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This study analyzes the effects of electromagnetic ion cyclotron (EMIC) waves on
relativistic electron scattering and losses in the Earth’s outer radiation belt. EMIC
emissions are commonly observed in the inner magnetosphere and are known
to reach high amplitudes, causing significant pitch angle changes in primarily
>1 MeV electrons via cyclotron resonance interactions. We run test-particle
simulations of electrons streaming through helium band waves with different
amplitudes and wave normal angles and assess the sensitivity of advective and
diffusive scattering behaviors to these two parameters, including the possibility
of very oblique propagation. The numerical analysis confirms the importance
of harmonic resonances for oblique waves, and the very oblique waves
are observed to efficiently scatter both co-streaming and counter-streaming
electrons. However, strong finite Larmor radius effects limit the scattering
efficiency at high pitch angles. Recently discussed force-bunching effects and
associated strong positive advection at low pitch angles are, surprisingly, shown
to cause no decrease in the phase space density of precipitating electrons, and
it is demonstrated that the transport of electrons into the loss cone balances
out the scattering out of the loss cone. In the case of high-amplitude obliquely
propagating waves, weak but non-negligible losses are detected well below the
minimum resonance energy, and we identify them as the result of non-linear
fractional resonances. Simulations and theoretical analysis suggest that these
resonancesmight contribute to subrelativistic electron precipitation but are likely
to be overshadowed by non-resonant effects.

KEYWORDS

electron scattering, EMIC waves, non-linear wave–particle interactions, test-particle
simulation, radiation belts, fractional resonance, loss cone, electron precipitation

1 Introduction

Electromagnetic ion cyclotron (EMIC) waves are naturally occurring electromagnetic
emissions in the Earth’s magnetosphere generated by unstable anisotropic hot ion
populations (Kennel and Petschek, 1966; Anderson et al., 1996). Each ion component of the
space plasma has a corresponding EMIC frequency band located below the gyrofrequency
of the ion, with the hydrogen band (H+) and helium band (He+) being the most commonly
observed (Min et al., 2012; Meredith et al., 2014; Saikin et al., 2015; Wang X. Y. et al., 2017;
Jun et al., 2021). In the outer radiation belt, the wave frequencies in the near-equatorial
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source (Loto’aniu et al., 2005; Allen et al., 2015) fall mainly into
the Pc1 range 0.2–5 Hz (Saito, 1969; Usanova et al., 2012). Initially
generated in the left-handed mode, the waves may convert to the
right-handed mode at higher latitudes (Rauch and Roux, 1982;
Perraut et al., 1984; Kim and Johnson, 2016). These polarized waves
can scatter relativistic electrons (kinetic energies Ek around 1 MeV
and larger) in pitch angleα through cyclotron resonance interactions
(Horne and Thorne, 1998; Summers et al., 1998), which leads to
significant losses of radiation belt electrons to the atmosphere
(Thorne and Kennel, 1971; Usanova et al., 2014; Clilverd et al., 2015;
Kurita et al., 2018; Li and Hudson, 2019).

During geomagnetically active times, EMIC waves at lower
L-shells (L < 6) can reach peak magnetic field amplitudes Bw
higher than 1% of the background magnetic field strength B0
(Meredith et al., 2003; Engebretson et al., 2015). Trajectories
of particles resonating with strong waves experience large
perturbations, and a variety of associated non-linear effects appear
(Karpman, 1974; Artemyev et al., 2018; Grach et al., 2022). Phase
trapping of ions in the wave potential leads to non-local transport to
higher pitch angles and the formation of phase space density (PSD)
holes in the gyrophase space (Omura et al., 2010; Shoji et al., 2021),
while phase-trapped electrons experience a decrease in pitch angle
(Omura and Zhao, 2012; Zheng et al., 2019). At α ≈ 0°, the force-
bunched electrons are transported predominantly to higher pitch
angles; Bortnik et al. (2022) proposed that this non-linear effectmay
result in precipitation blocking due to the removal of electrons from
the loss cone. Below the fundamental cyclotron resonance energy,
non-resonant scattering by amplitude-modulated waves takes place
and may extend the energy range of precipitating electrons down to
hundreds of keV (Chen et al., 2016; An et al., 2022).

When the wave normal angle θk (WNA) of EMIC waves
increases and the propagation becomes oblique, finite Larmor
radius effects enable interaction with higher cyclotron harmonics.
Approximate quasilinear formulas for pitch angle diffusion
coefficients of waves with a given wave normal distribution can
be found in the study by Albert (2008). Wang G. et al. (2017)
studied the interaction of electrons with moderately oblique
monochromatic EMIC waves through non-linear test-particle
simulations and quasilinear diffusive modeling. They have shown
that with increasing θk, harmonic resonances at ultrarelativistic
energies can lead to significant scattering loss, while the fundamental
resonance becomes weaker for oblique waves. Lee et al. (2018)
analyzed the WNA and ellipticity of a set of EMIC waves detected
by Van Allen Probe A, ran test-particle simulations of electron
interaction with very powerful and oblique EMIC waves, and
highlighted the complexity of pitch angle evolution due to higher-
order resonance with the elliptically polarized wave. They also
emphasized the advective aspects of non-linear scattering and noted
the importance of ellipticity and WNA distributions in modeling
the radiation belt electron transport.

In this paper, we perform test-particle simulations of non-
linear electron interactions with quasiparallel and very oblique
monochromatic EMICwaves, with the overall goal of describing the
dependence of advection, diffusion, and subsequent particle losses
on the wave amplitude and wave normal angle—special attention is
given to the PSD evolution at low pitch angles. After describing the
simulation setup in Section 2, we analyze the average and standard
deviation of equatorial pitch angle changes for very oblique waves

and discuss the influence of higher harmonics on advection and
diffusion in Section 3.1. In Section 3.2, we demonstrate through
Liouville mapping of phase space density in backward-in-time
simulations that the force-bunching effects at low pitch angles are
balanced out by transport from higher pitch angles and that there
is no apparent precipitation blocking in the sense of decreasing
precipitating electron PSD below the trapped PSD. Section 3.3
describes fractional resonances, a type of resonance acting below
the fundamental resonance energy, and considers their effects on
subrelativistic electrons. A summary of the most salient results and
a discussion of the impacts of our findings on radiation belt electron
modeling can be found in Section 4.

2 Methods and simulation setup

Before choosing representative wave and plasma parameters
for our particle simulation, we must first consider which
quantities can influence the behavior of resonant electrons. Wave
amplitude Bw controls the transition from quasilinear to non-
linear interaction, and wave normal angle θk is related to the
perpendicular component of the wave vector and associated
harmonic resonances. Varying the values of Bw or θk leads to
major qualitative changes in the resonant behavior; therefore, they
are the essential parameters in our simulation. We choose four
values of wave normal angle {5°,45°,70°,80°} to cover quasiparallel,
moderately oblique, and very oblique wave propagation. The
WNA values are combined with three values of amplitude
Bw0 = {100 pT,400 pT,1.6 nT}, which approximately correspond to
Bw0/B0eq ratios of {0.04%,0.16%,0.64%} for equatorial field strength
B0eq = 248 nT at L = 5. This choice of L-shell is consistent with
regions of enhanced EMICwave activity identified byMeredith et al.
(2014) and Jun et al. (2021) in spacecraft measurements during
active geomagnetic conditions.

There are also several parameters that influence the value of the
minimum resonance energy, which is given by the formula

ERmin=mc2(
nωΩe − k‖c√n2Ω2

e + k2‖c2 −ω2

ω2 − k2‖c
2 − 1)

≈mc2(√1+
n2Ω2

e

k2‖c
2 − 1) ≈ |

n
k‖
|mcΩe,

(1)

where m is the electron mass, c is the speed of light, k‖ is the
component of the wave vector parallel to B0, ω is the wave
frequency, Ωe is the local electron gyrofrequency, and n is an
integer determining the resonance harmonic (positive/negative for
electrons streaming against/along thewave).Thefirst approximation
assumes ω≪Ωe and ω2

pe ≫Ω2
e , and the second one is the

ultrarelativistic approximation. The energy ERmin is dependent on
the normalized frequency ω/Ωe, and through the cold plasma
dispersion relation k(ω), it also depends on the electron plasma
frequency ωpe and the concentration of ion species. These
dependencies are evaluated and plotted in Figure 1, where we
plot ERmin with n = −1 for a monochromatic left-handed EMIC
wave propagating from the magnetic equator along a dipole
field line up to magnetic latitude λm = 30°. We consider high
(ωpe0/Ωe0 = 15) and low (ωpe0/Ωe0 = 5) densities at the equator, and
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FIGURE 1
Minimum resonance energies ERmin of electrons interacting with a left-hand polarized parallel-propagating EMIC wave. Each panel shows a map of
energies as a function of wave frequency and magnetic latitude. (A) Minimum resonance energies for interaction with a helium band wave in a
high-density plasma with a high relative concentration of heavier ions—these conditions are used in our simulations. (B) Same as panel A, but in a
low-density plasma. (C) Same as panel A, but with a low concentration of heavier ions. (D–F) ERmin for a hydrogen band wave under the same plasma
conditions as in (A–C), except for panel F, where both the electron density and heavier ion concentrations are kept low. In all panels, dashed lines
represent energy contours, and the solid red line signifies the crossover frequency. Note that for oblique waves, the left-handed dispersion branch is
coupled to the right-handed branch, so the energies right of the red curve would have to be calculated for right-hand polarized waves.

we compare the high concentrations of heavy ions (np/ne = 0.77,
nHe/ne = 0.2, and nO/ne = 0.03), which were used in the simulations
by Jordanova et al. (2008) and Bortnik et al. (2022), with lower
concentrations (np/ne = 0.99, nHe/ne = 0.005, and nO/ne = 0.005).
Latitudinal dependence of density follows the formula given by
Denton et al. (2002), ne = ne0(cosλm)

−2a, with a = 0.5 in the high-
density case and a = 1.0 in the low-density case (and the relative
ion concentrations remain constant). We observe that changes
to the density, ion concentration, and frequency band manifest
mostly through a rescaling of ERmin. Therefore, we limit our
investigations to the helium band and choose the higher values

of density (ωpe0/Ωe0 = 15 ∼ ne0 = 134 cm
−3) and ion concentrations,

which is in agreement with the observations of Meredith et al.
(2014) and Horwitz et al. (1981). The wave frequency is set to
ω/ΩHe0 = 0.80 ∼ 0.76 Hz, a slightly higher value that allows the
waves to reach higher latitudes before experiencing the polarization
reversal.Figure 1A can be referred to for the particlemotion analysis
from Section 3.1 to infer resonance latitudes of particles with a given
energy propagating through quasiparallel waves; the plotted energy
values can be further multiplied by |n| to get higher-order resonance
latitudes as long as the ultrarelativistic approximation from Eq. 1 is
valid.
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FIGURE 2
(A) Distribution of wave amplitudes along the field line. The wave experiences smooth growth in region U, stays constant in region C (1.6 nT in this
example), and decreases back to zero in region D, as shown by the dashed red line. The solid blue line shows the relative wave amplitude with respect
to the background field B0. (B) Phase space density distribution at the equator plotted in the energy–pitch angle space. The empty loss cone
corresponds to the white region at αini < αloss = 3.7°. Normalized PSD is used in the simulation code. (C) Line plots of pitch angle profiles from the
previous panel for representative energies. Note that the sin α term from Jacobian is not included; therefore, the decrease in PSD near the loss cone
indicates a positive pitch angle anisotropy.

Apart from the strong interaction near resonance energies,
electrons can also experience non-resonant scattering due to wave
amplitude gradients (Chen et al., 2016) or, equivalently, due to
the spectral broadening of amplitude-modulated waves (An et al.,
2022). To simplify our analysis, we suppress the non-resonant
scattering by introducing a slow and smooth amplitude change at the
edges of the wave packet. This is performed by multiplying the wave
envelope by a half-period of the cos2 function, with a field-aligned
distance from the minimum to the maximum of the function set to
Δh = 2,200 km. Symbolically,

= Bw0 cos2(
π
2
( h
Δh
− 1)) for 0 < h < Δh, (2)

Bw (h) = Bw0 for Δh < h < (hmax −Δh) , (3)

= Bw0 cos2(
π
2
(
h− hmax

Δh
+ 1)) for (hmax −Δh) < h < hmax.

(4)

This amplitude profile is similar to the tanh model in the
study by Bortnik et al. (2022). The envelope shape is plotted in
Figure 2A. The packet ends at a field-aligned distance hmax, where
the normalized frequency reaches ω/ΩO = 1.25. At this frequency,
the helium wave is already right-handed, and the resonance energy
of very oblique waves rapidly increases (Stix, 1992).

The test-particle simulation method is based on the solution
of the Lorentz force law by a relativistic Boris algorithm with
a phase angle correction, as described by Zenitani and Umeda
(2018). The components of the electromagnetic wave field are
defined according to the analysis of elliptically polarized waves
presented by Omura et al. (2019); see also Eqs 8–11, Eqs 15–19 in
Section 5. Wave packet motion can be neglected on short timescales
since the group velocity of EMIC waves is much smaller than the
velocity of relativistic electrons. In forward-in-time simulations,
the particles start either at the equator and propagate until they
reach the end of the wave packet (or their mirror point) or at
the end of the wave packet and propagate back to the equator.
Mirroring particles are not allowed to return to the equator so that
we can separate the resonant effects experienced by co-streaming
and counter-streaming electrons. In both cases, the initial particle

energy is spaced logarithmically from 900 keV to 30 MeV with 96
bins, initial pitch angles go from 0° to 90° (or 180°–90° for counter-
streaming electrons) with 90 linear steps, and the initial gyrophases
φ uniformly cover the full 360° angle with 72 steps. It is of note that
the grid boundaries in the (Ek,α,φ) space represent bin edges. In
backward-in-time simulations, the pitch angle range is limited to
0°–20° (or 180°–160° for counter-streaming electrons) with 90 linear
steps, providing increased resolution of the loss cone (αloss = 3.6°
at the equator and 6.1° at the end of the packet). The time step of
the Boris solver is adaptive and always stays at 128 steps per local
electron gyroperiod.

The backward-in-time simulations are used to map the phase
space density of an initial, unperturbed distribution to the final state
and assess the PSDevolution due to resonant interactions (Nunn and
Omura, 2015; Hanzelka et al., 2021). We assume that the initial hot
(relativistic) distribution is in the form of a sum of subtracted bi-
Maxwellian distributions that preserves phase space density along
adiabatic trajectories (Summers et al., 2012; Omura, 2021). At a
distance h, this distribution can be written for relativistic momenta
u‖ = γv‖ and u⊥ = γv⊥ as

f (h,u‖,u⊥) =
N

∑
i=1

fi (h,u‖,u⊥) , (5)

with

fi (h,u‖,u⊥)

=
nhe0i

(2π)3/2Ut‖iU
2
t⊥i (1− ρiβi)

exp(−
u2‖

2U2
t‖i

)

×[exp(−(
1−B0eq/B0 (h)

2B0 (h)U2
t⊥i
+

B0eq

2B0 (h)U2
t⊥i
)u2⊥)

− ρi exp (−(
1−B0eq/B0 (h)

2B0 (h)U
2
t‖i

+
B0eq

2βiB0 (h)U
2
t‖i

)u2⊥)].

(6)

We set N = 5 and choose the following values of distribution
parameters: loss cone width βi = 0.5∀i, loss cone height
ρi = 1.0∀i, parallel and perpendicular thermal momenta
Ut‖i/c = Ut⊥i/c = {0.2,0.5,1.0,2.5,9.0}, and hot electron density

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2023.1163515
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Hanzelka et al. 10.3389/fspas.2023.1163515

nhe0i = {2.2,0.22,0.022,0.0022,2.2× 10−7} cm−3. PSD inside the
loss cone is set to zero for all values of h. The equatorial
distribution is plotted in Figure 2B in the (Ek,αini) space. The
energy profile up to 10 MeV is constructed to loosely follow
the Van Allen Probes measurements analyzed by Zhao et al.
(2019); however, the energy distribution is of little importance
for EMIC-electron resonance since the acceleration caused by
this interaction is negligible (Summers et al., 1998). Line plots of
pitch angle distributions for several initial energies are presented in
Figure 2C. Although each component of the initial distribution has
a zero temperature anisotropy At = U2

t⊥/U
2
t‖ − 1, the pitch angle

anisotropy (Chen et al., 1999) can reach positive values up to
approximately 0.6 due to the subtraction in the PSD distribution
model. This model is consistent with the assumption that previous
weaker wave–particle interactions already eroded the pitch angle
profile.

3 Results

3.1 Advection and diffusion

When studying the non-linear interactions between plasma
waves and charged particles, it is illustrative to start by inspecting
individual trajectories. In Figure 3, we plot the spatial evolution
of the equatorial pitch angle for electrons propagating through a
high-amplitude (Bw0/B0eq = 0.0064) moderately oblique (θk = 45°)
EMIC wave. The equatorial minimum resonance energy for this
wave is ERmin ≈ 3.3 MeV for n = ±1 and ERmin ≈ 7.1 MeV for n = ±2.
Particles starting at the equator with initial pitch angle α = 0.5°
and energy Ek = 3.95 MeV experience a significant increase in
equatorial pitch angle Δαeq ≈ 11° due to the n = −1 resonance, with
almost no dependence on the initial gyrophase (Figure 3A). This
is the advective behavior caused by force bunching, as previously
described by Grach and Demekhov (2020), Grach et al. (2022), and
Albert et al. (2022). This type of scattering has also been called
“anomalous phase trapping” in the whistler-mode wave case studied
by Kitahara and Katoh (2019).

Particles starting at larger pitch angles (αeq = 29.5°, Figure 3B)
experience a large spread in αeq across the gyrophases, exhibiting
a predominantly diffusive behavior. The asymmetry in Δαeq toward
lower values is caused by phase locking of φ to the wave phase ψ,
but the particles never become fully phase-trapped in this particular
case. In Figure 3C, we increase the initial energy to Ek = 8.51 MeV
and observe that particles first undergo scattering due to the n = −2
harmonic resonance and then encounter the n = −1 resonance at
latitudes from 11° to 16°, resulting in pitch angle diffusion.

Figures 3D–F show particle trajectories of electrons starting at
the end of the wave packet and streaming against the wave. Here,
resonant interaction is enabled by the right-handed component
of the elliptically polarized wave. Keeping the initial energies and
initial equatorial pitch angles similar to the co-streaming case,
we observe that the advective and diffusive effects of the n = 1
resonance are comparable to the n = −1 resonance. However, the
maximum change in pitch angle is smaller, and the phase-locking
effect does not appear. In the case with Ek = 8.51 MeV, the counter-
streaming particles first encounter the stronger n = 1 resonance, and

the weaker n = 2 resonance then has only a small effect on the spread
in Δαeq.

To evaluate the pitch angle evolution of relativistic electrons
across all initial pitch angles and energies, we introduce two
statistical measures: the average ⟨Δαeq⟩φ (first central moment),
which is related to the advection coefficient, and the standard
deviation σφ(αeq) (second central moment), which is related to
the diffusion coefficient. We intentionally eschew the standard
advection and diffusion coefficients (Zheng et al., 2019) as they are
often bounce-averaged in practical applications, while we do not let
the particles finish the half-bounce, which is to separate between
n > 0 and n < 0 resonances. The average change in equatorial
pitch angle for co-streaming particles is plotted in Figure 4 in
(αini,Ek) coordinates, with each plot corresponding to one of
the 3 combinations of wave amplitude and wave normal angle.
Starting with quasiparallel propagation (θk = 5°, Figures 4A–C), we
first note the different scales of color bars, which have a range
of ±max(αini,Ek)|⟨Δαeq⟩φ| separately for each plot. An outstanding
feature, high positive advection, appears at low pitch angles near the
n = −1 resonance, confirming the force-bunching effects observed
on trajectories in Figure 3A. Another prominent feature is the
two red (positive) and blue (negative) curved stripes that follow
the dependence of n = −1 resonance energy on pitch angle. For
the case with the largest wave amplitude (Figure 4C), the negative
advection at higher pitch angles dominates over the positive one,
indicating significant non-linear phase-trapping effects. It is of note
that the strongest interaction happens slightly off-equator, where the
wave amplitude peaks, corresponding to resonance energies slightly
higher than the equatorial resonance energy plotted by green lines
in Figure 4.

The appearance of strong negative advection associated with
phase trapping can be explained through the behavior of the
inhomogeneity parameter S. This parameter is proportional to the
magnetic field gradient and inversely proportional to the wave
amplitude and has a complicated dependence on wave dispersion
properties (see Omura and Zhao (2012) and Omura (2021) for a
detailed analysis and overview).When |S| drops below1, a resonance
island forms in the phase space, and non-linear phase trapping
becomes possible. For parallel wave propagation, the absolute
value of the parameter decreases with the equatorial pitch angle.
In the case of fundamental resonance n = −1, |S| increases with
the wave normal angle, while a decrease is seen in the case of
harmonic resonances (Wang G. et al., 2017). However, scattering by
very oblique waves becomes inefficient at high WNA. Therefore,
the most favorable case for phase trapping is the fundamental
resonance with high-amplitude quasiparallel waves at moderate-to-
high pitch angles, as seen inFigure 4C. However, the inhomogeneity
parameter is derived from the pendulum approximation of electron
motion and cannot describe the behavior at low pitch angles. An
extension of the electron motion analysis to small α based on the
two-valley Hamiltonian was presented by Albert et al. (2021), where
they concluded that as the initial pitch angle goes to zero, all particles
are expected to experience force bunching, which can be understood
as a special case of phase trapping.

The interaction with oblique waves (Figures 4D–L) introduces
some new effects. First, we may notice the alternating blue and red
vertical lines at high pitch angles, with almost no dependence on
energy. These are the result of non-resonant oscillations at mirror
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FIGURE 3
Trajectory examples showing the change in equatorial pitch angle over latitude due to interaction with a high-amplitude, moderately oblique wave
(Bw0/B0eq = 0.0064 and θk = 45°). (A–C) Electrons propagating along the wave (from the equator), and (D–F) propagation against the wave (toward the
equator). In each panel, electrons have the same initial energy, pitch angle, and latitude, and the line colors represent the initial uniform sampling in
gyrophase. Pairs of dashed lines represent the approximate spatial interval on which the fundamental cyclotron resonance produces strong scattering;
for the harmonic resonances n = ±2, the interval is marked by dotted lines.

points and would completely disappear if the particles were allowed
to bounce back to the equator—the lines are not relevant to our
analysis of the cyclotron resonance and will be omitted in the
following sections. Harmonic resonances become visible at higher
amplitudes, adding new pairs of positive and negative advective
stripes along the corresponding resonance energy curves. However,
as the wave normal angle increases, advective effects disappear at
higher pitch angles; for θk = 80°, the average change in pitch angle
becomes negligible for particles with αini > 30°. Moreover, a fine
stripe structure traversing the resonance energy curves appears in
the high-amplitude plots. These new effects will be explained when
discussing diffusive behavior, where their origin becomes more
apparent.

The standard deviation in the equatorial pitch angle of co-
streaming particles is plotted in Figure 5, following the panel format
of Figure 4. The color bars of each individual panel go from zero to
max(αini,Ek)σφ(αeq). Starting again with the quasiparallel propagation
(θk = 5°, Figures 5A–C), we can see the suppressed diffusion at

low pitch angles, consistent with the lack of spread in pitch angles
observed in the particle trajectories (Figure 3A). The largest values
of σφ(αeq) are localized along the resonance energy curve, with
slight changes appearing for Bw0 = 1.6 nT at higher pitch angles,
where the phase trapping and bunching effects may enhance or
decrease the standard deviation. In the oblique case, diffusion at
higher pitch angles gets weaker with growing wave normal angle.
Unlike in the analysis of advection, we detect a clear structure of
maxima and minima along each resonant curve, which is related
to the zeros of Bessel functions that arise in the derivation of
harmonic resonances (see Section 5; Eqs 12–14, Eqs 22–24). The
fine structure appearing in the energy range of harmonic resonances
is now also more evident, especially in the high-amplitude case
(Figures 5F, I, L). By inspecting trajectory plots, its origin can
be traced to multi-resonance interactions, when particles phase-
organized by the resonance of order |n| at lower latitudes experience
a |n− 1| resonance at higher latitudes. It is of note that the fine
structure is also present in the quasiparallel case, showing that
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FIGURE 4
Average change ⟨Δαeq⟩φ in electron equatorial pitch angle for propagation along the EMIC wave packet (stopping point is the end of the wave packet or
the mirror point). All particles start at the equator, so the initial pitch angle αini on the abscissa is equal to the initial αeq. The columns are parametrized
by wave amplitude (left to right: 100 pT, 400 pT, and 1.6 nT), and the rows are parametrized by wave normal angle (top to bottom: 5°, 45°, 70°, and 80°),
forming a grid of twelve panels labeled (A–L). The color bars associated with each panel range from −max(αini,Ek)|⟨Δαeq⟩φ| to +max(αini,Ek)|⟨Δαeq⟩φ|. Vertical
stripes at higher pitch angles are related to non-resonant oscillations at mirror points and would disappear after a complete half-bounce. The green
dashed lines represent resonance energy curves calculated at λm = 0°.

the harmonic resonances are important even at WNA as low as
θk = 5°.

Concerning the strength of diffusion at lower pitch angles,
the test-particle simulations show a decreasing trend in σφ(αeq)
with increasing WNA at energies close to the n = −1 resonance.
Harmonic resonances get stronger compared to fundamental
resonances, but the overall diffusion at higher energies does
not change much because the increased strength of near-
equatorial harmonic interaction is compensated by the weaker
fundamental resonance encountered at higher latitudes. An
exception is the extreme ultrarelativistic energies (Ek ≳ 15 MeV),
where the interaction with very oblique waves causes slightly

stronger diffusion (Figures 5I, L). This behavior will impact the
transport of electrons into the loss cone, as discussed in the next
section.

3.2 Phase space density near the loss cone

The scattering effects analyzed in Section 3.1 transport particles
into the loss cone and, thus, contribute to the atmospheric
precipitation of relativistic electrons. As described in Section 2, we
trace particles back in time from the end of the wave packet to the
equator and map the PSD values of a known equatorial distribution
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FIGURE 5
Standard deviation σφ(αeq) in electron equatorial pitch angle for propagation along the EMIC wave packet. (A–L) correspond to the same combinations
of wave parameters as the respective panels in Figure 4, but the color bars in each panel now go from 0 to max(αini,Ek)σφ(αeq).

along particle trajectories to the starting point. The resulting PSD
distributions at the end of the packet are plotted in Figure 6 in the
(αend,Ek) space, where αend is the initial pitch angle value in the
sense of backward-in-time propagation. Since the number density
of relativistic electrons in our model is not scaled to any specific
spacecraft observation, we keep the normalized phase space density
units c−6Ω3

e0 used in the simulation code.
The quasiparallel EMIC wave manages to completely fill the

loss cone near fundamental resonance energy when its amplitude
is set to Bw0 = 400 pT (Figure 6B). Increasing the amplitude to
Bw0 = 1.6 nT extends the range of energies, with the complete loss
cone filling up to 10 MeV (Figure 6C).There are several noteworthy

features to this strongly perturbed PSD distribution. First, we
observe that particles near Ek = 13 MeV reach deeper into the loss
cone, a feature not seen in the low-amplitude wave precipitation
profile. This irregularity arises from the fast polarization reversal
experienced by quasiparallel waves, which abruptly stops the
resonant interaction—mild oscillations in σφ(αeq) across energy
are seen in the top left corners of Figures 5A–C, but the effect
on precipitation becomes clear only for strong waves. Second, the
energy profile of trapped particles immediately above αloss has a local
maximum near the fundamental resonance—this peak appears due
to pitch angle anisotropy when particles from high PSD regions at
higher pitch angles undergo scattering toward lower pitch angles.
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FIGURE 6
Electron phase space density distribution after resonant interaction with the EMIC wave captured at the end of the wave packet. Range in pitch angles
is limited to 0°–20° to focus on the loss cone. (A–L) correspond to the same combinations of wave parameters as the respective panels in Figures 4, 5,
but because the co-streaming particles were traced back in time, the pitch angle αend on the abscissa now represents the initial value at the end of the
subpacket. The curious small bumps on the boundary between zero and finite PSD values near 2 MeV in (F, I, L) arise due to fractional resonances—see
Section 3.3; Figure 8.

Third, the pitch angle distribution at energies from 3 MeV to
10 MeV is flattened, signifying a marked decrease in pitch angle
anisotropy. Fourth, as a consequence of the third point, there is no
apparent precipitation blocking, so phase space density inside the
loss cone reaches the value of trapped particle PSD.

The lack of precipitation blocking contradicts the predictions of
Bortnik et al. (2022) and may seem counterintuitive, especially after
seeing the strong upward advection at low pitch angles in Figure 4C.
To explain this observation, we consider the consequences of
Liouville’s theorem (i.e., constancy of PSD along phase space

trajectories), which is known to hold in the Hamiltonian system
of charged particles and electromagnetic waves constituting a
collisionless plasma (Ichimaru, 2004). Let us first assume that a
state has been reached where the PSD of precipitating and trapped
electrons are equal at a certain energy. Because EMIC waves cannot
efficiently accelerate electrons and change their energy, the PSD
along trajectories will always be the same. Therefore, no amount of
force bunching or other non-linear effects can disturb the uniform
pitch angle distribution. If the PSD in the loss cone were initially
higher than outside, the EMIC-induced scattering would mix the
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FIGURE 7
Effect of resonant interactions on electrons propagating against the EMIC wave packet. Physical quantities plotted in the first (A, D, G), second (B, E, H),
and third (C, F, I) columns correspond to Figures 4–6, respectively. Only a single amplitude value is used, Bw0 = 400 pT, and the wave normal
parametrization over rows of panels skips the quasiparallel case θk = 5°, where the resonance effects would be negligible except for extremely
ultrarelativistic energies (Ek ≳ 15 MeV). Note that because the electrons are now counter-streaming, the pitch angles on the abscissas αini and αend were
swapped, and particles with initial equatorial pitch angles >39° are missing from the forward-in-time simulations.

distribution, thus decreasing the precipitating PSD, but it would not
push it below the value of the trapped PSD. Non-uniformity along
the field line could complicate the argument if a broader range of
v‖ were considered, but the spread in v‖ at low pitch angles at a
fixed energy level is negligible. The apparent discrepancy between
backward-in-time PSDmapping and the transport coefficients from
Section 3.1 can be resolved by considering the initial distributions
of particles in the forward simulation. A uniform distribution in
(α,Ek,φ) is not uniform in (vx,vy,vz); consequently, the number of
particles per unit velocity space volume in the forward simulation
is much higher at lower pitch angles than at higher pitch angles.
Symbolically, we can write the unit volume as (working in a non-
relativistic setting for simplicity)

dV = dvxdvydvz =m−3/2√2Eksin α dEk dφ. (7)

The sin α term in the Jacobian expresses the smallness of velocity
space volume near α = 0. Therefore, the few test particles scattered
into the loss cone can have the same weight as all the force-bunched
particles escaping from the loss cone.

The effect of increasing obliquity on the PSD evolution
displayed in Figure 6D–L agrees with the analysis of diffusion

from Section 3.1. The loss cone is only partially filled near the
fundamental resonance energy for waves with Bw0 = 400 pT, and
the range of complete loss cone filling with Bw0 = 1.6 nT becomes
narrower with increasing θk. The penetration of non-zero PSD into
the loss cone at higher energies turns out to be mostly independent
of wave normal angle, except for ultrarelativistic energies, where
the very oblique waves show larger increases in precipitating PSD.
The jagged boundary between finite and zero values of PSD in the
case of strong, oblique waves (mainly Figures 6I, L) comes from the
fine multi-resonance structure observed in corresponding diffusion
plots in Figures 5I, L. The weak losses near half of the fundamental
resonance energy are related to non-linear fractional resonances,
which will be analyzed in depth in Section 3.3. Finally, we note
that the rapid decrease of σφ(αeq) with rising WNA at higher pitch
angles is not reflected in the PSDperturbations after a single quarter-
bounce but might become important after multiple bounces due
to the weak transport of particles from high-density regions of the
initial anisotropic distribution.

So far, we have investigated electron scattering and related
losses for propagation along the wave. However, as indicated
by Figures 3D–F, counter-streaming particles are also efficiently
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FIGURE 8
Behavior of fractional resonances explained by particle trajectories and standard deviations in equatorial pitch angle for an EMIC wave with wave
normal angle θk = 70°. (A–B) Changes in pitch angle along the field line at energies well below the equatorial fundamental resonance energy
ERmin ≈ 4 MeV. The wave amplitude is Bw0 = 1.6 nT. (C) Standard deviation in equatorial pitch angle plotted in logarithmic scale that spans three orders
of magnitude. Weak resonant effects near 2 MeV become apparent. (D–F) Same as (A–C), but for a 16 times smaller wave amplitude. The resonant
effects near ERmin/2 are now insubstantial compared to the fundamental resonance.

scattered by oblique EMIC waves, and significant particle losses are
to be expected. In Figure 7, we plot the quantities ⟨Δαeq⟩φ, σφ(αeq),
and f for electrons streaming against the medium-amplitude wave
(Bw0 = 400 pT) with oblique wave vectors. The quasiparallel case
is omitted because the right-handed wave component is negligible
until the polarization crossover at higher latitudes is reached, where
the resonance energies are already near the upper limit of our
Ek range. The first thing to notice is that the forward-in-time
propagating particles start away from the equator and have a limited
range of equatorial pitch angles; therefore, the resonance energy
curves appear stretched in the (αend,Ek) space. Unlike in the co-
streaming case, the advection and diffusion caused by fundamental
resonance grow with increasing WNA because the polarization
becomes more linear and the right-handed wave component gets
larger. This behavior is reflected in the PSD plots, where the
precipitating particles can travel deeper into the loss cone when
interacting with very oblique waves. For θk = 80°, the advection
and diffusion (and, as a consequence, the electron losses) become
comparable to the co-streaming case, showing the importance of
n > 0 resonances for the analysis of relativistic electron precipitation
by oblique EMIC waves.

3.3 Non-linear fractional resonances

In the discussion of Figures 6I, L, we mentioned the surprising
detection of electron scattering into loss cone at energies
Ek ≈ 2 MeV, far below the fundamental resonance energy. These
losses cannot have origin in non-resonant scattering because we
use a slowly varying amplitude profile along h, and also because
the non-resonant scattering would show as a broadening of the
fundamental resonance and not as a separate peak in energy
profile (An et al., 2022). Trajectories of particles with energies
Ek = 1.83 MeV and Ek = 2.12 MeV propagating along the high-
amplitude wave with θk = 70° (Figures 8A, B) reveal a spread in
αeq that does not disappear even after the particles leave the wave
field. This spread is somewhat weaker than the oscillations caused
by the fundamental cyclotron resonance. The oscillations can be
understood as the maximum possible non-resonant scattering in a
wave with a rectangular amplitude distribution along the field line.

Since the spread in αeq is too small to be clearly visible in
the σφ(αeq) plot from Figure 5I, we re-plot the diffusion with a
logarithmic color bar and show the results in Figure 8C. It becomes
apparent that we are observing a new type of resonance with
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a minimum resonance energy near ERmin/2. This new resonance
causes much weaker scattering than the fundamental resonance but
is roughly comparable to non-resonant oscillations. However, when
we look at the particle trajectories and diffusion from the simulation
with a small-amplitude wave (Bw0 = 100 pT), the new resonance
becomes much weaker than the non-resonant oscillations, and
the corresponding σφ(αeq) values are more than three orders of
magnitude below the fundamental resonance effect (Figures 8D–F).

Based on the numerical observations presented in Figure 8, we
identify the new behavior as the non-linear fractional resonance
of order n = −1/2. A simplified analytical derivation is provided
in Section 5, where we also identify fractional resonances of
order n = {±1/3,±1/2,±2/3,±3/2} and suggest that the non-linear
resonance energy spectrum is dense in the sense of rational
numbers. These resonances seem to be analogous to the sub-
cyclotron resonance of electrons with whistler waves described
within the Hamiltonian framework by Fu et al. (2015). The concept
of fractional resonances does not appear in quasilinear theory
because it arises from integration along perturbed trajectories
(compare with the integration along unperturbed trajectories
employed in quasilinear theory, as mentioned in the theoretical
works of Kennel and Engelmann (1966) and Allanson et al. (2022)).
In the non-linear treatment of whistler-electron scattering presented
by Omura et al. (2019), an integer resonance is chosen first, and
the non-linear scattering effects are obtained from perturbations of
near-resonant electrons. Suppose we instead implement a model of
large perturbations without specifying a resonance velocity/energy,
as in the example given in Eqs 27, 28, and proceed to analyze
power transfer between waves and particles (which is directly
related to pitch angle scattering through resonance diffusion
curves, as explained by Summers et al. (1998)). In that case,
fractional resonances will arise from the Bessel function expansion
of gyrophase evolution. An important property of the n = −1/2
is the scaling of scattering strength with the square of wave
amplitude—theoretically proven in Eqs 45, 46—which differs from
the known linear dependence for integer resonances.The non-linear
fractional resonances are, thus, expected to play a role only in
precipitation induced by very strong oblique waves.

4 Summary and discussion

We have numerically analyzed the dependence of relativistic
electron scattering on the wave normal angle and magnetic field
amplitude of helium band EMIC waves. Unlike in the previous
studies by Wang G. et al. (2017); Lee et al. (2018), we allow for very
oblique wave normal angles, θk = 70° and θk = 80°, and keep the
amplitudes more moderate (Bw0/B0eq < 1%). The presented analysis
of advective and diffusive behavior is comparable to the analysis
by Bortnik et al. (2022), where, however, much lower energy and
pitch angle resolution was adopted for parallel waves only. On the
other hand, the results of Bortnik et al. (2022) include a simulation
of scattering induced by hydrogen band waves. We opted not to
show figures from our hydrogen band simulations, as the onlymajor
difference from the helium band case is the shift in resonance
energies. The input parameters for hydrogen band simulations
differed in the following: wave frequency ω = 0.6Ωp0 = 2.3 Hz,
plasma frequency ωpe0/Ωe0 = 5, and density model coefficient

a = 1.0, and hmax is at the point where ω = 1.25ΩHe. The evaluation
of diffusive and advective properties and PSD perturbations similar
to Figures 4–7 is available in the Supplementary Material.

Our overall results can be summarized in three blocks:

1) Confirmation of previous results:
a) Harmonic resonancesn < −1 substantially affect the scattering

of relativistic electrons at low pitch angles for waves with wave
normal angles as small as θk = 5° (Wang G. et al., 2017). The
contribution from n > 0 resonances requires at least moderate
obliquity to become significant.

b) Positive advection of resonant particles at very low pitch
angles was detected and shown to dominate over diffusion
as wave amplitude increases. This is the effect described as
boundary reflection by Zhu et al. (2020) and non-linear force
bunching by Grach and Demekhov (2020) and Bortnik et al.
(2022).

c) The advective behavior of resonant particles can be positive
or negative, depending on their initial pitch angle and energy
(Lee et al., 2018). Particles that start at energies lower than
the resonance energy for a given pitch angle will, on average
(over gyrophases), experience a decrease in pitch angle,
while particles starting at higher energies will encounter the
resonance curve at higher latitudes and experience an average
increase in pitch angle.This is visualized by the blue–red stripe
pairs in Figure 4.

d) Increasing obliquity weakens the effects of n = −1 resonance
but enhances the resonant interaction for |n| > 1 and n = 1
(Wang G. et al., 2017).

e) Crossings of multiple resonance energies during one passage
through the waves result in a more stochastic pitch angle
evolution, described by Lee et al. (2018) as “complicated and
time-dependent phase trapping and bunching effects.” Under
our simplified wave model, these multi-resonance effects
appear after one quarter-bounce as a fine structure in the plots
of advection and diffusion when the EMIC wave is strong and
oblique (Figures 4I, L, 5I, L).

2) Disagreement with previous results:
a) Oblique waves seem to weaken the advection effects at low

pitch angles, contrary to the observations by Lee et al. (2018).
b) We do not observe any effects of precipitation blocking in

the PSD analysis (Figure 6), which is in disagreement with
the suggestion presented by Bortnik et al. (2022) that force
bunching caused by strong EMIC waves will decrease the
electron fluxes/PSD at low pitch angles.

3) New discoveries:
a) Losses of relativistic electrons by quasiparallel waves are

comparable to losses induced by oblique waves (Figure 6).
This behavior changes for ultrarelativistic electrons
(Ek ≳ 15 MeV, depending on wave parameters), where the
very oblique waves cause stronger precipitation.

b) Very oblique waves cannot efficiently scatter electrons at
higher pitch angles (α > 30° for θk = 80°, see Figure 5J–L).
Transport from high PSD regions at large pitch angles toward
the loss cone is facilitated only by quasiparallel waves.

c) Very oblique waves scatter co-streaming and counter-
streaming electrons with similar efficiency due to the high
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ellipticity, or in other words, due to comparable magnitude
of right-handed and left-handed amplitude components
(compare Figure 6K with Figure 7I).

d) High-amplitude oblique waves can scatter electrons below
minimum resonance energy through non-linear fractional
resonances. The pitch angle changes caused by n = −1/2 scale
with the square of wave amplitude are faster than the linear
scaling for n = −1 resonance.

When comparing our results to previous literature, a few points
must be made to avoid confusion: under our sign convention,
the interaction of right-handed waves with electrons happens at
resonances of order n ≥ 1, and the interaction with left-handed
waves corresponds with n ≤ 1, opposite to the convention used by
Wang G. et al. (2017). Furthermore, the strongest wave we use has
a relative amplitude Bw0/B0 = 0.64%, while that by Lee et al. (2018)
goes up to 10% (above the amplitude of the extremely intense
EMIC wave observations presented by Engebretson et al. (2015));
as a consequence, phase trapping has minimal impact on our PSD
mapping results, especially for oblique waves.

The disagreement in the dependence of advection on obliquity
between our results and those of Lee et al. (2018) comes from the
different approaches to wave modeling. Lee et al. (2018) implement
one wave field that is elliptically polarized but remains parallel,
and another wave field where the wave normal angle is non-zero,
but the polarization remains circular. According to the cold plasma
dispersion relation, which is strictly followed in our study, oblique
waves always have elliptical polarization (linear being considered as
a special case of elliptical), and parallel waves are always circularly
polarized, except for the singularity at the crossover frequency.
Deviations from circular polarization decrease the advection effects,
reconciling our results with those of Lee et al. (2018).

The lack of precipitation blocking is demonstrated in Section 3.2
through numerical PSD mapping and supported by arguments
based on Liouville’s theorem. The concept of EMIC precipitation
blocking was likely first introduced by Grach and Demekhov
(2020), who concluded that due to competition between phase
trapping and force bunching, the precipitating fluxes would reach
the strong diffusion limit, with no apparent decrease nearα = 0°. Our
observations corroborate this conclusion, except that the transport
of particles to low pitch angles is due to the symmetric (“diffusive”)
scattering, as observed in Figure 3B, where the particles stay in the
phase-trapping region only for a short time and do not become
phase-locked. Bortnik et al. (2022) suggested that Van Allen Probes
(RBSP) observations of dips in precipitating flux by Zhu et al. (2020)
could be explained by force bunching. However, the EMIC-induced
precipitating electron flux shown by Zhu et al. (2020) has a local
maximum at α = 0°, while the force-bunching effects should be
most effective at removing particles from this region.The spacecraft
observations are consistent with the simulation results of Grach and
Demekhov (2020), where the PSD distribution sometimes peaked
inside the loss cone.This effect is not clearly visible in the perturbed
distribution from Figure 6C because it requires strong phase
trapping. Such trapping may be possible with Bw/B0 > 1% rising-
tone EMIC emissions reported by Zhu et al. (2020) but not with
the monochromatic waves at moderate amplitudes implemented in
our simulations. We recall that transport caused by phase trapping
is non-local, allowing the mixing of phase space density from

distant points along the field line and violating the assumption
of localized scattering processes that were used in our simplified
argument against precipitation blocking (Section 3.2). Finally, we
must emphasize that the force bunching indeed removes particles
from the loss cone, but the important quantity for precipitation is
the net effect of upward and downward pitch angle motion.

Most of our new and original results are related to very
oblique propagation, which was omitted in previous literature on
EMIC-induced precipitation. We have shown that the precipitation
of relativistic electrons by very oblique waves is comparable to
quasiparallel waves, except for electron energies corresponding to
high-order resonances (n < −4). Note that we are not making a
comparison to the routinely investigated purely parallel waves with
θk = 0° because in situ spacecraft measurements (Allen et al., 2015)
always show at least a small amount of obliquity. Nevertheless,
when we consider the increased scattering effects of very oblique
waves on counter-streaming electrons, bounce-averaged diffusion
might be significantly increased compared to quasiparallel waves.
Unfortunately, we do not know how strong the oblique EMIC
waves can be, as we are not aware of any study that shows the
distribution of wave power over WNA and frequencies. Van Allen
Probes observations presented by Saikin et al. (2015) suggest that
strong helium band waves (average wave power >0.1 nT2/Hz) have
a lower average WNA than weak waves (average wave power
from 0.01 nT2/Hz to 0.1 nT2/Hz). Nevertheless, strong waves with
θk > 60° atL = 5were occasionally detected, justifying our parameter
choice.

To our knowledge, the non-linear fractional resonances were
never described before in the context of EMIC–electron interaction.
They are, however, conceptually identical to the sub-cyclotron
resonance of electrons with whistler waves, which was studied by
Fu et al. (2015). Kramer et al. (2012) detected fractional resonances
in fusion devices in the context of ion drift-orbit resonance with
magnetohydrodynamic waves. Given the different physical settings,
the theoretical approach taken by Kramer et al. (2012) is not the
same as ours, but they arrive at a formula consisting of a multi-index
sum over a product of Bessel functions, not unlike our Eqs 38–40.
Non-linear interactions at fractions of the plasma frequency were
theoretically described by Lewak and Chen (1969) and used to
explain the observations made by the Alouette II spacecraft. The
EMIC-electron fractional resonances, especially the resonance of
order n = −1/2, might provide a possible explanation for the
precipitation of subrelativistic electrons (Hendry et al., 2017; 2019;
Capannolo et al., 2019) if we consider a high-density plasma where
the fundamental resonance energy can drop to 1 MeV (compare
with the ωpe dependence plotted in Figure 1). However, to evaluate
how competitive this mechanism is in comparison to the non-
resonant scattering (Chen et al., 2016; An et al., 2022), we need to
obtain a realistic distribution of wave power/amplitude over wave
normal angles, as mentioned earlier. Endeavors in this direction are
left for future study.

5 Derivation of fractional resonances

The existence of fractional resonances from Section 3.3 can be
derived from the equations of motion for an electron interacting

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2023.1163515
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Hanzelka et al. 10.3389/fspas.2023.1163515

with an elliptically polarized wave. We start by defining the wave
fields.

Ew = x̂Ewx sinψ− ŷEwy cosψ+ ̂zEwz sinψ, (8)

Bw = x̂Bw
x cosψ+ ŷBw

y sinψ− ̂zBw
z cos ψ, (9)

where Ewx < 0 and Bw
y < 0 for left-hand polarized waves. The three

hatted vectors form the standard basis of a Cartesian system. The
wave phase seen by a particle with gyrophase φ is

ψ = ωt− kzz− kxρL sinφ+ const. ≡ ψB − β sinφ, (10)

and it includes the effects of finite Larmor radius (FLR) ρL through
the quantity

β =
γv⊥kx
Ωe
, (11)

while ψB represents the wave phase at the gyrocenter. The constant
initial phase will be dropped in the following analysis.

The equations of motion for an electron with the gyrocenter
at x = y = 0 propagating through the wave field on a homogeneous
background field B0‖ ̂z (field inhomogeneity is not important for the
following resonance spectrum analysis) can be written as

d(γvz)
dt
= e
m
(v⊥B

w
R sin(φ−ψ) + v⊥B

w
L sin(φ+ψ)

− Ewz sinψ) ,
(12)

d (γv⊥)
dt
= e
m
((UR − vz)B

w
R sin(φ−ψ)

+ (UL − vz)B
w
L sin(φ+ψ)) ,

(13)

dφ
dt
= e
m
(
UR − vz
γv⊥

Bw
R cos(φ−ψ)

+
UL − vz
γv⊥

Bw
L cos(φ+ψ) −

Bw
z

γ
cosψ+

B0

γ
).

(14)

Here, we decomposed the wave field into left-hand and right-
hand circularly polarized components (Omura et al., 2019)

ER = E
w
R (x̂sinψ− ŷcos ψ) , EwR =

Ewx +Ewy
2
, (15)

EL = E
w
L (−x̂sin ψ− ŷcosψ) , EwL =

Ewy −Ewy
2
, (16)

BR = B
w
R (x̂cos ψ+ ŷsinψ) , Bw

R =
Bw
x +Bw

y

2
, (17)

BL = B
w
L (x̂cos ψ− ŷsinψ) , Bw

L =
Bw
x −Bw

y

2
, (18)

and defined the ratios

UR =
EwR
Bw
R
, UL =

EwL
Bw
L
, (19)

which are related to phase velocities (they reduce exactly to
phase velocities in the case of circularly polarized parallel-
propagating waves). In further calculations, we will also use the
normalized amplitude components Ωw

R = B
w
Re/m, Ωw

L = B
w
L e/m, and

Ωw
z = Bw

z e/m.
The average change in electron kinetic energy per one wave

period T can be expressed as

⟨
dEk
dt
⟩

T
= − e

T
∫
T

0
dt(v ⋅Ew)

= − e
T
∫
T

0
dt(v⊥ (E

w
R −E

w
L )cos φsin ψ

− v⊥ (E
w
R +E

w
L ) sinφ cosψ+ vzE

w
z sinψ) ,

(20)

where we used the decompositions from Eqs 15–18. Let us denote
the integrand I and restate it in the form

I = − e
T
(−v⊥ (E

w
R sin(φ−ψ) +E

w
L sin(φ+ψ)) + vzE

w
z sin ψ) . (21)

We may now apply the Jacobi–Anger expansion (Abramowitz
and Stegun, 1965) and express the trigonometric functions in terms
of Bessel functions of the first kind.

sin(φ−ψ) = sin(φ−ψB + β sinφ) =
∞

∑
n=−∞

Jn−1 (β) sinζn

=
∞

∑
n=−∞

Jn (β) sinζn+1,
(22)

sin(φ+ψ) = sin(φ+ψB − βsin φ) = −
∞

∑
n=−∞

Jn+1 (β) sinζn

= −
∞

∑
n=−∞

Jn (β) sinζn−1,
(23)

sin (ψ)= sin(ψB − β sinφ) = −
∞

∑
n=−∞

Jn (β) sinζn, (24)

where

ζn = nφ−ψB (25)

is the relative phase angle for the nth resonance. Note that while
the changes in kinetic energy of electrons interacting with EMIC
waves are typically negligible, these small energy changes are directly
related to large changes in pitch angle through the particle motion
along resonant diffusion curves (Summers et al., 1998).

The non-linear effect of individual resonances is usually studied
by performing an expansion in vz about the nth resonance velocity.

VRn =
1
kz
(ω+

nΩe

γ
). (26)

Here, we instead expand the gyrophase to the first order of
perturbations due to wave—particle interactions and plug them into
the Jacobi—Anger expansions fromEqs 22–24.Wewriteφ ≈ φ0 +φ1
with

dφ0
dt
=
Ωe

γ
, (27)

dφ1
dt
= −

vz
γv⊥

Ωw
R cos(φ−ψ) −

vz
γv⊥

Ωw
R cos(φ+ψ) , (28)

where we have used the inequalities |UL|≪ |vz| and |UR|≪ |vz|
for EMIC waves and relativistic electrons, and we also removed
the Ωw

z term by focusing on low pitch angle regions where Ωw
z ≪

Ωw
R,Lvz/γv⊥. For simplicity, we will further neglect the perturbations

to vz and v⊥. In the case of v⊥, the factors in front of sines in Eq. 13,
divided by γv⊥, are the same as the factors in front of cosines in
Eq. 14, suggesting that the relative perturbations in v⊥ and φ are
comparable. However, v⊥ enters the computation either through
dφ1/dt, so we can consider that perturbation to be of second order,
or through β, which simply scales the FLR effects and can, thus, be
kept constant without losing information about resonant behavior.
In the case of vz , the approximation can be justified only for low pitch
angles since comparing the factors in Eqs 12, 14 sets the requirement

Frontiers in Astronomy and Space Sciences 14 frontiersin.org

https://doi.org/10.3389/fspas.2023.1163515
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Hanzelka et al. 10.3389/fspas.2023.1163515

v⊥/vz ≪ vz/v⊥ (vz enters directly into ψ through kzz = kzvzt, so the
perturbation would be of the first order if we did not use the low α
approximation).

To cut off the perturbation expansion, we replace ψ with ψB in
Eqs 27, 28. Then, by integrating φ1 over time, we can obtain the
gyrophase perturbation,

φ1 = −R1 sin(φ0 −ψB) − L1 sin(φ0 +ψB) . (29)

Here, we introduced the substitutions

R1 =
vz
v⊥

ΩR

ν1
, (30)

L1 =
vz
v⊥

ΩL

ν−1
, (31)

where

ν±1 =Ωe ∓ω± kzvz (32)

is a quantity expressing the deviation from the fundamental
resonances n = ±1.

Going back to the Bessel function expansion from Eqs 22–24,
we can now write

sinζn≈ sin(n(φ0 +φ1) −ψB)
= sin(nφ0 − nR1 sin(φ0 −ψB))cos(−ψB − nL1 sin(φ0 +ψB))
+ cos(nφ0 − nR1 sin(φ0 −ψB)) sin(−ψB − nL1 sin(φ0 +ψB)) .

(33)

Using the second form of the expansions, we can expand each of
the trigonometric functions from Eq. 35 into

sin(nφ0 − nR1 sin(φ0 −ψB))

= −
∞

∑
r=−∞

Jr (nR1) sin(r(φ0 −ψB) − nφ0) ,
(34)

cos(−ψB − nL1 sin(φ0 +ψB))

=
∞

∑
l=−∞

Jl (nL1)cos(l(φ0 +ψB) +ψB) ,
(35)

cos(nφ0 − nR1 sin(φ0 −ψB))

=
∞

∑
r=−∞

Jr (nR1)cos(r(φ0 −ψB) − nφ0) ,
(36)

sin(−ψB − nL1 sin(φ0 +ψB))

= −
∞

∑
l=−∞

Jl (nL1) sin(l(φ0 +ψB) +ψB) .
(37)

Since R1 and L1 are proportional to the relative wave magnetic
field Bw/B0, we can limit the summations to |r| ≤ 1 and |l| ≤ 1. As
a further simplification, we will limit the resonance number n to
−1,0,1, which is a reasonable approximation when β2 ≪ 1; i.e., when

pitch angles are low and θk is not too close to the resonance cone.We
then insert Eqs 34–37 into Eqs 33, 22 and finally obtain

sin(φ−ψ)≈ −
1

∑
n,r,l=−1

Jn (β) Jr ((n+ 1)R1) Jl ((n+ 1)L1)

× sin((r− n+ l− 1)φ0 + (l− r+ 1)ψB) ,
(38)

sin(φ+ψ)≈
1

∑
n,r,l=−1

Jn (β) Jr ((n− 1)R1) Jl ((n− 1)L1)

× sin((r− n+ l+ 1)φ0 + (l− r+ 1)ψB) ,
(39)

sin (ψ)≈ −
1

∑
n,r,l=−1

Jn (β) Jr (nR1) Jl (nL1)

× sin((r− n+ l)φ0 + (l− r+ 1)ψB) .
(40)

Comparing the prefactors of φ0 and ψB results in resonant
fractions.

qR = −
r− n+ l− 1
l− r+ 1

, (41)

qL = −
r− n+ l+ 1
l− r+ 1

, (42)

qz = −
r− n+ l
l− r+ 1
. (43)

Apart from the integer values (which represent fundamental and
harmonic resonances), the fractions can also evaluate to ±1/3, ±1/2,
±2/3, and ±3/2; other fractional values would appear if we extended
the summation range in n and removed the approximation β2 ≪ 1.

We now focus on the resonance −1/2, which contributes to
electron diffusionnearEk = 2 MeV inFigure 8C.The related relative
phase angle φ0 + 2ψB corresponds to resonance velocity

VR−1/2 =
1
kz
(ω−

Ωe

2γ
). (44)

Going back to the average change in energy defined in Eq. 21,
we can perform the Taylor expansion of Bessel function to the first
order and show that the termwithEwR does not contribute to the−1/2
resonance, while the EwL term contributes to the integrand by

−
eγkxv⊥vzE

w
LΩ

w
R

2TΩeν1
, (45)

where we have used Eqs 30, 11. The Ewz also has a non-zero
contribution to the integrand

−
ev2zE

w
z Ω

w
L

2Tv⊥ν−1
. (46)

Due to the terms EwLΩ
w
R and Ewz Ω

w
L , the energy change caused

by −1/2 resonance scales with a square of the wave amplitude. On
the other hand, for the integer resonance terms with r = l = 0, the
quantities Ωw

R and Ωw
L disappear, and the scaling reduces to the first

power in amplitude. This analytical result explains the diminishing
of the −1/2 resonance in Figure 8 when the amplitude is decreased.
Notice that due to the term 1/ν−1, fractional resonances very close
to n = −1 retain non-negligible strength and contribute to resonance
broadening.

Frontiers in Astronomy and Space Sciences 15 frontiersin.org

https://doi.org/10.3389/fspas.2023.1163515
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Hanzelka et al. 10.3389/fspas.2023.1163515

The derivation provided in this section works for whistler-mode
waves as well, except for the approximations UR ≪ vz , UL ≪ vz .
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