtained values of 21 ± 3 and 14 ± 2 mW/m2, respectively
(Langseth et al., 1976). However, the radiogenic elements enriched unit, Procellarum
potassium, rare earth element, and phosphorus (KREEP) Terrane (PKT) (Jolliff et al.,
2000), which extends to Apollo 15 landing site that likely contributes 5 ± 2 mW/m2 to the
heat flow value (Wieczorek and Phillips, 2000) and even might affect Apollo 17 heat flow
measurement (Siegler and Smrekar, 2014). In addition, the two landing sites located at the
boundary between the highlands and maria could also cause an additional 15%–20% heat
flow (Warren and Rasmussen, 1987) and the uncertainty of the regolith thermal conductivity
(Grott et al., 2010). It is worth noting that astronaut-induced surface regolith disturbance
may also lead to an increase in its temperature due to the darkened surface in addition to
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altering the regolith texture and surface photometric properties
(Nagihara et al., 2018). This might need 5–7 years to reach the
equilibrium state (Langseth et al., 1976).

Langseth et al. (1976) estimated the global average heat flow
value as 18 ± 2 mW/m2 based on Th concentration, but they still
cautioned that further data should be obtained to estimate the global
average value. Warren and Rasmussen (1987) considered the effects
of insulation of mega regolith on lunar thermal evolution and
revised the global average value to 12 ± 2 mW/m2. Nevertheless,
some researchers proposed that the measured Apollo heat flows
might not be representative which overestimates the global average
heat flow by up to a factor of 3 due to thermal pathways and heat-
producing material of the top ~100 km of the Moon (Warren and
Rasmussen, 1987; Wieczorek and Phillips, 2000; Hagermann and
Tanaka, 2006; Saito, 2008). Therefore, it has been concluded that the
current heat flow data is not enough to constrain the thermal state of
the Moon with a 100% confidence (Hagermann and Tanaka, 2006),
and the limited location of Apollo HFEs emphasizes the importance
of additional, geophysical different observations to better constrain
the Moon’s heat flow, which has been recognized as a high priority
lunar science objective (Kiefer, 2012).

After Apollo, planetary heat flow mapping was focused on the
potential of orbiting microwave radiometer experiments (Keihm
and Langseth, 1975; Schloerb et al., 1976; Keihm, 1984; Siegler and
Smrekar, 2014). Some efforts of spectral gradients and regolith
physical properties are combined to interpret ground-based
microwave observations for deriving heat flow (Keihm and
Langseth, 1975), which unfortunately, no orbital exploration
mission has been reported as of yet. Since the long-term
subsurface temperature drift of Apollo HFEs was thought to stem
from the astronaut activity (Langseth et al., 1976), the regolith-
uninterrupted orbital microwave observations have the advantage
and capability to extend the HFE to a global scale remotely. Because
the temperature in the upper 1.5 m of the sunlit regolith is strongly
affected by the diurnal or annual thermal waves (Kiefer, 2012),
permanently shadowed regions (PSRs) of lunar poles are supposed
to be ideal places to map lunar heat flow from orbit (Paige et al.,
2010; Paige and Siegler, 2016). Since there is no direct solar heat
perturbation within PSRs (but could be warmed up by reflected
sunlight and thermal infrared radiation from surrounding crater
walls), the heat flow plays an important role in the near-surface
temperature (Paige et al., 2010; Paige and Siegler, 2016). This can be
sensed by microwave observations which help us to characterize the
lunar near-surface thermal environment and retrieve interior heat
flow. Additionally, because of the large penetration depth of
microwaves, the plausible buried water ice at PSRs could also be
revealed by subsurface thermal regime measurements (Meng et al.,
2010), which provides landing site selection for future polar
missions (e.g., De Rosa et al., 2012; Wei et al., 2023).

In this study, we propose a new method to combine the Diviner
and Chang’E-2 (CE-2) microwave data to retrieve heat flow at PSRs
of the Moon’s south pole. In Section 2, we first use nearly 10 years
(from 5 July 2009, to 17 Feb 2019) of the Diviner measurements
(Paige et al., 2010; Elder et al., 2019) as surface temperature
constraints to improve the thermal model. Then we model
microwave emission with different heat flows to match CE-2’s
Microwave Radiometer (MRM) observations (Zheng et al., 2019).
Lastly, we can search for the best heat flow value from different

MRM channels’ data. In Section 3, we present the retrieved heat flow
at two permanently shadowed craters. A detailed discussion of
possible factors that influence our inversion results is presented
in Section 4 and a conclusion is followed in Section 5.

2 Dataset and methodology

2.1 Chang’E-2 microwave radiometer data

Microwave Radiometer onboard CE-2 measured lunar surface
with four channels (ci, i � 1, 2, 3, 4), i.e., 3, 7.8, 19.35 and 37 GHz, in
a polar orbit at an altitude of ~100 km (Zheng et al., 2019). Channel
1 observed the lunar surface with a spatial resolution of 25 km and
the others with 17.5 km. More details about MRM have been
introduced in Zheng et al. (2019). Figure 1A shows the variation
of sub-solar latitude (δ) during the CE-2 mission, which covers part
of the southern summer (δ < 0) andmost of the southern winter (δ >
0). Figures 1B, C shows seasonal fluctuations of CE-2’s MRM
observations at 3 (TB3), 19.35 (TB19), and 37 GHz (TB37) near the
bottom of Haworth and Shoemaker craters. It can be seen that the
MRM observation behaves as a seasonal variation during the
mission, which has good agreement with the Diviner
measurements (Williams et al., 2019). This seasonal effect is
caused by the scattered sunlight and infrared radiation from
ambient crater walls. The different amplitude of TB at the same
frequency between Haworth and Shoemaker also indicates different

FIGURE 1
Seasonal variations of CE-2 observations at permanently
shadowed craters of the Moon’s south pole. (A) is the variation of the
sub-solar latitude during the CE-2 mission. The dashed line denotes
the equator. (B) and (C) are variations of TB3, TB19 and TB37 near
the bottom of Haworth and Shoemaker, respectively. The time span
covered by gray areas indicates the observations used in this study.
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thermal environments, thermophysical properties of regolith, and
possible heat flow.

Considering the relatively small seasonal effect and more MRM
data coverage during southern winter, both Diviner and MRM data
obtained within this season are selected. Although the MRM
observations present an apparent seasonal variation, the potential
calibration issues due to CE-2 reorientation on the cold horn (a set of
calibration antennas pointing to cold space for reference) for
terminator orbits (Feng et al., 2020) between 22 Jan 2011, and
24 April 2011, were excluded. Thus, the data points near the bottom
of Haworth and Shoemaker during southern winter are selected
which are shown in the gray areas of Figure 1.

2.2 Diviner data

The Diviner Lunar Radiometer (Diviner (Paige et al., 2010))
onboard the Lunar Reconnaissance Orbiter systematically maps
lunar surface thermal environment for more than 10 years since
July 2009 (Williams et al., 2019). Diviner including 9 channels was
designed to measure reflected solar radiation (each of the first two
channels 0.35–2.8 μm) and infrared emission (other seven channels
range from 7.55 to 400 μm) with a spatial resolution of ~200 m
globally (Paige et al., 2010). Recently, the bolometric brightness
temperature (Tbol) covering polar regions generated from nearly
10 years of Diviner measurements have been compiled into diurnal
temperatures at southern summer/winter according to the variation
of sub-solar latitudes (Williams et al., 2019). In our study, the Tbol

data within southern winter corresponding to CE-2 observations

were used as surface thermal constraints for the thermal model. And
the southern summer Tbol data were used to investigate the
maximum seasonal effect on the thermal stability of water ice in
the lunar south polar region.

2.3 Improved thermal model

We use the one-dimensional thermal model to calculate the
lunar polar subsurface temperatures (Vasavada, 1999; Paige et al.,
2010; Vasavada et al., 2012; Hayne et al., 2017).

ρ z( )C T( ) zT
zt

� z

zz
K T, z( ) zT

zz
[ ] (1)

where T is the temperature, z is the depth, ρ(z) is the bulk density
which is dependent upon depth, C(T) is the specific heat capacity
which is a function of temperature, and K(T, z) is the thermal
conductivity of lunar regolith which depends on both temperature
and depth. Vasavada et al. (2012) proposed to use the H parameter
in an exponential form to characterize bulk density and thermal
conductivity based on Diviner measurements; Hayne et al. (2017)
derived the global distribution of the H parameter based on
Vasavada et al.‘s model and rock-free regolith temperature
(Bandfield et al., 2011). The global mean H value 0.07 m was
adopted in this study to characterize the density profile of the
soil. Note that the thermophysical property of soils at
extremely low temperatures (as low as 20 K) becomes complex
which is a lack of comprehensive laboratory measurements.
Recently, Woods-Robinson et al., 2019 derived a semi-empirical

FIGURE 2
Comparison of r1 ,4 � (c1 − c4)/c4 between CE-2 observations and Diviner constrained model at (A)Haworth and (B) Shoemaker. The vertical bar of
CE-2 observations is the standard deviation, and the horizontal bar is the corresponding heat flow range. The red-shaded area is the standard deviation of
modeled values.
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model of C and K in the full range of 20–400 K by fitting lunar
regolith simulant based on solid-state theory. Here, we adopt their
model to calculate specific heat and thermal conductivity with the
combination of Hayne et al.’s density model.

In order to solve the thermal model, we also need to input the
surface temperature and interior heat flow. The thermal
environment in polar regions is complex due to the complex
illuminating conditions (Bussey et al., 2010; Mazarico et al., 2011;
Gläser et al., 2014). Paige et al. (2010) modeled the Sun, the Earth,
and the Moon as triangular meshes and used the ray tracing method
to calculate lunar polar surface/subsurface temperatures at 500 m
resolution. However, the simulation still presented about 15 K lower
within PSRs than that of Diviner measurements during the daytime.
The discrepancy is supposed to be caused by a directionally
anisotropic thermal emission (Paige et al., 2010). In this study,
we use diurnal variations of Tbol as input to constrain surface
temperature instead of theoretical calculating to derive the
subsurface temperatures (Wei et al., 2019; Schorghofer and
Williams, 2020).

2.4 Scheme of heat flow inversion

The upper limit heat flow at “Region 5,” an unnamed 3 km
diameter and extremely cold crater (87.0°S, 15.3°E) which is located
to the east of Haworth crater (see Figure 3) was retrieved from
Diviner data (Paige and Siegler, 2016). In order to calculate the heat
flow-dependent (lower boundary of Eq. 1) subsurface temperature
with an unknown heat flow value, we set the upper limit heat flow as
24 mW/m2 based on the maximum value of Apollo 15 HFE instead

of Region 5’s 6 mW/m2. Thus, the heat flow can be inverted in the
following steps. 1) Computing annual averaged (southern winter)
subsurface temperatures with heat flows from 0 to 24 mW/m2. 2)
Modeling TB based on the above temperature profiles (Wei et al.,
2019; Feng et al., 2020; Siegler et al., 2020). 3) Match the modeled TB

and CE-2 observations and search for the best-fit heat flow value.
Noting that although both the MRM observations and Diviner
constrained simulations cover the same study area, they have
different spatial resolutions and observation time ranges.
Therefore, it could cause uncertainty by matching the modeled
TB and CE-2 observations directly. Here, we propose the following
equation (Eq. 2) to minimize the discrepancy of TB matching

ri,j � ci − cj
cj

, i � 1, j � 3, 4( ) (2)

where the TB-dependent ratio (ri,j) is sensitive to heat flow because
c1 (3 GHz-channel) senses greater depths than the other two
channels (19.35 and 37 GHz). Therefore, the heat flow can be
inverted by comparing ri,j between MRM observations and
modeled values. Figure 2 shows an example of the inversion
scheme at Haworth and Shoemaker. It can be seen that the mean
value of modeled r1,4 (red lines) increases with heat flow at both
craters gradually. The standard deviation of r1,4 ratios (red shade)
increase apparently with the increasing of heat flows, especially at
Shoemaker. This is caused by the dominance of internal heat flow
compared to the surface thermal state. The CE-2 data derived r1,4
mean values (blue squares) then can be matched for searching the
best heat flow values.

Note that the interior heat flow plays a part in near-surface
temperature at PSRs and can be recorded by infrared
measurements and microwave observations. However,
compared to Diviner’s infrared measurements at PSRs (Paige
and Siegler, 2016), the longer wavelength of the microwave
radiometer can sense greater depths for interior heat flow.
Additionally, the discrepancy of spatial resolution between
3 GHz (25 km) and 19.35 GHz or 37 GHz (17.5 km) channels
can be neglected because 1) the thermal environment including
heat flow is supposed to be homogeneous for each MRM’s field of
view, and 2) the diurnal averaged TB including all the data points
covering the study area were derived for calculating r1,3 and r1,4
ratios.

3 Results

3.1 Lunar polar heat flow

Tominimize the scattering effect, we select the data points near
the bottom of each crater after filtering the southern winter data
set. Figure 3 shows the modeled annually averaged Sun
illumination of the lunar south polar region. The study area of
the Haworth crater is 15–5°W, 87–88°S, and the Shoemaker’s is
20–50°E, 87.3–88.6°S. It can be seen that the study areas enclosed
by trapezoids at Haworth and Shoemaker present an extremely low
illumination rate. Which indicates ideal places for heat flow
inversion. The location of “Region 5” investigated by Paige and
Siegler (2016) is also labeled in Figure 3 (white circle) which is near
both of our study areas.

FIGURE 3
Annually averaged Sun illumination of the Moon’s south pole
(>85°S). The white trapezoids indicate study areas. HAW and SHO
denote Haworth and Shoemaker, respectively. Other listed
permanently shadowed craters are Shackleton (SHA), Faustini
(FAU), De Gerlache (DEG), and Sverdrup (SVE). The white circle
indicates “Region 5”which is supposed to have an upper limit heat flow
value of 6 mW/m2 (Paige and Siegler, 2016). The spatial resolution of
the illumination map is 60 m/pixel, which is available at http://
imbrium.mit.edu/.

Frontiers in Astronomy and Space Sciences frontiersin.org04

Wei et al. 10.3389/fspas.2023.1179558

http://imbrium.mit.edu/
http://imbrium.mit.edu/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2023.1179558


Based on Eq. 2, ratios of r1,3 and r1,4 at study areas can be
derived from observed (TB3, TB19) and (TB3, TB37), respectively.
In addition, these ratios can also be derived from modeled TB

values, which are used for matching CE-2 observations (e.g.,
Figure 2). Figure 4 shows the retrieved heat flow at Haworth and
Shoemaker using different TB ratios. It can be seen that the
averaged heat flows retrieved from r1,3 and r1,4 within the study
area of Haworth crater (Figure 3, HAW) are ~4.6 and ~5.1 mW/
m2, respectively (Figure 4, red blocks). While the averaged heat
flows within the study area of the Shoemaker crater (Figure 3,
SHO) retrieved from r1,3 and r1,4 both are near to 4.9 mW/m2

(Figure 4, green blocks). Note that each of the four values is
averaged from thousands of data points covering the study areas
based on different TB ratios.

Although the two study areas present apparently different ri,j
values, they have excellent consistency within their standard
deviations (horizontal bars). It is worth noting that the
uncertainty of inverted heat flow at the two craters varies
from 1.3 to 3.0 mW/m2 which is dependent upon the standard
deviation of ri,j. However, the good agreement of heat flow
retrieved from different TB ratios at each crater indicates the
robustness of our inversion scheme. Furthermore, the averaged
heat flow of the two craters is 4.9 ± 0.2 mW/m2 which consists
well with the upper limit of Region 5 (Figure 4 gray area), 6 mW/
m2 (Paige and Siegler, 2016). The similar heat flow in the two
study areas suggests a relatively homogeneous interior thermal
state of the Moon’s south pole. Additionally, our retrieved heat
flow is obviously less than that of Apollo 15 and 17 in situ

measurements (Figure 4 green and purple shades) which are near
the PKT unit.

Figure 5 shows the locations of Apollo 15 and 17 in situ heat
flow experiments and our study areas on the Lunar Prospector
gamma-ray spectrometer derived Th map (in a unit of ppm).
The typical landing sites indicate that the measured heat flows
might be greatly altered by deep subsurface radiogenic elements
(Laneuville et al., 2013; Siegler and Smrekar, 2014) and lateral
heat flow through highland/mare boundaries (Warren and
Rasmussen, 1987). The study areas of PSRs are far from the
PKT and highland/mare boundaries that will not enhance the
sub-crust heat production and interior heat flow. In addition,
the low content of surface Th at the south pole corresponds to
low heat flow values while the larger Apollo 15 and 17 heat flow
values correspond to highly concentrated Th. NASA’s Gravity
Recovery and Interior Laboratory observations show that the
south pole has a roughly 40-km crustal thickness with
feldspathic highland terrane associated with the low crustal
thickness of the south pole Aitken basin (Wieczorek et al.,
2013). The Urey ratio (the ratio between total internal heat
production and total heat loss through the surface) assumed to
be 0.5 is a good and representative of terrestrial planets and the
Moon (Spohn and Breuer, 2002). Here, assuming the Th/U =
3.7 and K/U = 2,500 (Warren and Wasson, 1979), crustal
density 2,550 kg/m3 (Wieczorek et al., 2013), the Th bulk
abundance of the lunar polar crust is constrained by 656 ±
54 ppb based on our retrieved mean heat flow (Haenel et al.,
1988).

FIGURE 4
Retrieved heat flow at Haworth and Shoemaker. Other heat flow values at Region 5, Apollo 15, and 17 are presented in gray, green, and purple shades
for comparison, respectively. The dashed line denotes the mean value. The vertical bar is the standard deviation of ri,j, while the horizontal bar is the
corresponding heat flow range.
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3.2 Water ice effect on heat flow retrieval

Water ice is probably one of the most interesting and
important elements in PSRs. The Lunar Crater Observation
and Sensing Satellite (LCROSS) impact experiment confirmed
that there is 5.6 ± 2.9wt% water ice at the impact site (Colaprete
et al., 2010), and radar detections indicate that this water ice
might present as small (<10 cm) and discrete pieces mixed with
regolith rather than thick deposits of nearly pure water ice within
a few meters of lunar surface (Neish et al., 2011). Furthermore,
the regolith-ice mixture can behave differently with “dry”
regolith in thermal emissions. Although water ice has been
detected in PSRs and could be cold-trapped for billions of
years (Siegler et al., 2016; Li et al., 2018), we still know less
about the exact amount of water ice that appears in PSRs and the
vertical distribution in the subsurface. This might lead to heat
flow estimation uncertainty if water ice can influence the near-
surface thermal regime obviously.

Assuming a mean regolith density of 1700 kg/m3 with
porosity 0.45 and ice density of 1,100 kg/m3, the volumetric
fraction of water ice (i.e., pore filling fraction, fice) at the
LCROSS impact site is approximately 0.2. And the thermal
property of ice-bearing regolith (TMPmix) including density,
thermal conductivity, and specific heat are calculated using the
volumetric mixing model (Siegler et al., 2012),
TMPmix � TMPreg + p · fice · TMPice, where p is the porosity
of regolith which can be calculated from the bulk density of
regolith, TMPreg and TMPice are thermal property of regolith
and ice, respectively. The dielectric constant of the mixture can be

calculated based on a two-phase, three-dimensional medium
mixing model at each layer (Bergman, 1978). To simplify the
mixture thermal model, we suppose that water ice exists at the
study area of Cabeus crater and diffuses homogeneously to
different depths (zice) with the identical pore filling fraction
(Figure 6).

Figure 7 shows the comparison of the TB3/TB37 ratio between dry
regolith (black line) and ice-bearing regolith with different diffusion
depths (color-coded lines). It can be seen that the greater depths of
water ice diffuse the less sensitive the TB3/TB37 ratio is to the heat
flow. This is mainly caused by increased lossy ice within 3 GHz
sensed depths. For shallowly diffused depths, zice < 0.2 m, for
example, the increasing of ice diffusion depth from 0.02 m (red
line) to 0.2 m (green line) has relatively small influences in TB3/TB37

ratio. However, it appears a large gap in the TB ratio between the
“dry” regolith and even small diffused ice within the top layer of
0.02 m. For greater diffusion depths, 0.5 (blue line) and 1 m (cyan
line), for example, the TB3/TB37 ratio presents a large discrepancy
with respect to the “dry” regolith with increasing heat flow.

4 Discussion

4.1 Heat flow retrieved from icy regolith

Since it is unable to determine the exact amount of water ice that
mixes with regolith and distributes in PSRs in what form, the de facto
thermal emission might be more complex than we can model here.
However, recent studies of near-infrared observations (Li et al., 2018)
showed that only ~3.5% of cold traps of the south-polar region contained
exposedwater ice patches. It can be inferred that not thewhole area of the
study area can trap water ice and diffuse downward to a certain depth. A
detailed water ice investigation in the future lunar mission such as
China’s unmannedChang’E-7 lunar south polar explorationmission can
help us to improve our thermal and microwave model, which could
reveal more details of the subsurface thermal state.

Here, we use the scheme described in Section 2.4 to retrieve heat
flow with scenarios of different ice diffusion depths that are
discussed in Section 4.2. As shown in Table 1, compared to the
“dry” regolith, the retrieved heat flow presents different ranges when
ice diffused to the depth of 0.02, 0.2, 0.5, and 1 m at a constant pore
filling fraction. The lower limit of heat flow (i.e., 0.6 mW/m2) with
different ice diffusion depths agrees well with the “dry” regolith
except for the greater diffusion depth (zice = 1 m) which is 1.2 mW/
m2. The upper limit varies obviously (i.e., 5.9, 5.7, 3.3, 5.9 mW/m2)
with respect to “dry” regolith (4.6 mW/m2) but is no more than
1.3 mW/m2 in absolute difference. That is, water ice-bearing regolith
has a small influence on heat flow inversion based on our ice
diffusion model and retrieval scheme. It is worth noting that the
retrieved heat flow values also have a good agreement with the upper
limit of 6 mW/m2 of Paige and Siegler (2016).

4.2 Rock effect

Radar observations at lunar polar regions suggested that the
enhanced circular polarization ratio values might be caused by rocks
rather than water ice deposits (Fa and Cai, 2013). Similar to the

FIGURE 5
Locations of heat flow measurements on the Th map in a unit of
ppm (Prettyman et al., 2006). The map is in orthographic projection
centered at 0°E, 35°S. The crosses labeled A15 and A17 denote the
Apollo 15 and 17 landing sites, respectively. The PKT area
enclosed by the white line is constrained by the 3.5 ppm Th contour
(Prettyman et al., 2006). The square, diamond, and circle denote the
study areas of Haworth, Shoemaker, and Region 5 of the Moon’s south
pole, respectively.
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water ice effect, the perched and/or buried rocks can cause TB

anomaly due to their higher lossy property. The global average rock
abundance (RA) within 60°N/S latitudes retrieved from Diviner
measurements is 0.4% (Bandfield et al., 2011). The rock abundance
referenced here is the area percentage within each pixel, and the
diameter of the rock is larger than ~1 m. Since there is no quantity

investigation of rock abundance at PSRs, we suppose that the polar
region has a global averaged RA value. Following Bandfield et al.’s
model that the regolith-rock mixture can be simplified as columns of
regolith and rock within each pixel, we assume that both regolith
and rocks observed by Diviner behave the same surface temperature
within each bin (200 m × 200 m). Thus, we modeled the regolith-
rock mixture TB by weighting the RA value (0.4%) within each pixel.
We found that the modeled ri,j varies slightly with heat flow
4.9 mW/m2 compared to the rock-free (pure “dry” regolith)
model, which suggests that the rock effect on heat flow inversion
can be neglected based on our method.

4.3 Application for constraining water ice
loss rate

Lunar polar volatiles, including water, are important for
understanding the depletion, delivery, weathering, and orbital
evolution of the Moon (Paige et al., 2010; Siegler et al., 2016).
The water ice distribution is also crucial for in situ resource
utilization of future lunar exploration (Cannon and Britt, 2020).
Here, we discuss the thermal stability of water ice in polar regions
which is controlled by the near-surface thermal environment rather
than the accumulation from water-bearing meteoroids and/or the
punctuation by impacts (Cannon et al., 2020). Note that the
southern summer Diviner data are used here to calculate the
maximum subsurface temperature and constrain the maximum
sublimation rate of water ice. Neglecting the influence of water
ice in regolith thermal property, we can derive subsurface
temperatures using Diviner measurements and our retrieved heat
flow as boundary inputs (Eq. 1). Following the work of Paige et al.
(2010), Schorghofer and Taylor (2007), we calculate the loss rate of
water ice at different depths and search a certain depth at which the
sublimation rate equals 1 kg/(m2 · Ga) at the lunar south pole.

Figure 8 shows the distribution of water ice at different depths
with a constant sublimation rate. It can be seen apparently that water
ice distributes from small to large depressions/craters. And most
water ice is cold trapped in shallow depths (<10 cm) or even exposes

FIGURE 6
Profile of dry regolith porosity and ice-filling model. (A) is the porosity profile of dry lunar soil. (B) is the diagram of inhomogeneous dry soil from
surface to a greater depth. (C) is the diagram with water ice that has been diffused to a certain depth of Zice.

FIGURE 7
Variation of TB3/TB37 ratio under different ice diffusion depths and
interior heat flow at the Cabeus crater. The water ice pore filling
fraction (fice = 0.2) is supposed to be homogeneously within each
diffusion depth.

TABLE 1 Comparison of retrieved heat flows with different water ice diffusion
depths at Cabeus crater. Water ice diffuses downward with a constant pore-
filling fraction, fice = 0.2. Note that the cases of “dry” regolith and ice diffusion
features correspond to Figure 7.

zice (m) Dry regolith 0.02 0.2 0.5 1

HF (mW/m2) 0.6–4.6 0.6–5.9 0.6–5.7 0.6–3.3 1.2–5.9
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on the surface, for example, the LCROSS impact site (Figure 8 black
circle). Compared to Paige et al.’s model which has not considered
specific constraints from seasonal variation of surface Tbol and
retrieved interior heat flow, our result provides an additional
thermal constraint for the thermal stability of water ice at cold
traps. For example, our model suggests that the partially sunlit
Amundsen crater floor (84.5°S, 82.8°E) may harbor water ice with a
loss rate of 1 mm/Ga at greater depths (>1 m) while Paige et al.’s
model indicates <0.5 m depth. Thus, accurate constraints of
subsurface temperatures can help us to evaluate water ice
thermal stability, which is significant for investigating the
depletion history of volatiles and even landing site selection for
mining water ice in the future lunar exploration (Cannon and Britt,
2020).

5 Conclusion

In this study, we retrieved interior heat flow at Haworth and
Shoemaker from ~10 years of Diviner measurements and CE-2
observations. The retrieved heat flows at the two craters have
excellent consistency, which also agrees well with Diviner-derived
Region 5 (Paige and Siegler, 2016). The average value is 4.9 ±
0.2 mW/m2 which suggests a homogeneous interior heat flux.
Assuming a uniform heat flow at the lunar south pole, the bulk
content of Th of the lunar polar crust is constrained by 656 ± 54 ppb

based on the Urey ratio of the Moon. In addition, we also estimated
the thermal stability of water ice which is constrained by Diviner
observations and retrieved heat flow. We found that water ice
with a constant loss rate of 1 kg/(m2·Ga) can be cold-trapped
from the surface to shallow depths (<0.1 m) within most parts of
the PSRs of the Moon. Finally, our study provides a new method
to constrain the lunar subsurface thermal state at the non-PKT
area by reconciling the unprecedented MRM data and longevous
Diviner observations. The retrieved heat flow helps us to
understand the subsurface thermal state and thermal history
of the Moon.
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