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Planetary geomorphological maps over a wide range of spatial and temporal
scales provide important information on landforms and their evolution. The
process of producing a geomorphological map is extremely time-consuming
and maps are often difficult to reproduce. The success of deep learning and
machine learning promises to drastically reduce the cost of producing these
maps and also to increase their reproducibility. However, deep learning methods
strongly rely on having sufficient ground truth data to recognize the wanted
surface features. In this study, we investigate the results from an artificial
intelligence (AI)–based workflow to recognize lunar boulders on images taken
from a lunar orbiter to produce a global lunar map showing all boulders that
have left a track in the lunar regolith. We compare the findings from the AI
study with the results found by a human analyst (HA) who was handed an
identical database of images to identify boulders with tracks on the images. The
comparison involved 181 lunar craters from all over the lunar surface. Our results
show that the AI workflow used grossly underestimates the number of identified
boulders on the images that were used. The AI approach found less than one fifth
of all boulders identified by the HA. The purpose of this work is not to quantify the
absolute sensitivities of the two approaches but to identify the cause and origin
for the differences that the two approaches deliver and make recommendations
as to how the machine learning approach under the given constraints can be
improved. Our research makes the case that despite the increasing ease with
which deep learning methods can be applied to existing data sets, a more
thorough and critical assessment of the AI results is required to ensure that
future network architectures can produce the reliable geomorphological maps
that these methods are capable of delivering.
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1 Introduction

The application of machine learning and deep learning tools is spreading at an
increasing speed through all branches of science as increasingly large amounts of data
provide the required volumes for reasonable training and inference for these algorithms.
However, in view of the fast-growing amount of available data, direct human analysis
of individual observations is becoming steadily more difficult to achieve. Yet, the steady
advances in computing offer solutions to this dilemma (McGovern and Wagstaff, 2011;
Ulrich et al., 2021). Machine learning is one branch of artificial intelligence (AI) and
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computer science, which uses data and algorithms to simulate
human learning behavior through statisticalmethods, characterized
by the ability to automatically improve accuracy through experience.
Many recent advances in science and technological breakthroughs
have indeed been made possible through the use of machine
learning methods. Readily available machine learning codes have
also been increasingly applied successfully to various problems in
geoscience, in particular for image recognition and classification
tasks (DeLatte et al., 2019). Convolutional neural networks (CNNs)
are a prominent group of algorithms within the group of deep
learning methods. Deep learning is a class of machine learning
algorithms that (1) uses a cascade of multiple layers of non-linear
processing units for feature extraction and transformation, where
each successive layer uses the output from the previous layer as
the input, and (2) learns multiple levels of representations that
correspond to different levels of abstraction, where the levels form a
hierarchy of concepts (Deng and Yu, 2014). During a training phase
in which these networks are presented with a series of characteristic
input data, they subsequently learn through the various layers
to detect patterns in the input data, allowing them to assign a
probability with which new input data can be associated with
a specific input class of data (Fukushima, 1980 or Hilton and
Salakhutdinov, 2006). The attractiveness of using CNNs to classify
images relies to a great extent on the fact that they automatically
extract relevant information directly from annotated imageswithout
having an explicit description of the features and can classify
class objects at various scales. While these methods achieve high
performance in terms of accuracy (which is the fraction of the
inputs in a test set whose inference results are the same as the
ground truth), one has to acknowledge that independent verification
of the results gained from these studies is difficult to achieve in
many cases. There are various reasons for this fact and among
them are the enormous amount of data to be handled and the
effort to correctly label the training data. Other reasons include,
for example, the challenge of choosing the training data based on
a correct random sampling design and the problem that outliers
could exist which might not have been adequately considered in the
training data. In addition, AI methods have intrinsic features that
make it hard to check (using conventional verification and validation
methods), or simply because the authors use them unchanged
from the deep learning program libraries. The consequence is
that often verification is only based on quoted standard metrics
that the programs directly compute, and scientific claims may
therefore remain unchallenged for extended periods of time. This
is particularly problematic in fields that routinely produce an
enormous data volume, such as in space science where it can usually
take years to decades until new data become available and research
findings can be independently checked and verified. As machine
learning methods become more prevalent and increasingly easier to
apply, users have to become more aware of the careful preparation
that training sets require before they can be used.This goal can partly
be achieved by scrutinizing the results which are delivered by these
methods in terms of reliability, robustness, and bias and by clearly
understanding how these methods achieve their discriminating
classification power, or put differently, by understanding what a
given machine learning model does not know. We have picked one
particular example of data in the field of planetary remote sensing
where neutral networks are spreading quickly to generate new

knowledge. Our study is focused on one implementation of a CNN
to find out how the classification results achieved by this method
compare with the results found by a human annotator. Remote
sensing investigations of the diverse environments not only on Earth
but also on other celestial bodies allow one to address a wide range of
open questions in planetology (Paraflox et al., 2017; von Rönn et al.,
2019; Glassmeier, 2020). With the fast-growing amount of available
data in remote sensing, this field is particularly well suited to
make such a comparison. Not only are the findings of our research
interesting in the context of this particular study but also they
hold lessons for other fields of image classifications, especially in
situations where misclassification can have fatal consequences.

2 Rock detection

2.1 Interest in rock detection on planetary
surfaces, asteroids, and comets

Among the questions recently addressed with machine learning
methods in the field of planetary geomorphological remote sensing
are questions of automated detection of landforms and their
geological characterization. The questions span a wide and diverse
range from characterizing potential landing sites in planetary
exploration missions (Pajola et al., 2017) to hazard assessment
in safe landing maneuvers (Wu et al., 2018), understanding the
weathering processes and formation of regolith under very different
environmental conditions (wet and dry case), and gaining a better
insight into slope stability issues of landsides (Bourrier et al., 2012;
Regmi et al., 2015) and their underlying triggering mechanisms
(Ruj et al., 2022), to name only a few. The investigation of rock
particle sizes and their distribution is relevant for answering the
abovementioned questions (Pajola et al., 2019). The size of a rock
per se is an important textural parameter because it provides
information about the conditions of formation, transportation, and
deposition (Bolton, 1978; Khajavi et al., 2012), thereby providing
information on the history of events that occurred before the rock
had found its final placement. Common to the exploration of the
abovementioned issues is the requirement of having an accurate
knowledge of the occurrence of rocks and their size distribution.
Rock sizes span a wide range and so pose a variety of problems
in reconstructing the depositional history of the material. While
the measurement of small particle sizes can be determined in the
laboratory, the identification of larger rock particles using remotely
sensed information (e.g., boulders—using the Udden–Wentworth
(U-W) grain-size scale) can constitute a significant challenge. Such
boulders are interesting because they can be used to probe the
physical characteristics of the surface on which they have been
placed or decipher past geological activity on the surface where
they rest (Senthil Kumar et al., 2016; van der Bogert et al., 2018;
Senthil Kumar et al., 2019).

2.2 Methods for boulder detection

To detect boulders in the context of the above-named scientific
questions, researchers have either used the traditional research
approach with human analysts (HAs) to classify the boulders in
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the images (Schroder et al., 2021a; Dagar et al., 2022; Vijayan et al.,
2022) or applied imaging methods or machine learning approaches
(Dunlop et al., 2007 and references in this study) to automatically
detect the desired boulders.

We have investigated during the course of this research our
own algorithms to automate the boulder recognition process using
imaging analysis techniques but only report on the methods and
results that are directly relevant to the context of comparing the deep
learning approach with the HA-based approach here in this study.

In this article, we focus only on the identification of boulders
that are associated with tracks. We do not address in this study
the various interesting physical aspects of the observations. Here,
we want to find out what the relative performance of identifying
these objects is when we compare the results delivered by a human
annotator relative to the results provided by an AI algorithm and
identify the factors that play a role in the performance.

2.3 Artificial intelligence for boulder
detection

As the identification, mapping, and counting of boulders on
millions of high-resolution images is a typical example of an
extremely time-consuming and tedious task, it does not come as a
surprise that a part of the scientific community has turned from
image analysis methods (Dunlop et al., 2007) to machine learning
and deep learning methods to speed up this task (Fanara, L. et al.,
2020). It has been the increased availability of cheaper computing
resources, together with the enormous progress and success of
neural networks in image classification and object detection,
coupled with the easy accessibility of ready-to-use computer codes
that has produced an increasing number of research articles on using
AI methods to address problems also in geomorphological research.

Comparing human andmachine vision classification accuracy is
often done by comparing benchmark accuracies on independently
and identically distributed (IID) test data, which in the field of
geomorphology, in many cases, does not exist, as is often the case
in space science, where parts of the to-be-explored celestial bodies
are just being mapped.

As CNNs routinely match and even outperform humans on
IID data, the question no longer remains whether the deployed
machine learning algorithms can find the boulders but whether
the results returned are good enough to be used for further
statistical investigations in geomorphological studies. For many
open questions, this is of particular interest (e.g., related to the
geomorphology of the lunar surface), as on one side, substantial
progress has been made on the theoretical side, so that theoretical
predictions now can be quantitatively investigated with high-
resolution images of the Lunar Reconnaissance Orbiter (LRO)
(https://lunar.gsfc.nasa.gov/) (Robinson et al., 2010); for example,
whether at a given point in time a localized moonquake occurred
and thereby boulders were triggered to move along lunar crater
slopes or the boulder distribution predicted from modeling
thermally induced stresses in these boulders and their decay into
regolith is compliant with observations (Basilevsky et al., 2013;
Molaro et al., 2015; Schroder et al., 2021b).

Various groups have experimented with some of the
available codes to test their ability to detect boulders in various

contexts (Hood et al., 2020, von Rönn et al., 2019; Feldens, 2020;
Feldens et al., 2021), while others continue to manually collect the
required statistics (Golombke et al., 2012; Golombke et al., 2021).
In view of the relevance of the abovementioned questions, one
is not surprised to observe that among the two communities, a
heated debate exists: can machine learning replace an experienced
geomorphologist who classifies these images according to a given
criteria?

We applied CNNs in particular to rocks on planetary surfaces
to learn and gain experience on how these methods can be applied
(Bickel et al., 2019). In one of our own studies, we analyzed a
staggering data set of high-resolution images with the help of a
CNN to construct a global lunar boulder map (Bickel et al., 2020).
The goal set forward in this original study was to obtain the first
phenomenological overview of the distribution of boulders which
left a track still to be seen today on the lunar surface. Now we
return to this data set, which, to the best of our knowledge, contains
the biggest publicly available data set of CNN-identified boulders
(136,610 entries). We want to explicitly investigate in this study how
well the CNN-based results can hold up when compared with the
results returned by an HA looking at the exact same data pool of
images. The purpose of this work is not to quantify the absolute
sensitivities of the two approaches but to identify the cause and
origin of the differences that the two approaches deliver.This implies
that we are using the same projections and very same methods to
locate individual boulders in individual images as they were used
in the AI workflow. In this way, we want to find out the extent to
which such AI-generated data set results can be trusted and used
for further studies in which not only a phenomenological but also a
detailed precise mapping is required.

The success of all AI methods is usually rated using standard
metrics, like accuracy and receiver operating characteristic (ROC).
Many of the available codes directly deliver these statistics and are
accurately reported with the overall classification result. A large
fraction of research articles that make use of machine learning
algorithms have used a growing number of images during their
training processes, but end their analyses with the presentation of
precision and recall metrics without making independent checks
to verify whether the achieved computational classification is
compatible with the relevant numbers of identified cases in the
original raw data pool from which the training data were selected.
Insufficient time is usually spent on a reproducible description of
the selection of the training and testing samples. This particular
shortcomingmay have its roots in the fact that inmany classification
problems in which deep learning methods are used, the overall
pool of available images to be classified is created under relatively
comparable conditions to make classification more straightforward.
However, in planetary science studies, where images are often
acquired and recorded long before the exact use of these images in a
particular study is known, researchers have to use the image pool
as it exists. In their training process, it is often assumed that the
training and test samples are drawn from the same distribution. It
should be expected that beyond the distribution of training samples
[in-distribution (InD) data], out-of-distribution (OOD) data exist,
which may not belong to any of the classes that the model is
trained on. OOD samples in the training data set may have a
significant impact on the learning performance, which typically
results in a reduction of the classification accuracy and diagnosis
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capability. An essential question is therefore whether in the training
phase, the selection of training samples leads to a bias, which
ultimately makes the statistical results practically unsuitable for
answering the specific question under investigation. Moreover, in
geomorphological studies based on remote sensing images, it can be
very difficult to detect OOD objects as object recognition depends
on the spatial resolution of the data. Labeling errors can therefore
occur at different stages in the process of building the training
set and can have various reasons starting from the subjectivity
of the expert labeler to data noise which does not allow a clear-
cut classification of the object to be labeled. Among the various
types of selection bias, even subtle effects such as data leakage
(involuntarily using information from outside the training data set)
can have a profound impact on classification accuracy. We also
have to acknowledge once more that how CNNs can reach their
impressive performance on complex perceptual tasks such as object
recognition is itself an active research topic.

3 Data

Images used in this work have been produced by the
LRO—Narrow Angle Camera (Robinson et al., 2010). The boulder
data set (Bickel et al., 2020), which we use in this research,
was made publicly available (accessible https://doi.org/10.17617/3.
OG927P). The data set contains 136,610 entries representing lunar
boulders which are associated with a boulder track. The identified
136,610 rockfalls were found at the latitude range from 80° N to
80° S. These data were generated by a network (M5) that has been
trained, validated, and tested in an earlier study and achieved an
average precision score of 0.89, a recall of 0.44–0.69, and a precision
of 0.98–1.00 for confidence levels of 50% and 60%, respectively,
with 809,550 augmented rockfall images (Bickel et al., 2019). The
confidence level of 60%was selected for the analysis, as was reported,
to provide the optimal compromise between recall and precision,
based on the testing set (Bickel et al., 2019). (The definition of
the abovementioned metrics is summarized in the supplementary
section.) It was noted that M5’s performance on the global data set
might deviate from the performance in the testing set but not by how
much. A total of 240,401 NAC pre-calibrated and compressed NAC
pyramid image files were processed to achieve global lunar coverage.

The data set itself contains the selenographic locations from
the identified boulders having a confidence level greater than 0.6,
together with their size, name of the image, the resolution at which
the boulder was identified by the CNN on the image, and also the
location in pixels where the boulder can be found on the image.
For details on how the data set was generated, see the original
publications and associated details in Bickel et al. (2020).

4 Data analysis

4.1 Data selection for study

Due to the enormous data volume involved (>2 million images),
it is clear that a comparison of the recognition score of the CNN
and a human can only be made on a small subset of the images.
Although any randomly chosen areas could have been used to

compare the results found by AI and the human annotator, we chose
to investigate the distribution of boulders with tracks inside lunar
craters. The reason for this choice is twofold: first, as our previous
studies have revealed that the majority of boulders with tracks are to
be found in craters, they are ideal for our comparison as they have
a natural geographic boundary and generally host a high number
of boulder identifications. Second, a knowledge of the distribution
of boulders with tracks inside craters is interesting in the context of
various forthcoming studies in which we want to use the boulder
distributions inside individual craters to investigate the dynamics
of rockfalls. We have randomly selected craters of variable radii
(0.5–50 km) from all longitudes and from a latitude range of −80
to +80° on the Moon. Craters where we could identify boulder
tracks were listed until 170 craters were chosen. In the process of
investigating the crater La Condamine A, it was noticed that in
the region of this crater, other craters contain many boulders with
tracks. We therefore added 11 additional craters. The addition of
these craters explains the two peaks seen in the distribution of crater
locations shown in Figure 1B). (Details on the craters are presented
in Supplementary Table S1.)The locations of the craters used for this
investigation are shown in Figure 1A.

4.2 Method for boulder identification with
tracks by a human analyst

The LRO mission (Robinson et al., 2010) has created a unique
archive of lunar surface images that allows one to view a chosen
lunar region from different orbital heights and from very different
viewing directions and conditions, thereby generating images with
different resolutions and phase angles. To systematically identify
all the boulders with tracks in a particular crater in a repeatable
workflow, the whole crater area has to be fully visible under viewing
conditionswhichminimize the number of shadowed areas inside the
crater rim and display the crater with the highest available resolution
images.This condition is required for anAI andHA-based approach.
If one clears the available data set of images that contain artifacts, as
well as unfavorable signal-to-noise conditions, and only uses images
that have sufficient resolution and favorable phase angle conditions,
one would still face the problem of how to choose a minimum
set of images to produce a mosaic for a selected crater using the
given limited and possibly not optimal available images. As there
are numerous possibilities to assemble such images into a mosaic,
we have tried to automate the task of automatically finding the
image arrangement that produces amosaic that optimizesmaximum
crater surface visibility and spatial resolution, but in the end decided
to choose the images for each crater after a visual inspection of
the preselected images. The construction of a crater mosaic for
the HA-based research in this study is described in more detail in
Supplementary Figure S1.

We emphasize that the final image mosaic of a given crater in
our case, which is analyzed by an HA, is not a single mosaicked
image but a multi-layer mosaic cube. All the images that cover a
particular crater are stacked on top of each other, thus producing
an image cube. The stacking is thereby ordered based on a given
criterion (spatial resolution, phase angle, etc.). The generated multi-
layer mosaic of a particular crater allows one to investigate a given
crater area on different NAC images, thereby creating the possibility
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FIGURE 1
(A) Location of craters used for analysis [shown on a WAC shaded relief, 64 pixel/degree global mosaic (equidistant cylindrical projection) base map].
The size of the craters is scaled so that small craters also become visible in the figure. Exact details of crater location and size are given in
Supplementary Material. (B) Longitude and latitude distributions of crater centers used in this study. (C) NAC image coverage of crater La Condamine B,
the color indicates the resolution of each individual image. (D) One mosaic of crater La Condamine B (orthographic projection) built up from selected
images displayed in (C). A magnified section, marked as a black rectangle in (D) is shown enlarged in (E) and expanded again in (F) to make some
boulders and their tracks visible.

to visually look at a particular crater location onmultiple images that
were taken at different resolutions and illumination conditions.

As the CNN-based search used pre-calibrated and compressed
NAC pyramid image files without processing them through the
standard USGS Integrated Software for Imagers and Spectrometers
(ISIS) tool, the NAC pyramid image files used in this study were
also not processed with this tool. This was done to avoid another
potential new source of bias which could arise through the fact that
the images we used would have been re-projected and corrected
for various instrumental effects. For this reason, we also used the
same cylindrical projection which was used in the original CNN

workflow. By following the same procedure, we are confronted with
the original issue inBickel et al. (2020) that the position of individual
boulders seen on different images has slightly different coordinate
values. As we have in the HA-based approach the possibility to
follow a track over the border of an image to the next adjacent
image, we do not face the problem of mistakenly double counting
the same boulder due to a shift in its location. We also note that
we have used the same image pool that was available when the
first study (Bickel et al., 2020) was conducted and did not add
any newer images that became available since the CNN study was
made.
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FIGURE 2
Comparison of identified boulders with tracks in crater La Condamine B. The background image shows a mosaic assembled from the study available
NAC images in cylindrical equal-area projection. The mosaic is assembled from individual non–ISIS-corrected NAC images which have a different
spatial resolution (below 1 m/pixel).

By the time we finished our analysis, the LRO QuickMap
image website had undergone several upgrades and improvements
and now offered us the possibility to crosscheck our identified
boulder positions on the fully ISIS-corrected images. We used these
newly added possibilities to have an independent verification. All
the boulder track searches were done by a trained geologist. In
this way, all 181 craters were investigated and a grand total of
13,686 boulders were visually found and marked. In Figures 1D–F,
one can see a close-up view of a tiny area (marked as a black
rectangle in Figure 1D) of crater La Condamine B to show the
corresponding boulders visible on the NAC image M1167354138R.
Looking at the crossing of the numerous tracks (Figure 1F), it
becomes clear how difficult it is even for an HA to identify the
desired boulders.

For each of the 181 investigated craters, the location of each
boulder was recorded, allowing one to generate a map of all the
human-identified boulders and thereby allowing for a comparison
with the boulder locations found through the CNN. The AI-
identified boulders in a particular crater were found by reading the
boulder coordinates of all boulders in the abovementioned boulder
database and counting the entries that were found to be inside the
area of the crater under investigation.The crater area and dimension
were again taken from the LRO crater list (available from https://
wms.lroc.asu.edu/lroc/rdr_product_select). For all investigated
craters, the number ofHA- andCNN-identified boulders with tracks
was then tabulated (Supplementary Table S1).

Figure 2 is meant to exemplify one result of the comparison
between the CNN-identified (red markers) and human-identified
(black markers) boulders with tracks for the crater La Condamine
B.

4.3 Investigation of accuracy of
identification

The standard metrics (accuracy, ROC, etc.) from the CNN
study were computed based on the whole data set. As we could
not repeat the HA-based search with several individuals, we did
not have the intention to produce an absolute comparison of the
absolute sensitivities of the two approaches in identifying boulders
with tracks. Our main goal for this investigation was to estimate
how anHA-based approach compares with a CNN-driven workflow
and understand what could explain the possible differences in the
number of identified boulders, with the intention to identify major
shortcomings in the CNN-driven approach to boost the sensitivity
of future AI-driven workflows. By analyzing the 181 craters which
differ in size and were chosen from all over the lunar surface,
we could see systematic differences in the results that the two
approaches deliver.

Once a mosaic with minimum shading and the best available
spatial resolution for a given crater has been produced, the task
given to a trained HA of finding all the boulders with tracks in a
given crater is in principle straightforward. It is essentially a question
of time and the steady concentration of the analyst. The human
verification of a boulder with a track identified by the CNN is,
however, a much more difficult task to achieve. There are several
reasons responsible for this fact. The localization of a given boulder
in a given LRO NAC image is often difficult to find due to the
following factors: the size of the NAC images relative to the size
of the boulders in it (Figure 1), resolution of the image, particular
illumination conditions of the scene at the time the image was
taken, and possible shift in coordinates of the boulder coordinates
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FIGURE 3
(A) Lunar location of crater La Condamine B. (B) Unprojected LROC NAC file M124777286LC with highlighted CNN localized boulders. (C) Locations of
boulders identified in AI workflow projected onto a cylindrical equal-area projection map. (D) Zoomed image regions (small, medium, and large) of
NAC image shown in (B) of two boulder locations specified in the boulder database.

(taken from the AI boulder database) from the position where the
boulder is seen in the image. The observed deviation of the true
boulder position from the computed boulder position is caused by
the fact that the expected selenographic boulder coordinates in the
image have to be computed directly from the four selenographic
corner coordinates of the image, and no full projection of the image
onto a digital elevation model (DEM) is made. This shortcut in
the original AI workflow was made because a full mapping of
the NAC image onto the lunar DEM using the ISIS to obtain the
exact (geographically and optically corrected) selenographic image
coordinate of the individual pixels would have been extremely
CPU-time intensive. Complications of verifying a particular boulder
listed in the database on an image can also be caused by nearby
tracks and boulders with tracks that were not found by the CNN
and the abovementioned coordinate shift of the listed boulder
coordinates.

To verify in each of the 57,876 images the boulder locations
that the CNN found, a workflow had to be designed that allowed
a fast process for finding and looking at these locations in each
individual image. This was achieved through the following process
(Figure 3).

Figure 3 gives an overview of the individual steps involved in
this process (again for crater La Condamine B). The location of
the crater is marked in Figure 3A. In order to check how many
boulders with tracks the CNN workflow has found inside this crater,
every boulder entry in the database with coordinates inside this
crater has to be looked up by the HA. For every NAC image, which
is associated with a boulder inside the crater under investigation
(Figure 3B), a map covering the crater boundary in the image was
produced in which the computed boulder locations were marked
and numbered (Figure 3C). On the NAC image itself, three boxes
(Figure 3D) of variable sizes (small, medium, and large) around
every CNN-identified boulder location were selected, so that the
expected boulder location could be visualized and compared with
the map. The pixel content in the three boxes containing the CNN-
identified boulder was then stored as three individual images. These
images were then labeled with the identifier that the boulder was
originally given in the CNN boulder catalog. Using the boulder map
together with the NAC image containing the marked image position
allows for a repeatable workflow for inspecting each CNN-identified
boulder. By looking at the image sequence from small, medium, and
large (Figure 3D), an analyst can come to a clear decision whether

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2023.1176325
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Mall et al. 10.3389/fspas.2023.1176325

the CNN found a true boulder or whether the recorded boulder
could be a candidate for a misclassification which occurred.

Looking at Figure 3D shows that it is straightforward for an HA
to decide whether he is looking at an image that contains a boulder
with a track or not. In all the cases where he is not sure what he
sees, he can look at the multi-layer crater mosaic that was produced
for the crater (or he can now also consult the new upgraded LROC
QuickMap website) to inspect the corresponding location where the
boulder is supposed to exist. Looking at the same position on the
different images that make up the multi-layer crater mosaic where
a problematic boulder identification has occurred allows the HA in
most cases to resolve the issue ofwhether this has been a true positive
identification or whether the algorithm has produced a false positive
event.

5 Results

The results of our boulder search and verification process are
summarized in Supplementary Table S1. Displayed for each crater
are the name, location of the crater center in degrees (latitude,
longitude), radius in kilometers, number of boulders identified with
the help of the CNN [boulder (CNN)], the number of boulders
found by the CNN (Bickel et al., 2020b) and verified by a human
[boulder (CNN verified)], the number of boulders found by an
HA [boulder (HA)], and ratio of boulders found by the CNN to
the number of boulders found by the HA (CNN/HA). Figure 4
summarizes the main results and shows the location of each
investigated crater together with the relative number of boulders
found by the CNN and HA as a pie chart (yellow denotes the
fraction identified by the HA and red is the fraction as seen by
the CNN approach). Craters marked as black areas are craters
where no boulders with tracks were identified by both approaches.
Craters marked as red are craters where only the CNN approach
identified rolling boulders but none were found by the HA. We
discuss this particular case in detail below. In total, we have identified
13,686 boulders with tracks in the HA search when compared
to 1,806 boulders (we counted all boulders found by the CNN
not distinguishing between true positives or false positives) found
by the CNN. With approximately 15%, it becomes clear that the
HA approach beats the CNN-driven workflow hands down. By
inspecting inserts Figure 1E and Figure 1F in Figure 1, one notices
that a given track pattern in an image can be very complex due to
multiple crossings of tracks. Given the fact that the images have their
intrinsic limited resolution, an HA-based and AI-based analysis
could both have a problem associating individual tracks to the
rolling boulders that had produced them.Thismay lead to a situation
where two different HAs locate boulders at different positions. The
exact reproducibility of results found by an applied AI algorithm is
an advantage here as compared to an HA. We also have to point out
that we found numerous cases where the boulder positions given
in pixel coordinates in the boulder database did not fit inside the
selenographic boundary of the associated image coordinates. We
assume that such listings originated during the compilation of data
for the archive. Furthermore, we note that the number of boulders
in craters that have a radius smaller than 5 km can be rather small.
The important point we make is that there are systematic effects at
work that lead to the difference in the observed results delivered

by the HA and AI and resulted in the underperformance of the AI
workflow.We are detailing our reasoning for this underperformance
in the following paragraph.

6 Understanding the
underperformance of the CNN
approach

Our analysis makes it clear that the CNN’s performance in
the earlier study cannot compete with human-based analysis. It
is now of crucial importance to gain an understanding of where
potential differences in the ability to recognize boulders with tracks
between the AI-identified results and human-based investigation
could originate from. To investigate this question, we looked at two
aspects: first, has the CNN workflow really received the required
information from the images to identify boulders, and second, given
that this information was indeed available to the AI workflow,
what led to a misidentification of a particular boulder? Sufficient
image resolution, good signal-to-noise ratio, phase angle selection,
and image exposure time are obviously not sufficient criteria to
guarantee that AI is in a position to find all the boulders with
tracks in an image. The areas in a given crater are often shaded
to a certain extent, and therefore no information can be extracted
from these regions (we exemplify this point in the supplement
with Supplementary Figure S2). To find out whether such a partial
shading effect is randomly distributed or not, we grouped all boulder
entries in the database according to the image ID on which these
were found. Each identified boulder was then associated with the
available metadata of the image on which the boulder was detected,
thereby allowing one to check under which observational conditions
the boulders were identified by the CNN. By visualizing the image
boundaries of the 57,876 NAC images on a map, areas where no
boulders were identified by the CNN show up as white space.
Figure 5 shows the coverage of the lunar surface by the NAC frame
boundaries compiled in the boulder database.

Visible in this figure are two kinds of white spaces: the white
cross separating the four map quadrants resulted obviously from the
way the individual images were fed into the CNN. This feature is
an artifact resulting from an imperfect workflow. The other areas on
the map that are white denote places where the CNN did not find
any boulders. One has to keep in mind that a white region on the
map does not necessarily indicate that this particular lunar area was
not covered by an image or no boulder identification took place.
The reason for this is as follows. An identified boulder was stored
only once in the database even when the CNN may have recognized
it on more than one image (each with their different associated
image boundaries). Regions may show up on the map as white areas
because the boulder associated with this particular area was already
found on another image. In the case where the image boundaries
that contain the boulder are overlapping, only one image name was
stored in the database. Despite the fact that we cannot retrieve the
missing image name from the database, we will show below how we
can still make a statement on whether the CNN was missing image
information in a given region of a crater area.

To understand whether the boulder-free areas are intrinsically
free of boulders or whether the areas are free of boulders because
of observational and/or AI-related issues, we investigated all 181
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FIGURE 4
Same map as shown in Figure 1A but now crater locations are replaced with a pie chart showing the fraction of boulders found by an HA (yellow)
compared to boulders found by the CNN (red) at each investigated crater location (the detailed values for each crater are given in
Supplementary Table S1).

FIGURE 5
Distribution of NAC frames which contains at least one CNN-identified boulder.

craters in terms of resolution and phase angle. Figure 6 displays the
crater area of La Condamine B with the boundaries of the images
that are found in the database catalog and cover this particular crater
area. The number of times a surface area is covered by an image is
color-coded. This type of target area image coverage analysis allows
one to recognize whether a particular crater area is covered multiple
times in the image selection process or not.

Superimposed on this image are the locations where rolling
boulders were identified by the HA (black points) and CNN
workflow (red points). One can clearly notice that there are areas
that were not covered by an image and that in these areas, the HA
could identify plenty of boulders.

As this was a repeating pattern that we could observe in all
investigated craters, one can assume that the CNN either did not

process the adjacent images or certain parts of these images did not
contain sufficient information, potentially due to insufficient image
resolution or unsatisfactory surface illumination which may have
caused a substantial shadowing. To investigate the issue of a possible
shading of parts of the crater area, a measure for the shadowing
effect must be defined. We have found that in the 8-bit NAC images,
pixel values smaller than 20 are too dark for the human annotator
to extract information on the location of the boulders. We have
therefore computed the fraction of all pixel values smaller than 20
to the sum of all pixels in an individual image frame, so that a
completely dark image frame would have a value of 1. In Figure 7,
we display the center location (latitude/longitude coordinate) of all
the individual NAC images stored in our boulder catalog which have
a shading factor greater than 25% as circles. The radius of the circles
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FIGURE 6
Image coverage analysis of crater La Condamine B.

FIGURE 7
Location of NAC frames in the boulder database which shows substantial shading. Shown for each image frame is the unitless ratio of pixel values
smaller than 20 to the sum of all pixel values in a frame. The ratio is displayed at the selenographic coordinate center of each frame.

scales with the fraction of the image which is too dark to be used
for the detection of the boulders. The non-homogenous distribution
of the frames that have dark areas as shown in the figure clearly
demonstrates that a shading analysis must be implemented for the
selection of images that are fed into theCNN.Aphase angle selection
criterion alone is not sufficient to guarantee a non-biased global
boulder map.

We now turn to the question of what causes themisidentification
of boulders. Once we identified the boulders that were misidentified
using the above-described method (Section 4.3), we were interested
in understanding the cause of the misclassifications that we found.

Therefore, various groupings were formedwith the goal of collecting
similar surface features in the images around a misidentified
boulder which could be responsible for a false classification by the
CNN. Based on our inspection, we could form six categories of
misclassified boulders. The groups are named as follows:

• “Shadows as a track”
• “Morphological structures as track”
• “Rock next to or on a track”
• “Smaller craters as track”
• “Beginning of the track”

Frontiers in Astronomy and Space Sciences 10 frontiersin.org

https://doi.org/10.3389/fspas.2023.1176325
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Mall et al. 10.3389/fspas.2023.1176325

• “Unknown error source”

As the names imply, each group has its own characteristics.
However, the boulder area around a misclassified boulder can show
the characteristic features of more than one group. In this case,
it is not obvious which of the features was responsible for the
classification.

In the following, we present from each group, a representative
image to illustrate the image categories which the CNN repeatedly
misclassified. The most general source for a misclassification which
can occur in all categories is the situation where a crater is being
interpreted as a boulder. All figures contain projected NAC images
and selected zoomed areas of interest. On the LRO QuickMap
website, these areas can be displayed in equidistant, orthographic
projection or on the lunar globe.

The group “shadow as a track” consists of cases when a boulder
track is mimicked by the end of the shadow which a crater or rock
casts. The example is taken from the NAC image M1254331878R
shown in Figure 8A. Figure 8B shows such an example of a false
positively classified CNN boulder with a track event. In the image
frame (shown in Figure 8B), it is not clear whether we are dealing
with a crater and rille-like structure adjacent to a small crater or a
boulder with an excavated track part. Knowledge of the illumination
direction of the scene would allow one to distinguish between these
two cases as the surface topography would dictate the observed
sequence of shadows cast in the scene. Larger sections of the
image at the identified boulder location (Figure 8C) with multiple
small craters instantly give it away from the direction that the Sun
illuminates the surface (marked with arrows in Figure 8C). Based
on the direction of the Sun’s light, an illuminated boulder or rock
should therefore show first a brighter and then a darker area. The
light and dark areas of a boulder should be in the reverse order when

compared to the track. As shown in Figure 8B, the round object and
misidentified track follow the same scheme, so that a boulder/rock
and track can be excluded.We note that in this category, the shadows
can have various origins.

In the category “morphological structures as tracks,”
geomorphological structures are recognized as tracks. In this group,
a boulder or crater sits at the end of a misidentified track.

Figure 8A shows the NAC image M1254803528L from which
this example is taken. The CNN image of the classified boulder is
shown in Figure 9D. Two dark lines can be seen which run parallel
to each other (marked by blue arrows in the image).

At the end of the lines, a rock is clearly visible (black arrow). It
is difficult for the observer to recognize whether the lines are a track
or not. By looking at a larger section of the image Figure 9C, one can
recognize that the two lines are part of a crater wall. The example
shouldmake it clear how important the choice of an appropriatemap
projection can be. Using non-conformal map projections can lead
to non-circular shapes of craters and unnatural shapes of boulders.
Depending on the latitude of the object under consideration, either
the AI or HA can be deceived by interpreting strongly distorted
crater walls as rille-like structures or boulders as craters. In the lower
part of the image, the edge of the crater can be seen (marked by
green arrows). The cliff, which has been identified as a track, is
perpendicular to the fall direction/center of the crater.Therefore, the
two dark parallel running lines can be ruled out as a boulder track.
Othermorphological structures that lead tomisidentification in this
category are landslides or cracks on the crater wall.

The next category “rock next to or on a track” pools events in
which a rock is next to or on a real track. In a few cases, there is also a
crater next to the track, which has been falsely identified as a boulder.
In Figure 10B, one can see a track produced by a bouncing boulder.
Inside and outside the track, several boulders are visible. As we have

FIGURE 8
Example of a false positive event from the CNN classification from the “shadows as a track” group. (A) Projected NAC image M1254331878R. (C)
Enlarged area marked in (A) with a box. (B) CNN image of an identified boulder with tracks.
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FIGURE 9
Example of misidentification from the group “morphological structures as traces.” (D) shows a boulder with a cliff at its end, causing two dark lines with
constant distance. (B, C) show larger sections of the image (A). The edge of the crater is visible at the lower end (C). The misidentified track is
perpendicular to the fall direction/center of the crater.

no information on the rocks that have been identified as boulders by
the CNN, the image represents both cases (rock is next to or on a real
track) of misidentifications that occur in this category. In both cases,
the boulder track is real and has been correctly identified, but the
associated boulder is probably incorrectly assigned. The two larger
boulders in Figure 10B (blue arrows) are next to the track and can
therefore be excluded as the associated boulder. The rock inside the
track (red arrow) is too small to create a large track. In addition,
the track continues to the left and right of the rock. For this reason,
the rock can be excluded as an associated boulder. There are three
plausible explanations for why the rock lies on the track. First, an
older boulder was rolled over by the larger boulder, thereby erasing
the track of the smaller boulder. Second, it is a fragment of the larger
boulder that rolled down the hillside, or third, the boulder rolled
into the bigger track that was already there. Other possibilities can,
of course, also not be ruled out, as the track could have already
been made unrecognizable by erosion. Due to the smaller size

of the track, this would take less time than it does for the large
track. However, all three presented explanations have in common
that the large track does not match the smaller rock and therefore
the rock was definitively incorrectly identified by the neural
network.

In the category “smaller craters as track,” rocks or larger craters
are surrounded by smaller craters that more or less form a straight
line. In Figures 11A, B, a larger crater is seen (red arrow), which
has been identified as a boulder. Southeast of the larger crater,
several smaller craters are visible (blue arrows), which form a
straight line. The smaller craters were incorrectly identified as a
track. Presumably, the smaller craters were interpreted as a track
from a bouncing boulder. In the larger image section, it becomes
more obvious that the misidentified track consists of smaller craters.
There is no sign of a track or boulder in the image.

“Beginning of track” is a category where the beginning of a track
has been identified as its end. As can be seen in Figure 12B (insert
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FIGURE 10
Example of misidentification from the category “boulders next to or on a track.” (A) NAC image M140201925L. (B) Rocks that are inside and outside a
track. None of the rocks belong to the track.

FIGURE 11
Example of misidentification from the “smaller craters than trace” category. (A) NAC M1251463987L. (B) Several smaller craters forming a straight line.
At its end is a larger crater. The smaller craters were misidentified as a track and the larger crater as a boulder. On a larger section of the image, there is
no sign of a track or boulder.

with blue arrow), there is a darker area (blue arrow) at the end of the
track. This area was incorrectly identified as a boulder. In a larger
image section, one can notice that this is the beginning and not the
end of the track. The potentially associated boulders of the track are
marked with red arrows. In many cases in this category, the boulder,
and thus the beginning of the track, comes from a cliff or a cluster of

rocks. Both ends of the track could be recognized as boulders by the
AI, which does not seem to recognize whether the track or boulder
rolled in the direction of the slope and thus into the center of the
crater.

The “unknown error source” category contains by far the
highest number of events that were falsely classified by the CNN.
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FIGURE 12
Example of a false identification from the “beginning of a track” group. (A) NAC image M170368202R. (B) Enlargement of the image area marked with a
black box that is shown in (A) and several inserts that subsequently enlarge the corresponding black boxes displayed in the image. The CNN-identified
structure (marked with a blue arrow in the highest magnified image) was incorrectly identified as a boulder by the artificial intelligence. At an extended
image section, one can see the corresponding boulder of the track (red arrows).

FIGURE 13
Examples of misidentification from the “unknown error source” category. In all figures (A–C), it is not obvious what the AI has identified as a boulder or
track. For this reason, an accurate classification into a category is not possible.

It is difficult for the observer to classify these images into the
previously mentioned categories. In most cases, it is not obvious
which object the artificial intelligence has identified as a boulder
and which as a track. For example, Figure 13A shows a rock cluster
consisting of many small boulders (recognizable as white dots).
Which rock the artificial intelligence has identified as a boulder
is not comprehensible. A track is also not visible. In Figure 13B,
many smaller tracks can bemisinterpreted due to themorphological
structure and shadows. However, a crater or rock is missing as
a possible recognized boulder. In Figure 13C, there are many

craters that could be recognized as a boulder. However, neither
prominent morphological structures nor smaller craters that could
be recognized as a track are visible.

7 Summary and discussion

As the use of information from AI-driven approaches in
geomorphology is quickly spreading and the quality of this
information becomes more difficult to check, the main performance
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indicators for a CNN, the accuracy of AI-driven approaches, have
to be carefully assessed before their usage. The achieved accuracy
not only relies on the architecture of the network itself but also on
factors like the data chosen for training, the training process, and
the verification process. Networks themselves can be scaled up in
different ways to achieve better accuracies. The accuracy of a CNN
is usually evaluated by using an operational data set (unlabeled
real-world data), from which a subset is selected, manually labeled,
and used as the test set. This subset should faithfully represent the
operational context, with the resulting test suite containing roughly
the same proportion of examples causing misclassifications as the
operational data set. If beyond the distribution of training samples
(InD data), OOD data exist, which may not belong to any of the
classes that the model is trained on, one can expect a significant
impact on the classification accuracy. An essential question is
therefore whether in the training phase, the selection of the training
samples leads to a bias which ultimately makes the statistical data
practically unsuitable for answering the specific question under
investigation. Moreover, in geomorphological studies that use
remote sensing data to find the features of OOD, it may already
be impossible as the resolution is very often too low to clearly define
such data groups.

In this work, we compared the quality of the results produced
by an AI and HA approach to identify specific surface features in
a geomorphological study using the same high-resolution data set
(LROC NAC images). The CNN identified 136,610 lunar boulders
associated with tracks in an archive of more than 2 million high-
resolution images to produce the first global map of 136,610 lunar
rockfall events.

To accomplish the goal of comparing the quality of the
identification capability of identifying boulders with tracks on the
lunar surface by the given AI approach and HA approach, 181
lunar craters of variable sizes from the same latitude/longitude
range as the AI-driven study covered have been selected. For
the HA-identification approach, crater mosaics using the same
image pool, which was fed into the AI-driven data pipeline,
were used. In this process, multi-layer NAC image mosaics were
produced using the same location information that was available
to the AI workflow. The search for boulders with tracks was
done on these multi-layer NAC image mosaics and on the LRO
NAC QUICKMAP website. The number of boulders identified
with tracks found by the HA was compared with the number of
craters identified by the AI-driven approach for all 181 craters and
then tabulated. In an attempt to understand the misidentifications
of the AI-driven approach, the locations of the AI-identified
boulders on the recorded images were identified and visualized.
By visual inspection of the misidentified boulders, groups were
formed which shared common features to identify what caused
the misidentifications. The investigation revealed an extreme
discrepancy between the number of boulders identifiedwith the help
of the CNN and that found by the HA which can surpass a factor of
100.

In an attempt to understand the underperformance of the
CNN, individual misclassifications by the CNN were identified and
grouped with the goal of collecting similar surface features in the
images around a misidentified boulder. The analysis showed that
the misidentifications in the groups were mainly caused by the fact

that the CNN classified shadows, morphological structures, rocks,
or smaller craters as tracks.

8 Conclusion

CNNs are able to identify boulders with tracks. Neural
networks, which have become widely available through various
program libraries, are well suited to investigate the distribution
of these boulders on planetary surfaces. However, for quantitative
statistically relevant results, out-of-the box CNNs which use a brute
force approach to feed images into an identification workflow are
not able to come close to the quality which a human analyst-based
approach can deliver. The fact that we found numerous examples
where the CNN identified no boulders with tracks in craters whereas
the human analyst found hundreds of them demonstrates this point
clearly. We also clearly show that a selection of input images based
on image resolution, phase angle, and image exposure time is not
sufficient to ensure that surfaces to be scanned for a specific feature
are statistically sufficiently sampled to produce a balanced input
data set. Topographic and illumination scene information should
be implemented in future AI mapping efforts of the kind that we
investigated. Our studies have also shown that a referencing of
boulders based on the four corners’ latitude/longitude coordinates
of an NAC image may lead to multiple counting of the same
boulders on different NAC images. To gain relevant statistical
information about a boulder population, individual geometric pixel
coordinates must be precisely known, which can only be ensured
by using the ISIS data pipeline. The resulting data sets have to be
scrutinized at least partially with conventional imaging methods to
ensure proper verification of the AI-based results. Our results also
indicate that training sets should be generated in a reproducible
process and require a sampling and data analysis plan with full
documentation. In particular, we recommend that researchers in
geophysical disciplines collaborate closely with their colleagues in
the AI field who develop these tools. In view of the findings of this
research, we reconsider the question of whether lunar mass wasting
is primarily driven by impact and whether impact-induced fracture
networks are to be again an open question.
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