AUTHOR=Pettit Joshua , Elliott Sadie , Randall Cora , Halford Alexa , Jaynes Allison , Garcia-Sage Katherine TITLE=Investigation of the drivers and atmospheric impacts of energetic electron precipitation JOURNAL=Frontiers in Astronomy and Space Sciences VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2023.1162564 DOI=10.3389/fspas.2023.1162564 ISSN=2296-987X ABSTRACT=

The drivers and atmospheric impacts of energetic electron precipitation are not yet well understood. Further, electron precipitation is often poorly represented in atmospheric modeling. Additional investigations of the drivers and impacts of electron precipitation are needed to improve models and space weather forecasting requirements. To accurately represent the troposphere through the ionosphere in model simulations, it is vital to account for the chemistry accurately. Electron precipitation is a frequent, yet often ignored middle to high latitude forcing that can have dramatic effects on the middle and upper atmosphere. Over the past decade, several electron precipitation data sets have been developed, however, validation has been difficult due to the lack of independent observations of electron fluxes. Additionally, the limited number of satellites making measurements of global magnetospheric wave activity in concert with the resulting electron precipitation restricts our ability to accurately capture the drivers simultaneously with the precipitation. Accurate characterization of the drivers is needed for physics-based magnetosphere modeling. Likewise, accurate precipitating electron fluxes and relative energies are needed to improve our atmospheric modeling studies. Finally, in order to properly validate and improve our current modeling efforts, observations of atmospheric composition are necessary.