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This study examines the thermodynamics of charged anti-de Sitter (AdS)
black holes (BHs) with nonlinear electrodynamics (NED) using quasinormal
modes (QNMs) and thermal fluctuations. For this purpose, we calculate the
Hawking temperature and discuss the stable configuration of the considered
black hole using heat capacity. First, we study the interesting aspects of
the emission of energy. Then, we explore the effects of thermal corrections
on thermodynamic quantities and their corrected energies. We study the
phase transitions of the system in the background of thermal fluctuations.
It is concluded that the presence of a coupling constant enhances the
thermodynamically stable configuration of uncharged and charged AdS BH
geometries. We highlight that our results are in good agreement with the
thermodynamics of the previous black hole solutions and assumptions presented
in the literature.
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1 Introduction

Black holes (BHs) are considered one of the most distinctive attributes of strong
gravitational fields in the present arena of research. Classically, nothing can get away (either
particles or radiations) from the event horizon of a BH due to strong gravitational influence.
However, it swallows everything found in the surroundings. These thermodynamic entities
not only characterize some remarkable classical insights but also come up with a better
perception of their quantum gravitational features. The well-known BH configurations,
including Schwarzschild, Reissner–Nordstrom (RN) ö, Kerr, and Kerr–Newman, have
curvature singularity beyond their event horizons. The quantum mechanical consequences
endorse the ejection of thermal radiations from BHs, known as Hawking radiations
(Hawking, 1975). These radiations cause a gradual drop in the mass of BH, thus leading
to its evaporation, but tend to increase its temperature radically. Hence, thermal radiations
play an astonishing role in the thermodynamic aspects of smaller BHs due to a significant
increase in temperature. The discovery of Hawking radiation reveals that BHs have a
temperature. The entropy and the temperature of BHs indicate that the rules of BH and
classical thermodynamics are connected. Specifically, temperature and surface gravity are
interrelated, while energy is connected to the BH mass. Entropy is crucial for analyzing
the thermal properties of a thermodynamic system and is connected to the field of
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BH’s event horizon (Bekenstein, 1973). This similarity argues that,
for the second law of thermodynamics to not be violated, the BH
entropymust be higher than that of some other object with a volume
similar to that of BH. Thus, it is not possible to attain thermal
equilibrium between BH and thermal radiations, illustrating the
requirement for logarithmic corrections derived from the thermal
fluctuations in the entropy area relation provided by Bekenstein
(More, 2005).

One of the primary issues with the classical Maxwell theory is
the appearance of an infinite self-energy for a point-like charge at
the charge position. In quantum electrodynamics, this divergence
can be eliminated, but it still presents a challenge in classical
electrodynamics. To resolve this issue, Born and Infeld developed
a novel Lagrangian (Born and Infeld, 1934). Other nonlinear
electrodynamic fields, such as the logarithmic, exponential, and
power law Maxwell fields, have drawn greater attention than
Born–Infeld nonlinear electrodynamics (NED) (Hendi et al., 2015;
Dehghani, 2016; Dayyani et al., 2017; Dehghani and Hamidi,
2017). These theories, which can be reduced to linear Maxwell
theory, are more complex than linear electrodynamics. In the
existence of nonlinear electrodynamic impacts, Balart and Vagenas
(2014) gave the exact solutions of a variety of regularly charged
BHs and showed that the behavior of some BHs coincides
asymptotically with that of RN BH. Studying the thermal properties
of four regular BHs, Tharanath et al. (2015) discovered a second-
order phase transition. Inferring the leading-order corrections to
thermodynamic quantities of RN, Kerr, and charged anti-de-sitter
(AdS) BHs, Faizal and Khalil (2015) concluded that these BHs
produce remanence in all three cases. In an attempt to better
understand the local thermal stability and logarithmic entropy
adjustments of charged accelerating BHs, Pradhan (2019) detected
second-order phase transitions in these BHs. According to the
investigation of Sharif and Akhtar (2020)into the impact of thermal
fluctuations on the thermodynamics of charged BHs with Weyl
corrections, tiny BHs are unstable when logarithmic corrections
are included. The stability and thermodynamics of asymptotically
flat RN BH were examined by Sinha (2021). Additionally, he noted
that BH displays a phase transition that is distinct from that of the
Schwarzschild BH. Javed et al. (2023) studied thin-shell wormholes
and gravastars in the background of different BH geometries.

The impact of logarithmic corrections on the thermodynamic
variables such as heat capacity, Hawking temperature, and entropy
of the modified Hayward BH was discussed by Pourhassan et al.
(2016). In the presence of the cosmological constant, Jawad and
Shahzad (2017) examined thermodynamic stability and the impact
of thermal fluctuations on the non-minimal regular BHs. They
concluded that normal BHs exhibit stable behavior for increasing
cosmological constant values.The thermodynamic characteristics of
the Hayward and the asymptotically AdS BHs under equilibrium
conditions were investigated by Haldar and Biswas (2018) to an
impact of thermal disturbances. Saleh et al. (2018) observed that
the presence of the magnetic charge and quintessence produces
the phase transition in regular BH after analyzing the behavior
of thermal quantities such as heat capacity and temperature
of Bardeen BH surrounded by quintessence. Javed et al. (2018)
studied the thermodynamic characteristics and phase transition
of regular charged BHs. They discovered that for charged BH
with exponential distribution of variables, the phase transition

curves diverge around critical points. Sharif and Nawaz (2020)
explored the thermodynamic features of rotating regular BHs
and their AdS versions and concluded that considered BHs are
thermodynamically more stable and less hot than ordinary Kerr
and Kerr-AdS BHs. Sharif and Ama-Tul-Mughani (2021) discussed
the phase transition of the Kerr-Sen-AdS BH and concluded that
BH attains the same phase transition as that of liquid–gas van
der Waals fluid. They also analyzed how thermal fluctuations
impact the stability of the considered BH. Sharif and Khan (2022a)
studied how thermodynamic properties, thermal stability, and
logarithmic correction impact on thermodynamic quantities and
phase transitions of regular de Sitter BH. They demonstrated that
the phase of Hawking’s temperature varies from positive to negative,
whereas the phase of heat capacity varies from negative to positive
for greater values of the de Sitter parameter.

The generalization of thermodynamic analogy between the
van der Waals system and AdS BH is the Joule–Thomson
expansion process. According to classical thermodynamics, the
Joule–Thomson expansion describes how a fluidmoves from an area
with high pressure into a low-pressure area through a porous plug
while maintaining a constant enthalpy. Ökcü and Aydýner (2017)
examined the charged RN AdS BH’s Joule–Thomson expansion in
the extended phase space.They discovered the inversion/isenthalpic
curves and the cheating/cooling regions. This groundbreaking
research has since been applied to a variety of different BHs,
including the quintessence-charged AdS BH (Ghaffarnejad et al.,
2018), the Kerr-AdS BH (Ökcü and Aydýner, 2018), the d-
dimensional charged AdS BH (Mo et al., 2018), the holographic
superfluid (D’Almeida and Yogendran, 2018), the charged AdS BH
in f(R) gravity (Chabab et al., 2018), the charged AdS BH with
a global monopole (Rizwan et al., 2018), the charged AdS BH in
Lovelock gravity (Mo and Li, 2018), and the charged Gauss–Bonnet
BH (Lan, 2018). Pacilio and Brito (2018) examined the QNMs
of weakly charged Einstein–Maxwell dilaton BHs and found that
gravitational modes are only weakly affected by coupling with the
dilaton. The QNMs and quantization were studied for the analytical
solutions in a cosmic string Born–Infeld dilaton BH geometry in
Sakalli et al. (2018). Greybody factors of modified BH geometry
in the background of NEDs were studied in Kanzi et al. (2020).
QNMs, photon spheres, and shadows of regular BH with string
cloud parameters were discussed in Singh et al. (2022). Nomura
and Yoshida (2022) investigated the QNMs of charged BHs with
corrections from NEDs and found that the isospectrality of QNMs
under parity is generally violated due to NEDs.

Thermal stability with emission energy and Joule–Thomson
expansion of regular BTZ-like BH are studied in Ditta et al. (2022)
and tunneling analysis of null aether BH in Ali et al. (2022).
The thermodynamics of accelerating BHs in ADS spacetime
were discussed in Anabalon et al. (2018). The effects of NED on
the BH shadow, deflection angle, quasinormal modes (QNMs),
and graybody factors are calculated in Kuang et al. (2018) and
Okyay and Övgün (2022). QNMs are observed for hairy BHs in
(Yang et al., 2022a), QNMs of f(Q) BH are examined in Gogoi et al.
(2023), and Kerr-like black bounce spacetime is calculated in
Yang et al., (2022b); Övgün et al., (2021). The deflection angle
of the photon, QNMs, the greybody factor, and shadows were
discussed in Övgün (2018), Övgün and Jusufi (2018), Javed et al.
(2019), and Pantig et al. (2022). Guo et al. (2020) examined
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the Joule–Thomson expansion for the regular AdS BH and
determined the inversion temperature for Bardeen-AdS BH in the
extended phase space. They analyzed the inversion and isenthalpic
curves for the BH under consideration and found that their
intersection points are the inversion points discriminating the
cooling from the heating process. Gracia et al. (2021) studied this
expansion for uncharged noncommutative BHs characterized by
a parameter (present in the horizon function) and found that the
uncharged BH in a noncommutative scenario acts as a charged
commutative BH.

In this study, we explore the thermodynamic features and
QNMs of charged ADS BH with NED. This study is devoted
to exploring the effects of NED on thermodynamic quantities of
charged ADS BH geometry. It is outlined as follows: Section 2
presents the charged ADS BH structure with NED and discusses
the thermodynamic quantities and thermal stability through heat
capacity, Section 3 discusses the rate of emission energy of the
considered BH geometry, and Section 4 explains the relationship
between theQNMs andDavies’s point.The consequences of thermal
fluctuations on uncorrected thermodynamic physical quantities
are examined in Section 5. In the last section, we present some
concluding remarks.

2 Thermodynamics of charged ADS
black hole with nonlinear
electrodynamics

The following action is described as the minimal interaction
between NED and gravity (Yu and Gao, 2020):

S = ∫[Y [ψ] +R]
√−g
16π

d4x, (1)

where

Fγβ = ∇γAβ −∇βAγ, ψ = FγβF
γβ, γ,β = 0,1,2,3,

where R is the Ricci scalar, Aγ denotes the Maxwell field, and
Y[ψ] is a function of ψ. By varying the aforementioned action, the
corresponding field equations result in Yu and Gao (2020):

Gγβ =
1
2
gγβY [ψ] − 2Y [ψ] ,ψFγμF

μ
β, (2)

where Y[ψ],ψ =
dY[ψ]
dψ

.The associated generalized Maxwell equations
are provided as

∇γ [Y [ψ] ,ψFγβ] = 0. (3)

The parameterizations of the spherically symmetric static
spacetime are

ds2 = −B (r)dt2 +B−1 (r)dr2 + r2dθ2 + r2 sin2 θdϕ2. (4)

Here, themetric function is denoted asB(r).The respective non-zero
component of the Maxwell field tensor is A0 = ϕ(r) and ψ = −2ϕ′2.

Now, we consider a specific expression of Y[ψ] = −2√2β√−ψ+
ψ+ 2Λ, where the coupling constant is denoted as β and the
corresponding solution of field equations is (Yu and Gao, 2020)

ϕ (r) = −q/r− rβ, (5)

B (r) = −2M
r
+ 2βQ+ Q

2

r2
−
β2r2

3
+ 1− 1

3
Λr2, (6)

where Λ, Q, and m are the cosmological constant, charge, and
mass of BH geometry, respectively. Here, we consider the following
choices of physical parametersQ and β, and the respectivemanifolds
become as follows:

• If β = 0 = Q, then Schwarzschild-ADS BH is recovered.
• If β = 0 and Q ≠ 0, then RN-ADS BH is recovered.
• If β ≠ 0 andQ ≠ 0, then it shows the chargedADSBHwithNED
(D’Ambrosio et al., 2022).

It is interesting to mention that the BH event horizon is located
at a radial position for which the metric function becomes 0. In
Figures 1–3, we discuss the behavior of the metric function for
suitable values of physical parameters. It is noted that the position
of the event horizon (dashed line B(r) = 0) in between the shaded
regions depends on β, M, and Q. It is interesting to mention that
BH event horizon shows symmetric behavior for different values
of coupling constant. (Figure 1). The position of the event horizon
becomes larger as the coupling constant approaches 0 (β⇒ 0). As
the charge of the BH geometry increases, the range of coupling
parameters of the event horizon also enhances. Conversely, there
is a small possibility of an event horizon of charged BH with
NED for only 0 < Q < 0.2 at β = 0.4, whereas for higher values of
β, the ranges of charge the existence of event horizon increase
(Figure 2). The possible existence of an event horizon depends on
the charge and the coupling constant. The inner and outer horizons
of charged ADS BHwith NED depend on the cosmological constant
(Figure 3).

Here, we are interested in evaluating the Hawking temperature
heat capacity of the considered BH spacetime. Such thermodynamic
entities play a crucial role in exploring the thermodynamically stable
characteristics of BH.The respectivemass of BH in terms of the event
horizon is given as

M =
3Q2 + 6βQr2h + r

4
h (−(β

2 +Λ)) + 3r2h
6rh

, (7)

The surface gravity (κ = 1
2
dB(rh)
drh
) of BH has the following form:

κ = M
r2h
− Q

2

r3h
−
β2rh
3
−
Λrh
3
.

Consequently, we get the Hawking temperature (𝕋 = κ
2π
) as

(Hawking, 1975)

𝕋 = M
2πr2h
− Q2

2πr3h
−
β2rh
6π
−
Λrh
6π
. (8)

Figure 4 analyzes the behavior of the Hawking temperature in
terms of the entropy of BH geometry. The left plot shows that
the temperature of the system greatly depends on the mass of the
geometry. It is noted that temperature increases initially and then
decreases as the entropy of the system increases. In the background
of the cosmological constant, the Hawking temperature enhances
compared to the charged BH with NED in Figure 5.
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FIGURE 1
Region plots of the metric function charged with NED versus r and Q for different values of β [β= 0.4 (A), β= 0.8 (B), β= 1.5 (C)] with M = 0.2,Λ = 0. The
central black dashed line (B(r) = 0) between light gray ((B(r) < 0)) and light blue regions ((B(r) > 0)) represents the position of an event horizon.

FIGURE 2
Region plots of the metric function charged with NED versus r and β for different values of charge [Q = 0.1 (A), Q = 0.3 (B), Q = 0.6 (C)] with
M = 0.2,Λ = 0.

FIGURE 3
Region plots of the metric function of charged ADS with NED BH versus r and β for different values of charge [Q = 0.1 (A), Q = 0.3 (B), Q = 0.6 (C)] with
M = 0.2,Λ = −1.
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FIGURE 4
Plots of Hawking temperature of charged BH with NED BH versus entropy of the BH with different values of Q with β= 0.5 (A) and βwith Q = 0.2 (B)
with M = 0.2,Λ = 0.

FIGURE 5
Plots of Hawking temperature of charged ADS BH with NED BH versus entropy of the BH with different values of Q with β= 0.5 (A) and βwith Q = 0.2
(B) with M = 0.2,Λ = −1.

By considering the Bekenstein area entropy relationship, the
entropy of the system is given as (Das et al., 2002)

S = ∫
2π

0
∫
π

0
√gθθgϕϕdθdϕ = πr

2
h. (9)

The heat capacity (𝕋 ∂S
∂𝕋
) of the system has the following form

(Das et al., 2002; Sharif and Khan, 2022b):

ℂ =
2πr2h (−3Mrh + 3Q2 + r4h (β

2 +Λ))

6Mrh − 9Q2 + r4h (β
2 +Λ)

. (10)

The divergence point of the heat capacity is referred to as
Davies’s point, which plays an important role in discussing the
thermodynamic stability of the BH structure. Davies’s point is also
known as the phase change point from negative to positive or
positive to negative. It is noted that the positive region before the
Davies point shows a stable region, and the negative region after the
Davies point represents an unstable region (Das et al., 2002; Sharif
and Khan, 2022b). Hence, the radial position of BH at which it

changes the phase is given where rDP is represented by the position
of Davies point.

Figure 6 is used to discuss stable and unstable configurations
using theDavies point of heat capacity of BH. In the absence of β and
Q (as Schwarzschild-ADS BH), the BH structure shows an unstable
configuration, while for non-zero values of β and Q, the system
shows a stable configuration for smaller BHs. It is also noted that
the stable configuration is increased for higher values of β. Hence,
the presence of NED-charged BH shows a stable configuration
for smaller ADS BHs, while larger ADS BH shows unstable
behavior.

3 Emission energy

The formation and destruction of an excessive number of
particles very close to the horizon are known as emission energy,
and quantum fluctuations in the interior of BHs are the source
of this energy. The main reason for the BH evaporation within a
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FIGURE 6
Plot of heat capacity versus BH horizon radius with M = 0.2,Λ = −1.

certain period is due to the positive-energy particles that tunnel
out of the BH in the core area where Hawking radiation occurs.
Here, we are interested in exploring the energy emission rate
associated with the considered BH geometry with NED. At very
high energy, the absorption cross-section often oscillates around a
limiting constant value σlim.The limiting value of σlim is related to the
radius of the event horizon (Wei and Liu, 2013; Papnoi et al., 2014;
Eslam Panah et al., 2020):

σlim ≈ πr
2
h. (11)

The respective expression of the rate of BH energy emission becomes
(Wei and Liu, 2013; Papnoi et al., 2014; Eslam Panah et al., 2020)

d2ε
dωdt
=

2π2σlim
exp

ω
𝕋 − 1

ω3, (12)

and by considering the Hawking temperature 𝕋 of the considered
BH, we get

d2 ε
dωdt
=

2π3r2hω
3

exp(− 6πr3hω
−3Mrh+3Q2+r4h(β

2+Λ)
)− 1
. (13)

Figure 7 shows the behavior of the rate of emission
energy along the frequency with suitable values of physical
parameters. It is found that the energy rate increases as
frequency gradually increases initially, approaches its peak
value, and then decreases. It is concluded that the rate of
emission energy decreases for higher values of charge and NED
parameter.

4 Null geodesics and quasinormal
modes

Here, we are interested in calculating the null geodesics and
radius of the photon sphere of charged ADS BH with NEW. Then,
we determine the photon angular velocity and Lyapunov exponent
using photon radius.

4.1 Null geodesics

The Lagrangian at the equatorial plane (θ = 0, π
2
) has the

following form (Cardoso et al., 2009; Sharif and Khan, 2022b):

2L = B (r) ̇t2 −B(r)−1 ̇r2 − r2ϕ̇2, (14)

where ϕ is referred to as an angular coordinate. The generalized
momenta components (Pu = guvẋ

v = ∂L
∂ẋu
) become

Pϕ = −r2ϕ̇ ≡ −l = constant, Pt = B (r) ̇t = Ē = constant,
Pr = −B(r)−1 ̇r,

(15)

where Ē denotes the energy, and l is the angular momentum.
Consequently, t and ϕ-motions become

̇t = B(r)−1Ē, ϕ̇ = 1
r2
l.

Hence, the Hamiltonian becomes the photon:

2H = − ̇r2B (r)−1 +B (r) ̇t2 − r2ϕ̇2 = Ē ̇t− ̇r2B (r)−1 − lϕ̇ = 0, (16)

which yields

Veff = − ̇r2,

where the respective potential function yields

Veff =
B (r) l2 − Ē2r2

r2
. (17)

It is noted that positive values of ̇r2 indicate the negative behavior
of effective potential. This shows that the photon is unable to escape
from the large negative effective potential region.The photon will
drive out before falling inside the BH for large l and small r,
whereas the photon will fall inside the BH for large r and small l.
Conversely, the photon rotates around BH with zero radial velocity
(at a different region) at a distance equal to the radius of the
BH horizon (Cardoso et al., 2009; Sharif and Khan, 2022b). These
photon spheres are unstable circular orbits.
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FIGURE 7
Graphical analysis of the rate of emission energy versus frequency for uncharged ADS (A) and charged ADS BHs (B) with M = 0.2,Λ = −1.

The photon sphere for the four-dimensional spherically
symmetric geometry is determined using the following constraints:

Veff = 0,
∂Veff

∂r
= 0,

∂2Veff

∂r2
< 0. (18)

Now, we consider the second condition to calculate the photon
radius (rps) and the third constraint represents the unstable
configuration and association among QNMs of BH. By considering
Eq. 17 in the second condition, we get

B′ (rps) rps − 2B (rps) = 0. (19)

By using the metric function of BH, we get

3Mrps = 2Q
2 + 2βQr2ps + r

2
ps.

The respective radius of the photon sphere yields

rps =
3M−√9M2 − 8Q2 (2βQ+ 1)

4βQ+ 2
. (20)

We plot this function for suitable physical parameters, and
the root of this function represents the position photon radius, as
shown in Figure 8. This function also represents the stability of the
photon motion around the BH at the event horizon. It is interesting
to mention that the case of the Schwarzschild-ADS BH system
shows an unstable structure, and the position of photon radius is
decreased for higher values of β and Q. It is found that the system
shows a stable configuration for RN and charged ADS BH with
NED.

4.2 Quasinormal modes

The QNMs are determined through the property of the photon
sphere in the eikonal limit (l≫ 1) as follows (Das et al., 2002; Sharif
and Khan, 2022b):

wQ =Ωl− i|λ|(2n+ 1
2
), (21)

where n represents the number of overturns of the perturbations.
The Lyapunov exponent λ and angular velocity Ω are two major
physical quantities of the photon sphere. Both are associated with
QNMs as

Ω = ϕ̇1̇t
|
rps
=
√Bps

rps
, λ = √

−V′′eff
2 ̇t2
|

|rps

= √
(2Bps −B′′psr2ps)Bps

2r2ps
,

(22)

which yields

Ω = 1
rps
√−2M

rps
+ Q

2

r2ps
+ 2βQ−

β2r2ps
3
−
Λr2ps
3
+ 1,

and

λ = 1
√3r3ps
√ −(−2Q2 + 2βQr2ps + r

2
ps)(rps (6M + rps (r

2
ps (β

2 +Λ) − 3)) − 3Q2 − 6βQr2ps) .

Now,we explore the effects of physical parameters on the angular
velocity and Lyapunov exponent. For this purpose, we plot the
mathematical expressions of both angular velocity and Lyapunov
exponent versus rps as shown in Figure 9. Initially, both physical
quantities decrease for higher values of horizon radius.

5 Thermal fluctuations

Here, we discuss the effects of thermal fluctuation on the charged
ADS BH with NED. For this purpose, we find the mathematical
expression of the corrected entropy of the system using the partition
function defined as follows (Pourhassan et al., 2018; Pradhan, 2019;
Sharif and Khan, 2022b):

R (ξ) = ∫
∞

0
ρ (E)exp (−ξE)dE, (23)

where the density state is denoted with ρ(E) and the average
energy is E. The density state is evaluated using the inverseLaplace
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FIGURE 8
Plot of Veff to determine the position of photon sphere for M = 0.2. It is noted that the roots of Veff are denoted by the position of the photon’s spherical
radius.

FIGURE 9
Plots angular velocity and Lyapunov exponent versus rps for M = 0.2,Λ = −1.

transformation of the previously defined function given as

ρ (E) = 1
2iπ
∫
i∞+ξ0

−i∞+ξ0
exp (ξE)R (ξ)dξ

= 1
2iπ
∫
i∞+ξ0

−i∞+ξ0
exp( ̃S (ξ))dξ, (24)

where the exact corrected expression of entropy is ̃S(ξ) = βE+ lnZ(ξ)
with ξ > 0. By considering Taylor series expansion of ξ0, we get

̃S (ξ) = S+ 1
2
(ξ− ξ0)

2 ∂
2 ̃S (ξ)
∂ξ2
|
ξ=ξ0

+O(ξ− ξo)
2. (25)

The equilibrium entropy S satisfies the relations ∂S
∂ξ
= 0 and ∂2S

∂ξ2
> 0.

Using Eq. 25 in Eq. 24, we obtain

ρ (E) = 1
2πi

exp (S)∫dξexp(1
2
(ξ− ξ0)

2 ∂
2 ̃S (ξ)
∂ξ2
). (26)

Furthermore, it yields (Pourhassan et al., 2018; Pradhan, 2019;
Sharif and Khan, 2022b)

ρ (E) = 1
√2π

exp (S)((
∂2 ̃S (ξ)
∂ξ2
)|

ξ=ξ0

)
− 1

2

, (27)

which becomes

̃S = S− 1
2
ln(S𝕋2) +

η
S
. (28)

We may use a broader parameter χ without losing generality,
except for the factor 1

2
, which increases the influence of

correction terms on the entropy of BH. The corrected entropy
may be expressed in this context as follows (Sharif and Khan,
2022b):

̃S = S− γ ln(S𝕋2) +
η
S
. (29)

By considering alternative correction parameter values γ and η, we
obtain

• Uncorrected entropy (UCE)⇒ if η,γ→ 0.
• Simple logarithmic corrections (SLCs)⇒ if η→ 0,γ→ 1.
• Second-order correction terms (SOCs)⇒ if η→ 1,γ→ 0.
• Higher-order correction terms (HOCs)⇒ if η,γ→ 1.
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FIGURE 10
Plots of corrected entropy versus rh for different values of χ and η with M = 0.2,Λ = −1.

The respective expression of perturbed entropy is evaluated by
considering Eqs 8, 9 in Eq. 29 as

̃S = γ log (36π) − γ log(
(−3Mrh + 3Q2 + r4h (β

2 +Λ))2

r4h
)

+
η
πr2h
+ πr2h. (30)

Figure 10 shows the graph of corrected entropy through four
different cases as UCE, SLCs, SOCs, and HOCs for Schwarzschild-
ADS (first plot), RN-ADS (second plot), and charged ADS BH with
NED (third and fourth plots). It is noted that for all cases, system
entropy is monotonically increasing throughout the considered
domain for larger BHs. It is noted that the graph of usual entropy
is increasing smoothly (left plot blue curve), but the corrected
expression fluctuates for smaller BHs, increasing smoothly for larger
ones. Thus, these correction terms are more effective for small BHs.
The corrected entropy shows the larger behavior for the case of
HOCs.

Now, we consider the expression of corrected entropy to explore
the corrected energies of the considered BH solution. Under thermal
fluctuations, the modified first rule of BH thermodynamics may be
expressed as follows (Jawad and Shahzad, 2017; Sharif and Khan,
2022b):

dM = T d ̃S+VdP+ΦdQ+Ψdβ, (31)

where T denotes the corrected Hawking temperature. In this case,
Φ and Ψ are the new conjugate quantities and Q and β are new

thermodynamic variables. The relations can be used to derive these
potential functions:

T = (∂M
∂ ̃S
)
Q,P,β
, V = (∂M

∂P
)
𝕋,ℚ,β
, Φ = (∂M

∂Q
)
𝕋,P,β
,

Ψ = (∂M
∂β
)
𝕋,Q,P

which turns out to be

T =
πrh((Q− βr

2
h)

2
+Λr4h − r

2
h)(−3Mrh + 3Q

2 + r4h (β
2 +Λ))

4(η(−3Mrh + 3Q
2 + r4h (β

2 +Λ)) − π2r4h (−3Mrh + 3Q
2 + r4h (β

2 +Λ)) + πγr2h (3Mrh − 6Q
2 + 2r4h (β

2 +Λ)))
,

Φ = −
3√rh (6M+ rh (r

2
h (4β

2 +Λ) − 3))((Q− βr2h)
2
+Λr4h − r

2
h)

2r2h(−6βrh
√rh (6M+ rh (r

2
h (4β

2 +Λ) − 3)) + 3√3M+√3rh (2r
2
h (4β

2 +Λ) − 3))
,

Ψ = −
r√3r4h (rh (rh − 2M) + 4Q

2) −Λr8h((Q− βr
2
h)

2
+Λr4h − r

2
h)

6(−2Q√3r4h (rh (rh − 2M) + 4Q
2) −Λr8h + r

3
h (rh − 3M) + 8Q

2r2h)
,

V =
4πr3h
3
.

When the foregoing expressions are substituted in Eq. 31, the
modified first law of BH is verified, suggesting that the existence of
thermal fluctuations enhances the reliability of the first law of BH
thermodynamics.

5.1 Corrected energies of black hole

TheHelmholtz free energy can be determined in this context by
applying the following relation (Jawad and Shahzad, 2017; Sharif and
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Khan, 2022b):

̃F = −∫ ̃Sd𝕋, (32)

which yields

̃F = 1
6π2
(−

πγ
r3h
(−3Mrh + 3Q2 + r4h (β

2 +Λ))

× log(
(−3Mrh + 3Q2 + r4h (β

2 +Λ))2

r4h
)−

3ηM
2r4h

−
3πγM (1+ log (36) + log (π))

r2h
+ 6π2M log(rh) +

9ηQ2

5r5h

+
πγQ2 (4+ 3 log (36π))

r3h
+
9π2Q2 − η(β2 +Λ)

rh
+ 1
3
π2r3h

× (β2 +Λ) + πγrh (4+ log (36) + log (π)) (β2 +Λ)).

The identity that can be used to evaluate the internal energy of
the system under consideration is given as Ũ = ̃S𝕋+ ̃F (Pourhassan
and Upadhyay, 2021; Sharif and Khan, 2022b). Hence, we have

Ũ = 1
180π2r5h

(10π2r4h (9Mrh + 18Q
2 − 2r4h (β

2 +Λ))

− 3η(5rh (4r
3
h (β

2 +Λ) − 3M) + 12Q2) + 30πγr2h
× (−3Mrh + 4Q2 + 4r4h (β

2 +Λ)) + 180π2Mr5h log(rh)) .

The BH’s volume can be expressed as (Pourhassan and Faizal,
2015; Sharif and Khan, 2022b)

𝕍 = 4
3
πr3h. (33)

The relationship that can be used to determine the pressure of the
BH is as follows:

ℙ̃ = − d
̃F

d𝕍
= − d
̃F

drh

drh
d𝕍
, (34)

and hence,

ℙ̃ = −
(6Mrh − 9Q2 + r4h (β

2 +Λ))

24π3r8h

× (η− πγr2h log(
(−3Mrh + 3Q

2 + r4h (β
2 +Λ))2

r4h
)

+ π2r4h + πγr
2
h log (36π)).

The enthalpy of considered BH is determined using
(H̃ = Ũ+𝕍ℙ̃) (Pourhassan and Faizal, 2015). It is given as

H̃ = 1
180π2r5h

(10π2r4h (9Mrh + 18Q2 − 2r4h (β
2 +Λ))

− 3η(5rh (4r
3
h (β

2 +Λ) − 3M) + 12Q2) − 10(6Mrh

− 9Q2 + r4h (β
2 +Λ))(η− πγr2h log

× (
(−3Mrh + 3Q2 + r4h (β

2 +Λ))2

r4h
)+ π2r4h + πγr

2
h

× log (36π))+ 30πγr2h (−3Mrh + 4Q2 + 4r4h (β
2 +Λ))

+ 180π2Mr5h log(rh)) .

The Gibbs free energy (G̃ = − ̃S𝕋+ H̃) can be obtained as
(Pourhassan and Faizal, 2015)

G̃ = 1
180π2r5h

(η(144Q2 − 5(21Mrh + 8r
4
h (β

2 +Λ))) − 60π2r4h

× (Mrh − 6Q2) + 10πγr2h (−3Mrh (3+ 5 log (36π)) + 6Q2

× (2+ 3 log (36π)) + 2r4h (6+ log (36) + log (π)) (β
2 +Λ))

− 10πγr2h (−15Mrh + 18Q2 + 2r4h (β
2 +Λ))

× log(
(−3Mrh + 3Q2 + r4h (β

2 +Λ))2

r4h
) + 180π2Mr5h log(rh)).

The graphical analysis of corrected energies of the considered
BHs can be expressed as follows:

• Thermal fluctuation affects the physical quantities of BH
geometry. It is noted that for the small values of radii, the
graph of Helmholtz free energy gradually decreases and then
increases for higher BHs (first-panel plot of Figure 11). It shows
larger behavior in the presence of β and Q for larger BHs. The
Helmholtz free energy is maximum for larger BHs for non-zero
values of β and Q.
• The corrected internal energy of Schwarzschild-ADS BH
represents the gradually increasing behavior for higher values of
BH event horizons (left plot of the second panel of Figure 11). It
fluctuates in the presence of NED for higher BHs (right plot of
the second panel of Figure 11). The internal energy of charged
ADS BH with NED fluctuates, while for RN-ADS, it increases
gradually.
• The enthalpy and Gibbs free energy of RN-ADS BH increase
gradually while fluctuating for charged ADS BH with NED for
SLCs and HOCs (third and fourth panels of Figure 11).

5.2 Phase transition

Another method for locally determining the BH’s
thermodynamic stability is to study the sign of the specific heat
ℂ𝕊 =

dŨ
d𝕋

. It is noted that BH is locally unstable for ℂ𝕊 < 0, the point
of the phase transition can be found at ℂ𝕊 = 0, and BH is locally
stable if ℂ𝕊 > 0. The mathematical expression of specific heat is
given as follows (Pourhassan and Upadhyay, 2021; Sharif and Khan,
2022b):

ℂ𝕊 =
2(η(−3Mrh + 3Q

2 + r4h (β
2 +Λ)) − π2r4h (−3Mrh + 3Q

2 + r4h (β
2 +Λ)) + πγr2h (3Mrh − 6Q

2 + 2r4h (β
2 +Λ)))

−πr2h (6Mrh − 9Q
2 + r4h (β

2 +Λ))
,

Now, we discuss the thermodynamic stability of the system
through the graphical behavior of specific heat with four different
cases of thermodynamic fluctuations as UCE, SLCs, SOCs, and
HOCs (Figure 12). It shows the behavior-specific heat of RN-ADS
BHusingUCE, SLCs, SOCs, andHOCswithM = 0.2. It is interesting
to mention that specific heat expresses a stable structure for smaller
BHs and an unstable configuration for larger BHs. Hence, the
second- and higher-order correction provides the possibility of a
more stable structure of BHs.
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FIGURE 11
Plots of corrected energies of the BH versus horizon radius for RN BH (Q = 0.2, β= 0) (A) and charged BH with NED (Q = 0.2, β= 1.5) (B) with
M = 0.2,Λ = −1.
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FIGURE 12
Plots of specific heat versus rh using four different cases of thermodynamic fluctuations as UCE, SLCs, SOCs, and HOCs for RN BH Q = 0.2, β= 0, and
charged BH with nonlinear electrodynamics Q = 0.2, β= 1 with M = 0.2,Λ = −1.

6 Concluding remarks

This study is devoted to exploring the thermodynamics
of charged ADS BH with NED through QNMs and thermal
fluctuations. We explore the effects of NED parameter β on the
thermodynamic quantities of charged ADS BH. Some important
features of the present study are itemized as follows:

• The graphical behavior of the lapse function under the effect
of involved model parameters is provided in Figures 1, 2. The
position of the event horizon depends on the charge and the
coupling constant β.
• We observed the behavior of temperature versus entropy of
the system in Figure 4. It is noted that temperature initially
increases and then decreases as the entropy of the system
increases.
• The Davies point and heat capacity are presented in Figure 6 to
check the stable and unstable regions for the BH configuration.
In the absence of β and Q (as Schwarzschild-ADS BH), the BH
structure shows unstable configuration, while non-zero values
of β and Q systems show stable configurations for smaller BHs.
Hence, the presence of NED-charged ADS BH shows the stable
configuration for smaller BHs, while larger BH shows unstable
behavior.
• Figure 7 shows that the rate of emission energy decreases for
higher values of charge and NED parameter.
• We calculated the null geodesics and radius of the photon
sphere of BH geometry in the background charged ADS BH
with NED. It is interesting to mention that the case of the
Schwarzschild-ADS BH system shows an unstable structure,
and the position of photon radius is decreased for higher values
of β and Q (Figure 8). It is found that the system shows a stable
configuration for RN-ADS and charged BH with NED.
• The angular velocity and Lyapunov exponent versus rps, as
shown in Figure 9, and both physical quantities initially
decrease for higher values of the horizon radius.

• The behavior of thermal fluctuations (UCE, SLCs, SOCs, and
HOCs) on the entropy of the system is provided graphically
in Figure 10. It is noted that for all cases, the system entropy
is monotonically increasing throughout the considered domain
for larger BHs.
• The corrected, uncorrected Helmholtz free energy and internal
energy for the BH versus rh are presented graphically in
Figure 11. Helmholtz free energy shows larger behavior in the
presence of β and Q for larger BHs. The internal energy of
charged ADS BH with NED fluctuates, while for RN-ADS, it
increases gradually. The enthalpy and Gibbs free energy of RN-
ADS BH gradually increases while fluctuating for charged ADS
BH with NED for SLCs and HOCs.
• It is interesting to mention that specific heat expresses a stable
structure for smaller BHs and an unstable configuration for
larger BHs. Hence, the second- and higher-order correction
provides the possibility of a more stable structure of BHs
(Figure 12).

Hence, to sum up, it is determined that the cosmological
constant and NED greatly affect the thermodynamic properties of
charged ADS BHs.
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