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The effectiveness and accuracy of earthquake precursors are measured by the
ability of the precursors to predict the time, epicentral distance, and magnitude of
the earthquake for short-term earthquake prediction. Past articles were reviewed
to examine various studies of short-term earthquake precursor detection,
particularly those that involved monitoring variations in total electron content
(TEC). In this review, we examine recent studies that explore the use of the TEC
parameter in the Lithospheric-Atmospheric-Ionospheric (LAI) interaction to
forecast earthquake characteristics, including detection time, epicentral
distance, and magnitude. This review characterizes anomalous observations of
TEC parameters that may be linked to subsequent seismic events and investigates
their correlation with earthquake properties. It has been conclusively
demonstrated that TEC parameters show significant variations prior to
earthquakes, and these results can be used in combination with other
parameters to forecast earthquake properties.
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1 Introduction

Earthquake is a geophysical phenomenon involving irregular, non-linear, and
complicated processes (Akhoondzadeh et al., 2010). Short-term earthquake prediction
typically relies on the detection of physical phenomena or precursors occurring within a
specific time frame from a few days to a few weeks (Hayakawa, 2015). In his study, Uyeda
(2013) highlighted several critical factors that must be identified to achieve successful
earthquake prediction, such as the timing of occurrence, epicenter location, and magnitude
of the impending earthquake. Pulinets et al. (2004) identified two main approaches to short-
term earthquake prediction: deterministic analysis of precursor behavior and statistical
pattern processing. Scientific methods for earthquake prediction include monitoring
variations in the geomagnetic field, ionospheric TEC, and surface displacements. (Sasmal
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et al., 2021; Su and Sha, 2022). This study focused on the correlations
of LAI interaction, specifically TEC, prior to earthquakes for
earthquake precursor study.

To monitor ionospheric perturbations and delays to GPS signals,
various approaches can be employed to acquire TEC measurements,
including ground-based ionosondes and GPS measurements.
Ionosondes can observe only the bottom layer of the ionosphere; in
contrast, a ground-based GPS network enables effective ionosphere
monitoring (Choi et al., 2012). Only decades ago, there was a lack of
extensive ground observations to monitor ionospheric parameters in
most areas. The emergence of GPS sensing technology has marked a
paradigm shift in the field of remote sensing, providing unprecedented
opportunities to study the ionosphere with remarkable precision and
accuracy. An advantage of GPS satellite measurement is that it allows
spatial and time-dependent information of the disturbed region to be
obtained (Sharma et al., 2010). Furthermore, networks of GPS receivers
can be utilized to monitor ionospheric TEC in real-time, allowing for
continuous monitoring of space weather events and seismic activity.
(Zhao et al., 2010; Hasbi et al., 2011). Based on Contadakis et al. (2008),
TEC variations can provide insight into a wide range of ionospheric
changes, including global effects such as variations in the geomagnetic
field, and solar activity, as well as local factors like atmospheric
conditions, underground explosions, volcanic eruptions, and extreme
weather phenomena. Additionally, TEC variations have been shown to
be associated with seismic activity, providing a potentially valuable tool
for earthquake monitoring and early warning.

The application of TEC measurements has been further employed in
earthquake study. Akhoondzadeh et al. (2010) hypothesized that crust
displacement during earthquake preparation leads to energy transfer.
Changes in the physical and chemical properties of the lithosphere,
atmosphere, and ionosphere have been observed to occur as precursors
to earthquakes, often appearing several hours to days prior to the seismic
event. (Akhoondzadeh and Saradjian, 2011). Further discussion on
potential mechanisms of the origin of seismo-ionospheric perturbations
were explained in previous studies. Fujinawa and Takahashi (1990) and
Pulinets et al. (2000) proposed that the irregularities of the electron density
formation in the ionosphere are caused by the penetration of the
anomalous vertical field within the radius of the earthquake area while
another theory suggests that earthquakes can produce atmospheric gravity
waves (AGW), which can perturb the ionosphere (Hayakawa, 1999; Liu
et al., 2006; Saradjian and Akhoondzadeh, 2011). The detailed aspects of
the physical mechanism of the ionospheric variability associated with the
seismic activity are described in Pulinets and Boyarchuk (2004).

2 Established principles from previous
research

Global IonosphericMaps (GIM)provide grid data of the vertical TEC
(VTEC), has been used extensively by scientists to explore ionospheric
phenomena. However, VTEC obtained from permanent GPS ground-
stations offers greater precision and temporal resolution. Summary of the
satellite network information used for the TEC data in this study is listed
in the SupplementaryMaterial. The GIM is produced from the TEC data
obtained from over 400 stations located worldwide with its temporal
resolution ranges from 1 to 2 h, while its spatial resolution is typically
determined by the data provider and is measured at 2.5 ° × 5 ° (latitude ×
longitude). TEC data, derived from GPS, is acquired, and extracted using

dual-frequency GPS measurements to determine the predominant
portion of the total ionospheric delay or slant TEC (STEC) in the
GPS signal’s propagation path, expressed as follows:

STEC � f2
1f

2
2

40.28 f2
1 − f2

2( ) P4,sm + cDCBj − cDCBi( )

where the variables f1, f2 represent the frequency of the carrier; P4,sm

can be derived from the carrier phase observations; The value of c
denotes the speed of light. DCBi and DCBj are the differential code
biases of the satellites and receivers, respectively. STEC is determined
along the path of the signal being observed, measured in TECU units
(1 TECU = 1016 electron/m2) and obtained from GPS stations within a
cross-sectional area of one squaremeter. The single-layermodel (SLM) is
commonly utilized to analyze pre-seismic ionospheric phenomena. In
cases where the ionosphere is assumed to be located at a different
altitude, the three-dimensional coordinates of ionospheric-pierce points
are calculated (Shi et al., 2019). By assuming an ionospheric altitude of
450 km, STEC can be converted into VTEC at the ionospheric-pierce
points using the following equation:

VTEC � STEC × cos arcsin
R sinZ
R +H

( )( )

in this equation, R refers to the radius of the earth, andH signifies the
altitude of the upper boundary of the ionosphere. Likewise, Z
represents the elevation angle of the satellite (Dong et al., 2022).

Irregular variations detected in TEC measurements exceeding a
statistical threshold may be considered as a signature of an
underground seismic source as proposed by previous researchers.
(Naaman et al., 2001). Zhao et al. (2010) reported that anomalous
TEC fluctuations occur several days before earthquakes, either
increasing or decreasing over the preparation zone. According to
Pulinets et al. (2000) pre-earthquake anomalies observed in low
latitudes are believed to be caused by a strong vertical electric field.
The seismogenic electric field rises upward and interacts with the
eastward electric field, resulting in ionospheric disturbances near the
epicenter and deforming the shape of the equatorial anomaly. (Hasbi
et al., 2011). Lin (2014) suggested that ionizing radiation radon gas
release could explain TEC anomalous fluctuations through electron
density variations. The variability is also thought to be caused by
other factors, such as air electrization and electromagnetic coupling
between the atmosphere and the ionosphere. (Pulinets et al., 2007).

However, anomalies caused by seismic activity during the
earthquake preparation period may be concealed by changes in
global ionization due to UV solar radiation and geomagnetic
activity. The ionospheric response to these factors is complex and
varies under different geomagnetic-solar conditions. In their study,
Akhoondzadeh and Saradjian (2011), found that the period of quiet
geomagnetic variation before the earthquake day is suitable for pre-
seismic ionospheric studies. Several researchers have demonstrated
the use of global geomagnetic indices such as Disturbance Storm-
Time (Dst), Planetary K-index (Kp), and solar radio flux at 10.7 cm
(F10.7). The results showed positive correlations of TEC anomalies
with earthquakes (Pulinets et al., 2007; Afraimovich and Astafyeva,
2008; Akhoondzadeh et al., 2010; Sharma et al., 2010; Zhao et al.,
2010; Hasbi et al., 2011; Choi et al., 2012; Zhu et al., 2013; Tao et al.,
2017; Shi et al., 2019; Hu et al., 2021; Dong et al., 2022).

In the effort to further distinguish the TEC anomalies from the non-
seismic effects, Afraimovich and Astafyeva (2008) suggested that
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statistical analysis of TEC changes that considers all the leading global
factors that may influence the TEC anomalies be conducted to establish
the occurrence of the earthquake precursor. Astafyeva and Heki (2011),
in their previous study, also demonstrated the essence of determining the
locality of the TEC anomalies to establish the connection of the
anomalies with earthquakes using the application of GPS. There are
several techniques used to analyze ionospheric anomalies and their
relationship with seismic activity to better understand the processes
that occur before earthquakes and to develop new methods for
earthquake prediction and early warning. Basic statistical tools, such
as relative deviation, time derivative analysis, IQR analysis, correlation
analysis, TEC difference analysis, and ionospheric correction, are also
used to investigate the effect of ionospheric disturbances on ionospheric
parameters. (Karatay et al., 2010).

Although this study only focused on the TEC parameters,
previous studies have demonstrated on the importance of
conducting multi-parameters study for earthquake prediction. Xu
et al. (2011) found that utilizing multiple parameters can reveal the
existence of LAI coupling in association with strong earthquakes.
Simha et al. (2020) support this conclusion and recommend
incorporating additional precursory parameters and examining
more earthquakes to enhance short-term forecasting models.
Sasmal et al. (2021), in their study, analyzed different parameters
including TEC and magnetic field and found that these parameters
are successful in being a convincing pre-seismic signature but with
significant differences in their precursory time frames.

3 Earthquake properties

Earthquakes can be classified based on their properties which
include: (a) magnitudes, to define the severity of earthquakes which
is categorized as light (M0.0–4.9), moderate (M5.0–5.9), strong (M6.0-
M6.9),major (M7.0–7.9), and great (M8.0 and higher), as reported in the
U.S. Geological Survey (2010); and (b) depth which is categorized as
shallow-focus (focal depth lower than 70 km from earth’s surface),
intermediate depth or mid-focus (focal depth between 70–300 km),
and deep-focus (focal depth at a greater depth ranging from
300–700 km) as defined by Hayakawa (2015). This section discusses
further on previous findings on the relationship between the earthquake
properties with TEC changes in terms of the earliest time of precursor
detection, the magnitude of the earthquake, the epicentral distance from
the GPS receivers, and the hypocentral depth of the earthquake.

3.1 Time

An essential aspect of earthquake prediction is time of occurrence.
Previous studies have shown that the earthquake precursors can be
found in the TEC variation several days before the earthquake. Each of
these studies has shown a different range of timewhen the precursor was
detected, ranging from 6–7 h to 36 days before the earthquake
occurrence. The earliest time of precursor detection was most
frequently found to be 3–5 days before the earthquake (Figure 1).
These results are crucial for selecting the observation period before
the earthquake. Previous studies have shown that TEC anomalies can be
found in less than 40 days. However, Astafyeva and Heki (2011) in their
study had decided to analyze TEC variations of ~160 days based on the

justification that long periods could exclude any ionospheric TEC
changes caused by planetary waves and other kinds of non-seismic
variability.Meanwhile, Saradjian and Akhoondzadeh (2011) determined
that the appropriate period to show normal behavior might be about
45 days before the events. This extended period is sufficient to detect
both normal and abnormal signals. In contrast, the precursors identified
by the latter study are expected to appear near the end of the period
analyzed. The determination of the duration of the TEC observation
period duration is very crucial to ensure there are no missed significant
precursors before the earthquake event.

3.2 Magnitude

As described by Pulinets et al. (2007), the magnitude of an
earthquake exhibits the exponential change in the amount of energy
emitted throughout the seismic event. Therefore, the size of the
earthquake preparation area discussed in Section 3.2 was established
based on the magnitude of the earthquake. Based on the number of
earthquakes with precursor presence detected in previous studies, major
earthquakes showed the highest percentage at 38%, which is then
followed by 33% for great earthquakes and 27% for strong earthquakes.
Both light andmoderate earthquakes showed only 2% occurrences each
in terms of total precursors found (Figure 1).

Kon et al. (2011) and Zhu and Jiang (2020) concur that the
frequency of ionospheric TEC disturbances is directly proportional
to the magnitude of the earthquake. Hence, as the magnitude of the
earthquake increases, any slight rise in the occurrence rates of TEC
disturbances preceding the event is more likely to be associated with the
impending seismic activity (Pulinets et al., 2003). Akhoondzadeh and
Saradjian (2011) highlighted the importance of using specific bounds or
threshold values for earthquake precursor detection, depending on the
magnitude of the earthquake. They noted that lower magnitude
earthquakes (M < 6.0) exhibit weaker anomalies, which can result in
inaccurate results if the same bounds or thresholds are used for stronger
earthquakes. Therefore, it is necessary to conduct an empirical
evaluation to select appropriate bounds or thresholds for each case
study. By categorizing earthquakes into different magnitude ranges, the
potential bias in the analysis can be minimized.

3.3 Epicentral and hypocentral distance

The receiver’s distance from the earthquake epicenter is a significant
characteristic to be considered before analyzing the TEC variations for
earthquake precursor. According to Pulinets et al. (2007), the amplitude
of earthquake precursors decreases as the distance from the epicenter
increases. This is because the ionospheric anomalies are believed to be
generated by the seismogenic electric field, which has a stronger effect
closer to the epicenter and weaker effect farther away. The study by
Sharma et al. (2017) demonstrated that the TEC concentration increases
when the distance from the epicenter decreases. Due to these theories,
many researchers have applied the concept of earthquake preparation
area that was initially introduced by Dobrovolsky et al. (1979) to
calculate the effective radius of the seismogenic zone, using the elastic
deformation calculations, where R and M are the radius of the effective
seismogenic zone and magnitude of the earthquake, respectively
(Pulinets et al., 2004; Sharma et al., 2010; Akhoondzadeh and
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Saradjian, 2011; Hasbi, et al., 2011; Akhoondzadeh, 2012; Choi et al.,
2012;Oikonomou et al., 2016; Sharma et al., 2017; Tao et al., 2017; Simha
et al., 2020).

R � 100.43M (1)
In our review, only one study that applied the updated

Dobrovolsky formula was found, namely, in Saradjian and
Akhoondzadeh (2011), where R and M are the radius of the
effective seismogenic zone and magnitude of the earthquake,
respectively (Dobrovolsky et al., 1989).

R � 100.414M−1.696 (2)
Previous research has demonstrated that the ionospheric

variability exhibits distinct characteristics within the seismogenic
zone compared to the irregularities outside the area (Pulinets et al.,
2007). As shown in Figure 2, most of the precursors were found
within the earthquake preparation zone (Pulinets et al., 2004;
Sharma et al., 2010; Akhoondzadeh and Saradjian, 2011; Hasbi,
et al., 2011; Akhoondzadeh, 2012; Choi et al., 2012; Oikonomou
et al., 2016; Sharma et al., 2017; Tao et al., 2017; Simha et al., 2020)
(Figure 2). However, Pulinets et al. (2004) cautioned that the
ionospheric irregularity does not necessarily only appear within
the epicenter area as it could be displaced along the geomagnetic
field lines towards the magnetic equator, which lies equatorward of
the vertical projection of the epicenter of the forthcoming seismic
activity on the ionosphere. Thus, there is a need for further study in
determining the maximum area in which the shifted ionospheric

irregularity will occur. In terms of the hypocenter depth, most
precursors were found in shallow and intermediate depths with
only one study finding precursors in a deep-focus earthquake of
378.8 km depth (Lin, 2014).

4 Highlights of future directions

Earthquake properties in terms of time, magnitude, and
hypocentral depth have been discussed in Section 3 of this paper.
Previous studies on the seismo-ionospheric relationship were mostly
conducted on a case study basis. This study has revealed the
similarities and differences of each study to provide a systematic
view on the findings of TEC anomalies as the earthquake precursors.
Despite numerous studies on pre-earthquake ionospheric
anomalies, this field remains incompletely understood. In
addition, ionospheric perturbations are vulnerable to other
dynamic processes (Xia et al., 2011). Another interesting factor
or effect that has not been considered by many in the ionospheric
study is the effect of the faulting mechanism on the TEC variations.
For instance, Naaman et al. (2001) only associated atmospheric
waves propagating upward with earthquakes that are caused by
strong vertical movement of the earth’s surface, instead of
earthquakes caused by horizontal tectonic motion. Conducting
studies on this effect is therefore crucial to ascertain the effect of
seismic activities on TEC changes.

The variability of ionospheric variations makes it difficult to
distinguish the anomalies caused by enhanced pre-seismic activity

FIGURE 1
The number of earthquakes with precursors in relationship with the earliest time it was detected before earthquake, and size of magnitude based on
previous studies (Naaman et al., 2001; Pulinets et al., 2004; Pulinets et al., 2007; Afraimovich and Astafyeva, 2008; Akhoondzadeh et al., 2010; Sharma
et al., 2010; Zhao et al., 2010; Akhoondzadeh and Saradjian, 2011; Hasbi et al., 2011; Kon et al., 2011; Saradjian and Akhoondzadeh, 2011; Xu et al., 2011;
Zolotov et al., 2011; Akhoondzadeh, 2012; 2013; Choi et al., 2012; Zhu et al., 2013; Lin, 2014; Tang et al., 2015; Daneshvar and Freund, 2016;
Oikonomou et al., 2016; Jiang et al., 2017; Sharma et al., 2017; Tao et al., 2017; Akpan et al., 2019; Li et al., 2019; Shi et al., 2019; Yang et al., 2019; Simha
et al., 2020; Tachema and Nadji, 2020; Chen et al., 2021; Mahmoudian and Ghayour, 2021; Mehdi et al., 2021; Sasmal et al., 2021; Dong et al., 2022).
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from those caused by global and local effects. The critical question is to
ascertain whether the ionospheric anomalies before the earthquake are
seismic related. This is a rather controversial issue within the geophysics
and space physics research community as some believe it could be a
precursor, while some believe it is related to other global or local effects.
Due to the controversy and uncertainty surrounding the detection of
earthquake precursors and their validity in influencing the ionosphere, it
is important to exercise caution before asserting the detection of
ionospheric precursors to seismic activity (Masci, 2012; Masci, 2013).

In making further recommendations on seismo-ionospheric
relationship study, Zhao et al. (2010) suggested that any effort to find
abnormal electromagnetic signals prior to the earthquake must be made
following the TEC variation. A future study integrating local
geomagnetic disturbances and ionospheric irregularities would be
very interesting since seismic activities were originated from regional
source. Another significant recommendation in this study is to establish
a denser network of GNSS stations for better TEC data acquisition since
it has been implied that even the low-magnitude events can be
monitored if the location of the GNSS receivers located close to the
epicenter (Sharma et al., 2017). In addition, it is important to conduct
various statistical analyses as it can provide valuable insights into the
relationship between earthquakes and ionospheric perturbations (Xia
et al., 2011). The findings of this research provide insights for future
studies and could serve as a base in monitoring the ionospheric
responses particularly TEC changes to seismic activities.

5 Key concepts

GPS advancement. The advent of GPS and its benefit to
ionospheric study.

LAI interaction with earthquakes. The interaction of different
layer of earth (lithosphere, atmosphere, and ionosphere) with
seismic activities.

TEC as earthquake precursor. Irregular variations detected in
TEC measurements exceeding a statistical threshold might be
considered as a signature of an underground seismic source by
previous researchers.

Multi-parameters study for earthquake study. The application of
different indicators such as TEC variations, geomagnetic variations,
and atmospheric parameters in earthquake study.
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