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Many upcoming and proposed missions to ocean worlds such as Europa,
Enceladus, and Titan aim to evaluate their habitability and the existence of
potential life on these moons. These missions will suffer from communication
challenges and technology limitations. We review and investigate the applicability
of data science and unsupervised machine learning (ML) techniques on isotope
ratio mass spectrometry data (IRMS) from volatile laboratory analogs of Europa
and Enceladus seawaters as a case study for development of new strategies for icy
ocean world missions. Our driving science goal is to determine whether the mass
spectra of volatile gases could contain information about the composition of the
seawater and potential biosignatures. We implement data science and ML
techniques to investigate what inherent information the spectra contain and
determine whether a data science pipeline could be designed to quickly
analyze data from future ocean worlds missions. In this study, we focus on the
exploratory data analysis (EDA) step in the analytics pipeline. This is a crucial
unsupervised learning step that allows us to understand the data in depth before
subsequent steps such as predictive/supervised learning. EDA identifies and
characterizes recurring patterns, significant correlation structure, and helps
determine which variables are redundant and which contribute to significant
variation in the lower dimensional space. In addition, EDA helps to identify
irregularities such as outliers that might be due to poor data quality. We
compared dimensionality reduction methods Uniform Manifold Approximation
and Projection (UMAP) and Principal Component Analysis (PCA) for transforming
our data from a high-dimensional space to a lower dimension, and we compared
clustering algorithms for identifying data-driven groups (“clusters”) in the ocean
worlds analog IRMS data and mapping these clusters to experimental conditions
such as seawater composition and CO2 concentration. Such data analysis and
characterization efforts are the first steps toward the longer-term science
autonomy goal where similar automated ML tools could be used onboard a
spacecraft to prioritize data transmissions for bandwidth-limited outer Solar
System missions.

KEYWORDS

machine learning, exploratory data analysis, mass spectrometry, ocean worlds analog
data, unsupervised learning, science autonomy

OPEN ACCESS

EDITED BY

Miriam Rengel,
Max Planck Institute for Solar System
Research, Germany

REVIEWED BY

Sascha Kempf,
University of Colorado Boulder,
United States
Lukas Mandrake,
NASA Jet Propulsion Laboratory (JPL),
United States

*CORRESPONDENCE

Victoria Da Poian,
victoria.dapoian@nasa.gov

RECEIVED 30 December 2022
ACCEPTED 02 May 2023
PUBLISHED 15 May 2023

CITATION

Da Poian V, Theiling B, Clough L,
McKinney B, Major J, Chen J and Hörst S
(2023), Exploratory data analysis (EDA)
machine learning approaches for ocean
world analog mass spectrometry.
Front. Astron. Space Sci. 10:1134141.
doi: 10.3389/fspas.2023.1134141

COPYRIGHT

© 2023 Da Poian, Theiling, Clough,
McKinney, Major, Chen and Hörst. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Astronomy and Space Sciences frontiersin.org01

TYPE Original Research
PUBLISHED 15 May 2023
DOI 10.3389/fspas.2023.1134141

https://www.frontiersin.org/articles/10.3389/fspas.2023.1134141/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1134141/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1134141/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1134141/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2023.1134141&domain=pdf&date_stamp=2023-05-15
mailto:victoria.dapoian@nasa.gov
mailto:victoria.dapoian@nasa.gov
https://doi.org/10.3389/fspas.2023.1134141
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2023.1134141


1 Introduction

Future planetary spacecraft will be equipped with next-
generation instruments producing more data than can be sent
back to Earth, while facing severe operations and transmission
limitations (e.g., communication delays, limited bandwidth,
limited reconnaissance (Thompson et al., 2012), harsh
environmental conditions, and limited resources such as CPU
and onboard memory). Due to these communication challenges,
the ability to autonomously detect signals of scientific interest
onboard the spacecraft could greatly benefit these missions by
enabling data prioritization, thus increasing mission science
return from outer Solar System targets. Undoubtedly, in situ
missions to more challenging targets such as Mercury, Venus,
and ocean worlds (e.g., Europa, Enceladus, Triton) will demand
an innovative approach to mission design and operations to
maximize science return.

Within the last few decades, ocean worlds have become the
targets of several future space exploration missions. The ocean
worlds include some icy moons of Jupiter, Saturn, Uranus,
Neptune, and several dwarf planets in which oceans exist or may
have existed; they represent opportunistic targets to find extant life
beyond Earth, and could be natural laboratories to study the
prebiotic processes that led to the emergence of life on Earth.
Missions to these targets must overcome limited power and
communication windows, and long communication delays.
Therefore, future planned and possible missions to icy ocean
worlds in the next decades will require innovations in
technology, especially to meet astrobiological goals.

To overcome such challenges to ocean worlds missions, we
envision an agile science operations plan (Thompson et al., 2012)
wherein the spacecraft and flight software work together for onboard
analysis of the acquired science data to inform subsequent actions to
take. Some operations will need to shift from the current
teleoperated data collection to automated onboard analysis in
order to reduce the need for ground-based analysis and decision-
making processes, which will enable decreased downtime in science
data collection and increased science return. We posit that
developing such an “agile” and modular architecture would
enable any future mission to adapt the architecture for its
instrumentation and science goals. Agile science operations have
been studied for primitive bodies and deep space exploration.
Thompson et al. (2012) describes this capability for comet
sample return missions due to needs for near real-time target
analysis and characterization to select a safe and effective
sampling scheme in the subsequent spacecraft operations. Chien
et al. (2014) further investigates this potential through the
development of onboard autonomy for imaging instruments (e.g.,
navigation cameras). The ideal operations plan would enable the
spacecraft to collect science data and talk to each subsystem in order
to prioritize resources to meet science goals while respecting
engineering constraints. It would be organized as follows: 1)
acquire scientific data, 2) analyze scientific data onboard, 3)
detect prespecified features (variables, predictors or attributes) of
interest, 4) decide next operations for generating new data
acquisition based on prespecified priorities set by the science
team, 5) update the operational plan to acquire new data based
on prioritization. This strategy would not only enhance science

return, but would also enable science “on-the-fly” and science in
environments with poor or no communication.

Some of these capabilities have been developed or are in
development. For planetary science missions, Mars has been the
main target of various investigations of autonomy. These include
the detection of dust devils and clouds on Mars using the Spirit and
OpportunityMars Exploration Rovers (MER) (Andres et al., 2008), as
well as the Autonomous Exploration for Gathering Increased Science
(AEGIS) system on the Mars Science Laboratory (MSL) mission to
autonomously detect targets of interest using the ChemCam
instrument (Francis et al., 2015; Francis et al., 2017). Ocean worlds
have been targets for detection algorithms investigations, such as the
research of Wagstaff et al. (2019) on the detection of thermal
anomalies (hot spots), compositional anomalies, and plumes on
Europa during flybys of the future Europa Clipper. Most of this
research has focused on imaging techniques to develop autonomy for
space missions, and on data treatment for dimensionality reduction
strategies. In contrast, we focus on similar advancements for mass
spectrometry data, a challenging field due to the large data volumes of
individual spectra, and a field prime for development and maturation
of autonomous capabilities. Indeed, several teams are working to
develop such capabilities (e.g., Da Poian et al., 2022; Mauceri et al.,
2022). Mauceri et al. (2022) investigated the compression of raw mass
spectra of the capillary electrophoresis coupled to mass spectrometry
(CE-MS) instrument for the ocean world’s life surveyor (OWLS)
instrument suite. Crucial to developing such useful onboard tools is
exploratory data analysis (EDA), which is a common practice in data
science and machine learning that uses a range of statistical and
unsupervised learning to understand patterns in data.

One of the main motivations for the exploration of icy ocean
worlds is their potential habitability, making them prime candidates
in the search for life in our Solar System. An invaluable tool to
support this effort is mass spectrometry (MS). MS is a technique
with a rich heritage in planetary missions ranging from Apollo 17,
Mars Viking Lander, Cassini-Huygens, to Mars Science Laboratory
(MSL), and is used to characterize the chemical composition of
planetary rocks, ice, and atmospheres (Mahaffy, 1999). It enables the
identification and quantification of molecules, macromolecules from
samples, and the detection of ions within the samples due to their
mass-to-charge ratio (m/z). Mass spectrometers produce high-
dimensionality output data that can be difficult to analyze
because of noise. For this purpose, data-driven tools can greatly
benefit/contribute to mass spectrometry analysis in different
processing steps (removing noise, filtering corrupt spectra,
preliminary categorization for prioritization) and discovery-
driven inquiry (Chou et al., 2021). Mass spectrometry enables a
comprehensive approach in providing complex measurements of
chemical composition, with more quantitative data such as isotopic
ratios and elemental abundances, as well as the observation of
possible biosignatures through physical and chemical
characteristics such as elemental distributions and isotopic
fractionations (Neveu et al., 2018).

Future icy ocean world missions will be equipped with highly
developed mass spectrometers enabling isotope ratio measurements
of the volatiles evolving from the exosphere (a very tenuous
atmosphere) and from the plumes. A clear understanding of
isotopic fractionation will be essential to evaluate potential
isotopic biosignatures for future ocean worlds missions. For
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instance, the MAss Spectrometer for Planetary EXploration
(MASPEX) onboard the Europa Clipper mission will be able to
analyze the isotopic composition of volatiles (e.g., CH4, H2O, NH4,
CO2, etc.) (Brockwell et al., 2016) during fly-bys of Europa. We not
only have to assess the capabilities ofMS instruments to perform this
task during fly-bys, but also evaluate the potential ability of onboard
software in future missions (e.g., Enceladus Orbilander) to
autonomously pre-process and identify signals of higher interest
to enable data transmission prioritization.

In this paper, we describe EDA relevant for development of
future AI and ML tools for mass spectrometry (MS). Here we use
isotope ratio mass spectrometry (IRMS) data analyzed from
laboratory analogs of ocean worlds as a use case to demonstrate
how EDA can be used to inform data processing for further
algorithm development. We describe an analytics pipeline with
data science techniques to better understand the dataset(s) under
study before applying supervised machine learning (ML)
algorithms to identify and characterize specific features from
ocean worlds analogs volatiles. As a longer-term goal, we
envision the concept of science autonomy (Theiling et al., 2020;
2022; Da Poian et al., 2022) where data analysis processes–some of
which are discussed in the current study–could be used onboard a
spacecraft to conduct real-time data analysis and decision-making,
and prioritize data transmission for bandwidth-limited outer Solar
System missions, which could greatly enhance the science
relevance of the limited data returned to Earth. This paper is
not meant to be an exhaustive presentation of ML and data science
tools for space exploration missions using mass spectrometry. We
refer the reader to recent ML papers using mass spectrometry (Da
Poian et al., 2022; Mauceri et al., 2022) as well as relevant
methodologies cited in these papers and (Theiling et al., 2022).
The main objective of this paper is to share a refined method and
provide lessons learned and insights in the development of data
analysis tools focusing on mass spectrometry data for future
planetary missions.

2 Methods and results

2.1 Data science and ML overview

Machine learning is a sub-discipline of computer science that
aims to develop systems that can learn from data in order to support
decision making processes. While several types of ML algorithms
exist, the two main categories are supervised learning and
unsupervised learning (Figure 1). In supervised learning, input
data is given with labels: X usually represents an m by p matrix of
input data with p features (equivalently referred to as variables,
predictors or dimensions) and m samples or observations, and y
represents a vector of class labels for the samples that the algorithms
will learn to predict. The main goal is to use algorithms to optimize
mathematical (statistical) models of the p features to best fit the class
label y. For supervised learning optimization, it is important to
include cross-validation and, when feature selection is used, nested
cross-validation to avoid overfitting (Parvandeh et al., 2020). These
models are then used to predict an output given new data previously
unseen by the model. Algorithms learn by minimizing the error
measured between the algorithms’ results and the correct outputs
(given labels y). Common applications of supervised ML are for
prediction–making a prediction of the output label for new unseen
data, and information–helping to understand the relationship
between inputs and output(s). In contrast, unsupervised learning
input samples do not include external labels, y, for making
predictions, and, thus, do not require cross-validation. The main
goals of unsupervised learning are to explore the features and
samples in the data matrix X and study the intrinsic structure of
the data. Unsupervised ML is often used for clustering–grouping the
data in similar groups or by similar features–and for dimensionality
reduction–simplifying the datasets by reducing the number of
features (dimensions).

During the advancement of a data science or ML project, it is
essential to keep in mind that 1) the choice of the approach depends

FIGURE 1
Summary of supervised learning and unsupervised learning approaches in machine learning applications.
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on the goal of the project, and 2) the goal(s) must be realistic and
achievable. Moreover, the approach needs to be defined based on the
structure and the properties of the data, which EDA helps the
scientists understand. The problem to solve, and the available
resources like data and domain knowledge will change the
strategy to apply. Moreover, the science experts (in our case,
mass spectrometry scientists) and data scientists need to work in
close collaboration to correctly implement tools to achieve the main
science goal(s), while respecting the project or mission constraints.
In this work, we introduce a data science and ML pipeline for EDA
of ocean worlds analog spectra, keeping in mind that similar
techniques could be applied to other planetary instruments’ datasets.

2.2 Dataset description

Here we use laboratory analog datasets from Theiling (2021), as
well as new data from ocean worlds seawater analogs and associated
CO2 that interacted with the seawater (Figure 2). These Enceladus-
and Europa-relevant laboratory analog ocean world seawaters were
previously analyzed to refine the current carbon and oxygen isotopic
fractionation models for seawaters of various composition and
pH (Theiling, 2021). In the present study, these data are used to
understand the potential of CO2 spectra to cluster by seawater
environment. These seawaters are composed of varying ionic
strengths and combinations of NaCl, MgCl2, NaHCO3, MgSO4,
and Na2SO4. CO2 mixed with helium was injected in varying
concentrations (0%, 0.3%, 1%, and 2%) to study the isotopic
fractionation that occurs as each solution interacts with the CO2.
Each experiment was prepared and analyzed in triplicate.
Experiments were equilibrated over varying times: 24, 48, 72, and
168 h. The standard equilibration time used after initial
experimentation was 168 h. Isotope ratios (δ13C and δ18O) were
analyzed using a trace gas analyzer (Gasbench II) coupled to an

isotope ratio mass spectrometer (IRMS: Thermo Finnigan Delta V
Advantage). Theiling (2021) demonstrates that the CO2

concentration and pH affect the isotopic fractionation, which
would affect isotope ratios measured during missions to
Enceladus or Europa differently. In our present study, we use
this CO2 IRMS dataset to develop EDA methods, automated
quality checks, processing, filtering, data analysis, and ML
pipelines for predictions of seawater composition and
identification of biosignatures. For EDA methods detailed in the
current study, these proof-of-concept tools include basic data
analysis methods and unsupervised ML techniques for detection
and visualization of the data structure. Supervised ML techniques to
learn underlying complex models and predict the composition of
new, unseen data are the subject of future work. The driving goal of
these algorithms is to develop an analytical software tool that could
be used by mission scientists as a rapid data analysis method for
returned data. A longer-term goal is to deploy further analytical ML
tools onboard a spacecraft for automated real-time data analysis and
decision-making.

2.3 Preprocessing

Data from each experiment is composed of several
measurements of volatiles over time in the headspace of a 12 mL
vial containing 0.5 mL of an analog seawater. Experiments consist of
repeated sampling using a double walled needle that exchanges
sample gas with inert helium. These volatile measurements are then
transferred to the IRMS through an 8-way valve, which effectively
produces 10 discrete “sample” peaks (Figure 3). The data collection
strategy was organized around several factors, with variations of
each one as described in Table 1.

Data from each experiment is composed of raw chromatograms
(x-axis: time (s), y-axis: voltage (mV)) and extracted data in tables

FIGURE 2
Schematic illustration of the internal structure and subsurface and surface interactions on Enceladus. CO2 was measured in Enceladus’s plumes by
Cassini, and is an expected product of rock-water interaction at the seafloor. This CO2 would interact with the ocean before plume ejection. Laboratory
experiments simulate the interaction of CO2 with the seawater, and CO2 is analyzed from the gaseous headspace. Figure modified from NASA/JPL-
Caltech.
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representing spectral features such as isotope ratios (for CO2),
voltages (mV), and times (s), calculated features such as the
fractionation values of these ratios (δ13C, δ18O), as well as
experiment metadata such as CO2 preparation concentrations,
compound information, etc. Before training an ML algorithm to
classify biotic versus abiotic compounds for instance, or to classify
between the amount of injected CO2, we need to understand the
dataset and process it into high-quality input data for further data
science and ML algorithm investigation/development. The first step
consists of pre-processing the data from raw experimental data using
automated quality analysis/quality control (QA/QC) designed using
expert knowledge of our dataset, replicating the checks usually
performed by science operations teams.

2.3.1 Raw data to quality checked data
Spectra from trace gas analysis using the Gasbench-IRMS are

usually composed of 10 sample peaks, 5 reference peaks (reference
gas measurements), and a valve flush peak to remove contamination
from the previous sample (peak number 3) (Figure 3). The

automated QA/QC pipeline outputs calibrated high-quality
experimental data and removes poor-quality data while returning
a summary of the analysis. This quality check pre-processing step
prepares the dataset to be as robust as possible for follow-on
statistical analyses and ML training. Some common data quality
issues result from constricted flow and air contamination or sample
transfer line clogging, which result in poor sample peak definition,
additional peaks, inconsistency, or poorly defined or organized data.
This pre-processing step is based on domain knowledge from IRMS
experts who have developed a defined, agreed-upon set of rules and
standards governing the experiment and dataset. For instance, a
common quality check rule is that each spectrum has a defined
number of peaks with a maximum of 18 peaks and a minimum of
14 peaks. For example, a simple quality check is for the expected
number and retention time of peaks, since they are specified at the
onset of the IRMS experiment and occur at programmed times.
There are five reference peaks (peak numbers 1, 2, 4, 5, and 16), a
flush peak (peak number 3), and ten sample peaks (peaks 7–15).
Periodically during the high-throughput MS experiments, the IRMS

FIGURE 3
Typical trace gas analysis-IRMS example with 5 rectangular reference peaks (peaks 1, 2, 4, 5, 16 = orange rectangle), a valve flush peak to remove
contamination (peak 3), and 10 sample peaks (blue rectangle). In our data processing, QA/QC, and ML analyses, we remove the first peak of the replicate
sample peaks (peak 6) as it can potentially include residual gas from the previous sample.

TABLE 1 Primary variables of the ocean worlds analog experiments data collection strategy. The composition of the seawaters varied by salt type, concentration,
and whether themixture was a single ormultiple salt solution. The amount of initial CO2 interacting with these seawaters was varied, and whether seawaters were
inoculated with single strains of microbes or complex microbial ecosystems. Equilibrium time was varied to compare data from disequilibrium conditions (<72 h)
with those at equilibrium (≥168 h).

Experimental parameter names Experimental parameter values

CO2 concentrations no CO2 (0%), 0.3% CO2, 1% CO2, and 2% CO2

Composition Seawaters (varying from low to high ionic
strength)

NaCl, MgCl2, NaHCO3, MgSO4, Na2SO4 (single or combinations of single seawaters)

Equilibrium time 24 h (1 day), 48 h (2 days), 72 h (3 days), 168 h (a week)

Microbial content Microbial content: single strain (e.g., Desulfotomaculum thermocistermum), uncharacterized
microbial mixture; volume (uL). C: control (growth medium)
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samples known compounds (named “internal standards”) with
known isotope fractionations to verify the quality of the run. In
the creation of the studied dataset, we remove the flush peak (peak
number 3 if present) as its main purpose is to remove contamination
in the gas transfer system, and remove the first sample peak (peak
number 6) as contamination from prior sample is sometimes present
in the first subsample peak.

2.3.2 Data: from raw MS to time-averaged data
Mass spectrometers transfer samples in a gaseous form and

ionize the sample gas to convert it into charged particles, and
peripheral instruments are responsible for converting solid,
liquid, or gas samples into a gas at some pressure or rate
required by the instrument. The ionized gas is then accelerated
toward detectors that determines the particles’ mass, which may be
performed by measuring multiple times over a range of mass-to-
charge (m/z) (e.g., ion trap mass spectrometry (ITMS)), or by
interacting the charged particles with a magnet to deflect their
path, and timing their transit to the detectors (e.g., time-of-flight
(TOF) mass spectrometry). For SAM (Sample Analysis at Mars)
instrument onboard Curiosity rover (Mahaffy et al., 2012), MOMA
(Mars Organic Molecule Analyzer) that will be onboard the
ExoMars mission (Goesmann et al., 2017), or EMILI (Europan
Molecular Indicators of Life Investigation) for Europa exploration
(Brinckerhoff et al., 2022), the samples studied are being ionized for
a specific duration in a trap before being released to the instrument’s
detector (ITMS). The detectors continuously make measurements
over the duration of the experiment and the outcomes are mass
spectra with a time dimension.

As detailed above, experiments (vial of seawater analog) are
repeatedly sampled over a period of time, adding a time component
to IRMS data. The detectors make repeated measurements over the
duration of the experiment and the outcomes produce intensity
versus time chromatograms. A simple reduction of these repeated
measures is to compute a mean and standard deviation of IRMS-
generated variables (e.g., peak intensity, area, isotope ratios, etc.) for
EDA. This process generates a high-dimensional variable space of
MS-derived features with physical meaning for EDA and ML
methods. We use IRMS data as raw data and converted it into a
time-averaged dataset in order to significantly reduce the
dimensionality of the input data while preserving the relevant
information. For the raw data, each experiment has 9 sample
peaks, and the input csv file is composed of 3,474 rows. On the
other hand, the averaged data inputs all the 9 scientific peaks and
computes the average over the 9 peaks. Each experiment is now
represented by a single point and the input csv file has 386 rows
(3,474/9).

2.4 Exploratory data analysis (EDA)

After performing QA/QC checks, we perform Exploratory Data
Analysis (EDA)—a critical process of performing initial
investigations on data in order to discover patterns, find
anomalies such as outliers, and test initial hypothesis and
assumptions with some statistics and visual representations. EDA
is a tool used to better understand the dataset and prepare it as well
as possible for further ML algorithms implementation. Indeed, EDA

is an initial and fundamental step to learn patterns from your data
that could then be leveraged to create precision algorithms that focus
on onboard capabilities to support science investigations.

2.4.1 Getting to know your data
Any computer science problem with data science and ML

applications must start with steps to understand the data and
gather as many insights as possible from it. The main goal of
EDA is to make sense of the data before developing any
algorithms with it. Initial investigations of the dimensionality of
the data and the generation of summary statistics (supp table**) can
give insights into data quality and the potential for outliers. Here, we
describe an advanced EDA pipeline that yields more understanding
into the nature of the data. The specific nature and properties of
data, such as repeated measures, multicollinearities, and missing
values, should inform the design of further data science and ML
methods.

Initial basic steps start with loading the dataset, looking at the
first few rows, getting the shape (e.g., the number of rows and
columns) of the studied dataset, analyzing the variables stored in the
columns and their corresponding data types, as well as finding
whether some rows or columns contain null or missing values. A
summary of statistics returns the count, mean, standard deviation,
quantiles, minimum and maximum values. A quick look at this
statistics summary gives a first idea of its quality and potential
outliers in the dataset (Supplementary Table S1 in the annex).

2.4.2 Metadata analysis
It is necessary to understand whether the data contains

multicollinearities between features that add redundancy and
noise to the ML training process. A straightforward method for
studying correlations in the dataset is to visualize the correlation
matrix via a heatmap (Figure 4). Correlation scores close to 1
(represented in green) represent a positive correlation, while
scores closer to −1 (represented in red) illustrate a negative
correlation. During the features selection step, correlated
variables are removed in order to reduce the dimension of the
dataset while retaining the most information.

In the correlation matrix of our studied dataset, we observe that
“PeakNr”, “Start”, “Rt”, and “End” (described in the Supplementary
Table S2) are highly correlated and effectively contain the same
information (upper left corner of Figure 4). Indeed, these four
features represent the same concept: the temporal dimension of
each peak. On the other hand, we observe that “d18O13C” is
negatively correlated (correlation value of −0.6) with the ratios of
46CO2 to 44CO2 (named “R46CO244CO2”, “rd46CO244CO2”,
“d46CO244CO2” in the Supplementary Table S2). There are
multiple perfect correlation blocks (dark green in Figure 4) that
can be collapsed into one unit of analysis.

Boxplots and pairplots are other common types of plots useful to
display the distribution of the studied data. Boxplots display the
5 main statistical values: minimum, maximum, median, first, and
third quartiles. Such distribution graphs provide a first glimpse at
potential outliers and enable us to look at the relationships between
the variables in more detail than a correlation heat map. Pairplots
represent pairwise relationships in the input dataset and help to
understand the best set of features to explain relationships between
two variables. They also help distinguish the most separated clusters
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of data, thus forming simple classification models. Pairplots from
our example dataset (Figure 5) illustrate several important
differences between “abiotic” samples (orange) and those
inoculated with microbes “biotic” (green).” In these examples, the
plots on a diagonal from the upper left to lower right illustrate
distribution plots of each variable in the data output. As such, these
plots demonstrate a strong differentiation of biotic and abiotic data
in terms of R45CO244CO2 and d13C12C (δ13C), yet that
distributions for R46CO244CO2 and d18O16O (the isotope ratio
of oxygen, δ18O) are more similar for abiotic and biotic samples. This
observation suggests that differences between abiotic and biotic
samples may be best represented by changes in isotopologues of
CO2 (R45CO244CO2) and carbon isotope ratios (d13C12C, the
isotope ratio of carbon, δ13C).

In contrast, each plot outside of this diagonal represents each
variable against a different variable. For example, Figure 5
illustrates a linear relationship between δ18O (d18O16O) and
R46CO244CO2. This is an expected result, as δ18O is linearly
calculated based on the ratio of isotopologues with mass 46 and
mass 44 (R46CO244CO2), and therefore is not expected to be a
distinct measurement. Therefore, distribution plots such as
pairplots (and boxplots) can be a rapid and useful tool to
understand which variables are important for specific types of
follow-on analysis, including machine learning. These
initial EDA techniques are useful in understanding the
nuances of the dataset and further enable an informed
approach to development of algorithms for prediction or
classification.

FIGURE 4
Correlation matrix (heatmap) of all 41 features from the MS instrument. This correlation matrix shows correlation coefficients between variables of
the input dataset. Each cell represents the correlation between 2 variables. A correlation heatmap is used to summarize the data and is a diagnostic for
advanced analyses such as machine learning.
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2.5 Unsupervised learning

As mentioned above, unsupervised learning algorithms are used
to explore and analyze the structure of the data to identify patterns
and similarities (clustering) or to simplify the dataset
(dimensionality reduction) without being influenced by an
assigned class label. Unsupervised learning algorithms are
applicable when the phenomenon driving the data is unknown.
Rather than making predictions about unknown data, the
unsupervised algorithm provides insights on the relationships
within the data, allowing us to see patterns otherwise not
recognizable by human investigators. A first step is typically to
use dimensionality reduction algorithms to represent the high-
dimensional input data into a low dimensional space that retains
the inter-variable relationships of the original data. This first step
aims at getting a better understanding and interpretation of the data,
and is often used as a precursor step to use clustering techniques to

find unbiased patterns and similarities that group data into clusters
of similar and dissimilar information.

2.5.1 Dimensionality reduction (PCA, t-SNE, UMAP)
Dimensionality reduction is the process of transforming a

dataset with a large number of features to a representation with
much fewer features, often for visualization purposes. The two main
categories are linear methods and nonlinear methods. Principal
Component Analysis (PCA) (Jolliffe and Cadima, 2016) is one of the
most common linear dimensionality reduction techniques. PCA is a
rotation of a multivariate dataset with new axes or effective variables
called “principal components.” Each new component is a linear
combination of the original variables, and they are ordered by their
variance. The PCA method can represent the multidimensional
dataset in a lower dimension by projecting the samples in a space
defined by the first few principal components. PCA helps one
visualize important correlation structure, that is, hidden in the

FIGURE 5
Pairplot of five representative input features of the studied dataset. The diagonal represents the distribution plot of each variable, and other plots
represent each variable against the rest of the variables. Pairplots are powerful tool to quickly explore distributions and relationships in any dataset. For
instance, here we can notice the linear relationship between R45CO244CO2 and δ13C, and between R46CO244CO2 and δ18O.
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higher dimensional representation. In contrast, T-distributed
stochastic neighbor embedding (t-SNE) (Van der Maaten and
Hinton, 2008) is a nonlinear dimensionality reduction algorithm
that finds clusters in data, keeping similar instances close to each
other and dissimilar instances apart. The algorithm creates a high
dimensional graph and reconstructs it in a lower dimensional space
point by point while retaining the structure. Another common
nonlinear dimensionality reduction method is Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018),
which has demonstrated strong effectiveness for visualizing clusters
of data points and their relative proximity, and often preserves the
global structure of the data more accurately than tSNE; the main
difference is that UMAP compresses the graph reconstructed in a
lower dimension.

Figure 6 illustrates these three techniques for the ocean worlds
dataset as an exploratory technique for showing inherent
similarities and patterns in the experimental data. Such
visualizations can use color in various ways to understand how
data are organized. The examples here are assigned different colors
for each unique chemical composition [salt(s) and ionic strength],
which is coded as their “Identifier1” in the instrument software.
Figure 6 demonstrates that t-SNE and UMAPmethods (Figures 6B,
C) generate more distinctive groupings of samples over PCA
(Figure 6A), and are better able to separate the data based on
their chemical compositions and on their CO2 concentration.
Emergent arcs and lines for the same composition (e.g., an arc
of MgSO4 L) in t-SNE and UMAP (Figures 6B, C) are explained by
the subsampling of experiments; therefore, arcs and lines
demonstrate grouping relevant to time in the spectra. Identifying
the cause of emergent patterns from these dimensionality reduction
techniques can be used as a pre-processing step to identify common
features in the data, which enables selection of the best techniques
for future ML work (e.g., dataset preparation and labeling,
clustering algorithms, feature selection). In this case, t-SNE and
UMAP demonstrated a potential training bias related to the
subsampling technique and informed future dataset preparation.

2.5.2 Clustering algorithms
Data mining techniques have greatly supported the discovery of

significant patterns in mass spectrometry data, particularly in
proteomics and metabolomics (e.g., Thomas et al., 2006; Swan
et al., 2013; Wang et al., 2020; Suvarna et al., 2021; Neely and
Palmblad, 2022). Such studies are enabled by the availability of
datasets. Developing these tools for exploration of planetary bodies,
such as ocean worlds, is challenging due to the paucity of available
data–either from the targets directly, or from modeling and
laboratory studies; thus, few to no predictive labels are available
for training. As a result, we use clustering techniques to support the
discovery of inherent patterns in spectra due to chemical or physical
properties. The task of clustering consists of organizing sets of data
whose classification is unknown (no available labels) into
meaningful groups (“clusters”) based on inherent relationships
discovered from the input data. Data in the same clusters are
more similar to each other than to objects in other clusters.
Clustering results and assessments are then used for patterns
evaluation (e.g., discriminatory patterns) and as a filtering tool.

Several clustering algorithms exist and can be grouped in 3 main
families: partitional clustering, hierarchical clustering, and density-
based clustering. In partitional clustering, the data is divided into
non-overlapping groups, meaning that each object is assigned to a
single cluster (Gandhi and Srivastava, 2014; Kutbay, 2018). The
KMeans algorithm (Kanungo et al., 2002) is a type of partitional
clustering. One drawback of this approach is the need to specify the
number of clusters, necessitating some interpretation of the data; we
consider this approach to be ‘semi-automated.’ As an example,
Figure 7 shows a UMAP representation using KMeans algorithm
to assign samples to 8 clusters that each represent the primary salts
used in the laboratory experiments. Clusters are generally distinct
for each assigned cluster, suggesting that salt composition (color)
has a significant effect on clustering. However, Figure 7
demonstrates that, e.g., NaHCO3-based seawaters are partitioned
among several assigned clusters (red, green, cyan, lime), which may
be promoted by differing ionic strength, the concentration of CO2,

FIGURE 6
Comparison of 3 dimensionality reduction techniques, (A) PCA, (B) t-SNE, (C) UMAP on 15 selected features on the input dataset. The color legend
represents the salt compositions of the seawaters (“Identifier1”). L/U indicate a lower/higher concentration of the salt. t-SNE and UMAPmethods perform
a more definite grouping of samples. Black vectors on subplot (A) (PCA) show the contribution of each feature for the PCA decomposition (discussed
further in Figure 12).
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or combinations with other salts (multiple salt solutions described in
Theiling (2021)). Therefore, partitional clustering can be used as an
exploratory tool to determine which features of a dataset affect the
organization.

The second family of clustering is hierarchical, whereby the
algorithm builds a hierarchy to determine cluster assignments
(Cohen-Addad et al., 2017). These can be further divided into
two types of approaches. First is a top-down approach called
“divisive clustering”, in which all the points are initially part of a
single cluster, and points are iteratively split into least similar
clusters until each cluster is composed of a single point. The
second is a bottom-up approach is called “agglomerative
clustering”, whereby each point starts as individual cluster, and
the algorithm iteratively merges the most similar two points until all
points are part of a unique cluster.

The last common technique is density-based clustering, which
builds clusters based on the density of data points in a region (Ester
et al., 1996; Sander et al., 1998). Clusters are drawn where high-
densities of data points separated by low-density regions. This
method does not require the user to specify the number of
clusters, but instead uses a distance-based metric as a tunable
threshold.

As noted above, some of these clustering algorithms require the
user to input the number of clusters. In an unsupervised, data-
driven approach, users either do not know the number of clusters
that will best partition their data, or do not want to introduce bias.
Several methods exist to evaluate the best number of clusters
(Lamirel et al., 2016), which we illustrate in Figure 8. The
Elbow method is the most popular method, and runs the
clustering algorithm several times with different values of k
(number of clusters) (Marutho et al., 2018). The user then plots
the sum of squared errors (SSE) vs. k, and finds the optimal
number of clusters in the elbow of the curve (when the change
in SSE first starts to diminish). Another common method is the

Silhouette index. The silhouette value measures how similar a
point is to its own cluster (cohesion) compared to other clusters
(separation). Values range from −1 (clusters being assigned the
wrong way) to 1 (clusters are well apart from each other and clearly
distinguished). The higher the silhouette value, the better the
model (Rousseeuw, 1987; Dudek, 2020). Another method is the
Calinski-Harabasz (CH) index. This index measures the
compactness and separation between clusters, interpreted such
that good clusters are themselves very compact and well-spaced
from each other. Higher the CH index, the better the model
(Calinski and Harabasz, 1974). Similarly as the CH index, the
Davies-Boulding (DB) index measures the compactness and
separation between clusters. The lower the DB index, the better
the model (Davies and Bouldin, 1979). Finally, one may use a
Dendrogram; A tree-structured graph used to visualize the result of
a hierarchical clustering calculation. The dendrogram first starts by
considering each point as a single cluster and joins points to
clusters in a hierarchical manner based on their distance (the
user specifies the distance metric to use; here we use Euclidean
distance). The heights of the joins between clusters represents the
distance between those clusters (Forina et al., 2002). We posit that
ultimately the choice for the number of clusters to use should be
guided by both clustering evaluation metrics described above
(data-driven) and domain knowledge (knowledge-driven).

3 Experimental pipeline and
implementation

3.1 EDA for quality checks

We use EDA techniques such as basic statistics (average,
quartiles, minimum, and maximum values) and visualization
plots like boxplots and pairplots in an iterative process for the

FIGURE 7
K-Means clustering of a two components UMAP representation of the repeated measures dataset (data not averaged) and using n_clusters =
8 clusters (representing the main salts used in the experiments). The plot is annotated with the main salt present in each cluster of points.
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verification of the QA/QC steps. After each implementation of a
new QC, pairplots and boxplots are generated to verify the
presence of potential outliers representing poor quality
laboratory data that should be filtered out, which are cross-
checked with more laborious QA/QC procedures typical for
evaluating similar data types, including visual inspection of
chromatograms and filtering, sorting, and calibration
procedures performed in spreadsheets. Unlike analysis of
natural samples, in which the purpose is to characterize
unknown materials, the purpose of the ocean worlds
experimental dataset we use is to understand similarities and
differences in output under highly-constrained conditions.
Therefore, we must understand how variable data quality might
interfere with data from the experimental conditions (i.e., reduce
the probability of false positives/negatives, aid in instrument
diagnosis).

Figure 9 illustrates five features [“PeakNr” (peak number), “Rt”
(retention time), d13C12C, d18O16O, and Ampl44] from unfiltered
data compared to those that underwent a first quality check
implementation for the 5 reference peaks. We first focus on the
5 reference peaks as they offer clear readability of the outliers. We

quickly observe that the number of peaks is reduced from 32 to 16
(last reference peak is peak #16), and the values range of d13C12C
and d18O16O is rescaled. This suggests that our EDA process could
assist in identifying poor quality data, and also demonstrates the
improvement of the dataset using established QC checks on overall
data. This is also important to note because a user could use
additional EDA or ML on raw, QA/QC checked, or QA/QC
checked and calibrated data. These pairplots therefore
demonstrate that additional processing of data will improve
results. Thus, EDA techniques could be used on raw data to
understand structure and potential QA/QC flags, and then again
on more processed data to evaluate scientific questions.

3.2 Choice of features of interest

Correlation matrices depict the correlation between all possible
pairs of values in the table. This is a powerful tool to summarize
datasets with many features and to identify patterns in the given
data. In Figure 10, we represent a correlation matrix for 3 different
sets of features: 1) all the 41 features, 2) a limited set of 25 features,

FIGURE 8
Results of 5methods aiming at finding the best number of clusters for the dataset The left vertical axes represent the value of the specific score being
measured. The right vertical axes [subplots (A–C)] represent the computation time (in seconds). The vertical line is the result representing the optimal
number of clusters for each technique: (A) elbow method, 9 clusters; (B) silhouette score, 6 clusters; (C) Calinski-Harabasz method, 14 clusters; (D)
Davies Bouldin score, 14 clusters; (E) dendrogram, 6 clusters (to define for the dendrogram).
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and 3) an even more limited set of 14 features. Limited features in
Figure 4B are selected based on characteristics typically used to
evaluate chromatograms, and these features were further down-

selected in 4c based on correlations demonstrated in 4b. The choice
of which features to remove is based on the high positive correlations
represented by the green squares and a correlation value equal to 1.

FIGURE 9
Comparison of pairplots for the unfiltered dataset before any quality checks [subplot (A)] and post quality checks [subplot (B)]. For clear readability in
this example, we only represent the 5 reference peaks for 5 features. The unfiltered data [plot (A)] shows PeakNr values from 0 to 32, while the quality
checked one [plot (B)] shows the right number of 5 reference peaks (peaks 1, 2, 4, 5, and 16). The features δ13C, δ18O, and Ampl44 unrealistic values (for
instance δ13C from −50–3500) on the unfiltered dataset due to the presence of outliers’ values (circled in red on the δ13C vs. Ampl44 subplot), while
being corrected in the post quality checked data.
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For instance, for a given isotope with mass X, “rIntensityX”,
“IntensityX”, and “AmplX” contain the same information and are
considered redundant in terms of their information content,
although their absolute values may be unique. Removing highly
correlated variables is needed to prepare the dataset for ML,
streamlining processing and improving interpretability of the
model.

Moreover, down-selecting features improves dimensionality
reduction techniques. In the case of applying PCA (i.e., a
dimensionality reduction tool that helps identify patterns in
the dataset based on the correlations between features),
removing highly correlated features enhances the output
reduced set. The mathematical process of PCA aims at
finding the directions of maximum variance in the high-

FIGURE 10
Comparison of correlation matrices for 3 different input sets: all 41 features (A), a limited set of 25 features (B), and a smaller set of 14 features (C).
Redundancies (green) are reduced by down-selecting features.

FIGURE 11
Comparison of 3 PCA plots for different input features set: (A) the 10 main features, (B) 5 limited features, and (C) only the two isotopic
measurements (δ13C and δ18O). Plots (D), (E), and (F) are a zoom on the vectors representing the role of each feature for each principal component.
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dimensional space and at projecting it a lower dimension space.
By keeping strongly correlated features before performing PCA,
the contribution of their common underlying factor increases
and can have substantial effect on PCA results. Even if PCA is
not a feature selection method, it is common to consider the
ranking of the features in the explained variance and only
retain the most important features that explain most of the
variance.

We analyze the role of each feature using 3 different sets of
input features for PCA application (Figure 11): 10 features
(Figures 11A, D), 5 features (Figures 11B, E), and 2 features
(Figures 11C, F). When plotting the PCA results we add vectors
representing the direction, orientation, and amplitude of each
input feature. Figure 12 illustrates the high correlation between
some input features such as Start/End (representing the timing of
the sample or standard peak), d13C12C/d18O16O (representing
the ratio of CO2 isotopologues measured in the experiment).
Using these PCA results, we are then able to reduce the input
features to best represent the dataset while preserving the most
information.

3.3 Comparison of repeated measures data
and averaged data

Similar to PCA, t-SNE and UMAP representations in Figure 7,
the linear patterns emerging in Figures 12A–C are due to repeated
measures of each sample peak. Therefore, to remove the bias in
continued data science and ML techniques, we average the
repeated measures, resulting in more clear cluster structure
(Figures 12D–F). In the raw data, each experiment consists of
CO2 equilibrated with an ocean world analog seawater, and
repeated sampling by the IRMS results in 9 sample peaks used
for further analysis (Figure 3). As a simple first transformation, we
create a separate dataset in which the 9 sample peak values are
averaged into a single value, and all potential features including a
time component (e.g., Rt, Start, End, etc.) are removed. This
averaging of the repeated measures results in a dataset, that is,
more conducive to further analysis and ML.

We analyze the differences of the repeated measures dataset
(only features with correlation lower than 0.9 have been used in
these representations) and the time-averaged dataset. We note that

FIGURE 12
Comparison of 2-components PCA (subplots a and d), t-SNE (subplots b and e), and UMAP (subplots c and f) algorithms on raw mass spectrometry
data [with multiple observations for each experiment, subplots (A–C)] and averaged MS features data [one observation per experiment, subplots (D–F)].
The color legend represents biotic (green) vs. abiotic (gold). The application of these dimensionality reduction algorithms on the averaged dataset offers
fewer initial clusters representing abiotic versus biotic samples.
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PCA, t-SNE and UMAP algorithms used as dimensionality
reduction techniques are able to simplify the clusters when using
the mean-reduced data versus the repeated-measures data. By
limiting the number of repeated measures per experiment (by
averaging) and by limiting the numbers of features (only the
ones with correlation values <0.9), these basic dimensionality
reduction algorithms demonstrate they are better at clustering
than the raw data.

4 Discussion and lessons learned

Our work is already yielding several lessons learned and
directions for the next steps to develop onboard science data
analysis for future mature missions.

4.1 Implementation, limitations, and
challenges

Solar system missions not only present operational challenges
but also technological ones. Indeed, the harsh environment the
spacecraft are exposed to, such as extreme temperature gradients
and radiation, constantly damage the electronics components,
limiting the diversity of hardware usable on spacecraft. An
additional challenge therefore is accommodating the
computational requirements for onboard data science and ML
processing. These computing requirements pose a difficult
problem for the application to space missions, which are
extremely limited in power consumption, communication
bandwidth, and hardware equipment. The majority of NASA
missions require “Radiation Hardened” (RH) electronics,
including everything from power supplies to general purpose
central processing units (CPUs), or requirements for certain
electronics to be house in a radiation hardened vault. These
requirements limit the available power and data volume,
creating a widespread need for technological development in
RH processing capability. As an example, the Curiosity rover,
the Perseverance rover, and the Mars Reconnaissance Orbiter
(MRO) are all equipped with the same RH CPU (BAR Systems
RAD750 processor) that was developed in the 1990s. The
demonstrated flight heritage (TRL 9) and reliability of the
RAD 750 makes it a standard in space missions, despite many
generations behind the state-of-the-art in processors. The
emergence of FPGAs (Field-Programmable Gate Array,
i.e., integrated circuit designed to be configured by a customer)
with DSP (Digital Signal Processors) or simple integrated neural
processors shows promise that sufficient AI and ML application
hardware will soon be developed for space flight applications.
However, the mission design requires an exploration of tradeoffs
between runtime and accuracy to offer tools that answer science
objectives while respecting operational constraints. ML evolves
very quickly and the latest sophisticated models cannot fit in the
severe resource constraints. To date, computer science tools that
have been deployed in space have low computational demands.
One of the next steps is to monitor the power, memory, and
computation time for the methods mentioned in this paper.
During the development of these algorithms, we kept in mind

the needs of performance and resource-optimization due to high
limitations for planetary missions.

Moreover, ML applications require large amounts of data in
order to properly train and tune the developed algorithms. In this
work, we use data collected in a laboratory over 2 years. The total
dataset was composed of 1,086 input spectra, reduced to
587 spectra after the quality check process. While more data
are being collected in the laboratory, this process can take many
years; therefore. Data generation techniques to enhance the input
dataset, such as synthetic data creation or data augmentation
methods (Maharana et al., 2022; Mikolajczyk et al., 2018) could be
investigated in future research. This work is a proof-of-concept
demonstrating a powerful data science pipeline that can support
scientific research in a multitude of ways—from implementing
automated checks on data quality and reproducibility, to
understanding emergent patterns in datasets that may be
outside typical uses of a dataset. By introducing these
procedures here, we endeavor to inspire development of
science- and mission-enhancing tools, including deployment of
onboard analysis. We acknowledge, however, that data from flight
instruments are often significantly different from commercial
instruments, therefore models developed on commercial
instrument data will need to be updated to be implemented on
actual flight instrument data.

4.2 Data collection strategy

The investigation and development of intelligent algorithms to
support space mission operations, using data science, basic
thresholds methods, AI, or ML require the mission and
instrument design to accommodate this innovative
implementation. One of the key points is the creation of the
dataset used to train and test the algorithms. The dataset must be
well defined from the beginning of the mission concept in order to
support effective and accurate algorithms to answer the specific
requirements of the mission (operational, scientific, and
engineering). Instrument scientists must establish precise goals
and a coherent and clear dataset strategy creation. For this
research, data scientists had to preprocess the dataset several
times to remove unsuitable data and to reformat data collected in
inconsistent ways by multiple users. Therefore, thinking about ML
or data science applications from an early stage in the mission design
will drive the data collection plan and greatly enhance the
possibilities of data-driven algorithmic investigations.

4.3 Trust readiness level

The increasing presence of AI and ML is also accompanied with
rising concerns, especially in domains like space exploration. The
deployment of onboard intelligence techniques is still avant-garde
and consequently high-risk. Every new technology or capability
confronts a trade-off between the new benefits added to the
instrument and deliverables, and the potential additional risks
from its implementation. ML techniques must be fully tested and
proven in order to demonstrate ML reliability. Moreover, it is worth
mentioning that traditional algorithmic approaches such as
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threshold-based algorithms should be first considered if they enable
the same science benefits while being more easily implementable
onboard a mission than more opaque data science techniques.
Algorithms must be designed in order to provide interpretability
and limit this “black-box” effect.

Another important characteristic in the design and conception of
AI andMLmethods is the choice of the performancemetrics based on
the interest of the stakeholders. In our research, ML metrics such as
accuracy, recall, and precision are being used in combination with
scientists’ interpretations. The communication between the fields of
data science and mass spectrometry is crucial to fully understand the
needs of the science team as well as the limitations they face, and will
be instrumental in promoting more widespread use and development
of these tools among the scientific community.

Slingerlan and Perry (2022) provides a framework for
developing trust in AI as further applications will require
careful considerations of the training and the deployability of
software and hardware in more realistic and therefore constrained
environments. Recent research considered the development of a
“Trust Readiness Level”, similar to the “Technology Readiness
Level” (TRL) used in the spaceflight engineering field for
hardware ability evaluation (Da Poian et al., 2022). Our
research aims at designing a scale system to assess the maturity
level of the technology using AI and ML tools. Similarly to the
engineering scale, this trusting system will follow a progressing
path that tests these methods on laboratory data in normal
conditions, and then under more realistic flight mission
conditions and constraints before being actually used onboard
a mission. This Trust Readiness Level scale will not only be
dependent of the target of interest but also on the types of
instruments. Because mass spectrometers going to Mars will
not have the same constraints and requirements as the ones
going further out in our Solar System (to Titan onboard
Dragonfly, to Europa onboard the Europa Clipper mission),
this trust readiness level scale will be dependent of the target
of interest for the mission. It will also be dependent on the type of
instruments under study while studying the same target of
interest, as for instance mass spectrometers and magnetometers
will not hold the same requirements and constraints and will
though have different trust demands. Developing this trust
readiness level will require a systematic methodology,
consistency, and adjustment on a case-by-case basis.

5 Conclusion and future work

The upcoming decade will launch another revolution in planetary
exploration with the fascinating advances in flight science
instruments. International space agencies are developing more
mature and sophisticated missions to explore environments in our
Solar System that were previously considered too risky; with this we
will better understand planetary processes and potential evidence of
life beyond Earth. Beyond the continuous improvements of planetary
instruments, it is now imperative to develop a modern framework to
consider data from these missions, not only to enhance science return,
but also to give autonomy to these visionary missions. We used ocean
worlds laboratory analogs to develop an initial data processing
pipeline as a proof-of-concept to evaluate whether volatile CO2

emanating from Europa or Enceladus could contain any
information related to the surface and subsurface ocean
composition; these ML algorithms are in refinement. However, our
discussion here of EDA techniques could serve as a guide for other
researchers considering ways to enhance data return frommissions or
laboratory experiments. Such data science approaches and future ML
algorithms are developed to advance analytical software tools that
could be used by mission scientists as methods for rapid data analysis.
Science autonomy enabled by tools like data science and ML will
ultimately empower the reach of future mission targets such as icy
ocean worlds or targets further away out of our Solar System, ensuring
future outstanding scientific discoveries.
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